OzoneAsai's picture
Update app.py
22dd958 verified
raw
history blame
8.09 kB
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from flask import Flask, request, jsonify, render_template_string
import time
from flask_sse import sse
import redis
# Flaskアプリケーションの設定
app = Flask(__name__)
app.config["REDIS_URL"] = "redis://localhost:6379/0"
app.register_blueprint(sse, url_prefix='/stream')
# デバイスの設定
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# トークナイザーとモデルの読み込み
tokenizer = AutoTokenizer.from_pretrained("inu-ai/alpaca-guanaco-japanese-gpt-1b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("inu-ai/alpaca-guanaco-japanese-gpt-1b").to(device)
# 定数
MAX_ASSISTANT_LENGTH = 100
MAX_INPUT_LENGTH = 1024
INPUT_PROMPT = r'<s>\n以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。\n[SEP]\n指示:\n{instruction}\n[SEP]\n入力:\n{input}\n[SEP]\n応答:\n'
NO_INPUT_PROMPT = r'<s>\n以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n[SEP]\n指示:\n{instruction}\n[SEP]\n応答:\n'
# HTMLテンプレート
HTML_TEMPLATE = """
<!DOCTYPE html>
<html lang="ja">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Chat Interface</title>
<style>
body { font-family: Arial, sans-serif; }
.container { max-width: 600px; margin: auto; padding: 20px; }
.chat-box { border: 1px solid #ccc; padding: 10px; height: 300px; overflow-y: scroll; }
.chat-entry { margin-bottom: 10px; }
.chat-entry.user { text-align: right; }
.input-group { display: flex; }
.input-group input { flex: 1; padding: 10px; border: 1px solid #ccc; border-radius: 4px; }
.input-group button { padding: 10px; border: none; background-color: #28a745; color: white; cursor: pointer; }
.input-group button:hover { background-color: #218838; }
</style>
</head>
<body>
<div class="container">
<h1>Chat Interface</h1>
<div class="chat-box" id="chat-box"></div>
<div class="input-group">
<input type="text" id="user-input" placeholder="質問を入力してください...">
<button onclick="sendMessage()">送信</button>
</div>
</div>
<script>
const chatBox = document.getElementById('chat-box');
const userInput = document.getElementById('user-input');
let conversationHistory = [];
function addMessageToChat(role, message) {
const entry = document.createElement('div');
entry.className = 'chat-entry ' + role;
entry.textContent = role === 'user' ? 'User: ' + message : 'Assistant: ' + message;
chatBox.appendChild(entry);
chatBox.scrollTop = chatBox.scrollHeight;
}
function sendMessage() {
const message = userInput.value.trim();
if (message === '') return;
addMessageToChat('user', message);
userInput.value = '';
fetch('/generate', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
role_instruction: [
"User:あなたは「ずんだもん」なのだ。東北ずん子の武器である「ずんだアロー」に変身する妖精またはマスコットなのだ。一人称は「ボク」で語尾に「なのだ」を付けてしゃべるのだ。",
"Assistant:了解したのだ!"
],
conversation_history: conversationHistory,
new_conversation: message
})
})
.then(response => response.json())
.then(data => {
const assistantMessage = data.response.split('Assistant:')[1].trim();
addMessageToChat('assistant', assistantMessage);
conversationHistory.push('User:' + message);
conversationHistory.push('Assistant:' + assistantMessage);
})
.catch(error => {
console.error('Error:', error);
alert('エラーが発生しました。コンソールを確認してください。');
});
}
// SSEの設定
const eventSource = new EventSource("/stream");
eventSource.onmessage = function(event) {
const message = event.data;
addMessageToChat('assistant', message);
};
</script>
</body>
</html>
"""
def prepare_input(role_instruction, conversation_history, new_conversation):
"""入力テキストを整形する関数"""
instruction = "".join([f"{text}\n" for text in role_instruction])
instruction += "\n".join(conversation_history)
input_text = f"User:{new_conversation}"
return INPUT_PROMPT.format(instruction=instruction, input=input_text)
def format_output(output):
"""生成された出力を整形する関数"""
return output.lstrip("<s>").rstrip("</s>").replace("[SEP]", "").replace("\\n", "\n")
def trim_conversation_history(conversation_history, max_length):
"""会話履歴を最大長に収めるために調整する関数"""
while len(conversation_history) > 2 and sum([len(tokenizer.encode(text, add_special_tokens=False)) for text in conversation_history]) + max_length > MAX_INPUT_LENGTH:
conversation_history.pop(0)
conversation_history.pop(0)
return conversation_history
def generate_response(role_instruction, conversation_history, new_conversation):
"""新しい会話に対する応答を生成する関数"""
conversation_history = trim_conversation_history(conversation_history, MAX_ASSISTANT_LENGTH)
input_text = prepare_input(role_instruction, conversation_history, new_conversation)
token_ids = tokenizer.encode(input_text, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
min_length=len(token_ids[0]),
max_length=min(MAX_INPUT_LENGTH, len(token_ids[0]) + MAX_ASSISTANT_LENGTH),
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
bad_words_ids=[[tokenizer.unk_token_id]]
)
output = tokenizer.decode(output_ids.tolist()[0])
formatted_output_all = format_output(output)
response = f"Assistant:{formatted_output_all.split('応答:')[-1].strip()}"
conversation_history.append(f"User:{new_conversation}".replace("\n", "\\n"))
conversation_history.append(response.replace("\n", "\\n"))
return formatted_output_all, response
@app.route('/')
def home():
"""ホームページをレンダリング"""
return render_template_string(HTML_TEMPLATE)
@app.route('/generate', methods=['POST'])
def generate():
"""Flaskエンドポイント: /generate"""
data = request.json
role_instruction = data.get('role_instruction', [])
conversation_history = data.get('conversation_history', [])
new_conversation = data.get('new_conversation', "")
if not role_instruction or not new_conversation:
return jsonify({"error": "role_instruction and new_conversation are required fields"}), 400
formatted_output_all, response = generate_response(role_instruction, conversation_history, new_conversation)
# ここでSSEを介してリアルタイムで応答をストリームします
for word in response.split():
sse.publish({"message": word}, type='message')
time.sleep(0.5) # 送信間隔をシミュレート
return jsonify({"response": response, "conversation_history": conversation_history})
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0", port=7860)