Spaces:
Runtime error
Runtime error
File size: 1,396 Bytes
6e8f3cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import streamlit as st
st.title("Japanese Text Generation")
tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-ppo", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-ppo")
logs = []
def generate_text(input_prompt):
token_ids = tokenizer.encode(input_prompt, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to("cpu"),
do_sample=True,
max_new_tokens=128,
temperature=0.7,
repetition_penalty=1.1,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
generated_text = generated_text.replace("<NL>", "\n")
return generated_text
prompt = st.text_area("Enter the prompt:")
if st.button("Submit"):
generated_output = generate_text(prompt)
logs.append((prompt, generated_output))
for log in logs:
with st.beta_container():
st.write("---")
st.subheader("Time: {}".format(log[0]))
st.write("**Input**: {}".format(log[0]))
st.write("**Output**: {}".format(log[1]))
|