File size: 13,697 Bytes
9deadaf 1cbd0a7 1e33f0c a424904 1e33f0c a424904 1e33f0c a424904 1e33f0c a424904 1e33f0c a424904 1e33f0c a424904 1e33f0c a424904 1e33f0c a424904 1e33f0c e01ae8c b265f3c e01ae8c 8b41da9 e01ae8c ccc5076 e01ae8c 9deadaf e01ae8c 8b41da9 e01ae8c c2e9464 9deadaf e01ae8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
questions:dict[str,float]={
"MgCl2": 95.0,
"MgO": 40.0,
"MgF2": 62.0,
"MgS": 56.0,
"Mg(OH)2": 58.0,
"MgI2": 278.0,
"CaCl2": 111.0,
"CaO": 56.0,
"CaF2": 78.0,
"CaS": 72.0,
"Ca(OH)2": 74.0,
"CaI2": 294.0,
"ZnCl2": 136.0,
"ZnO": 81.0,
"ZnF2": 103.0,
"ZnS": 97.0,
"Zn(OH)2": 99.0,
"ZnI2": 319.0,
"NaCl": 58.5,
"Na2O": 62.0,
"NaF": 42.0,
"Na2S": 78.0,
"NaOH": 40.0,
"NaI": 150.0,
"KCl": 74.5,
"K2O": 94.0,
"KF": 58.0,
"K2S": 110.0,
"KOH": 56.0,
"KI": 166.0,
"HCl": 36.5,
"H2O": 18.0,
"HF": 20.0,
"H2S": 34.0,
"HOH": 18.0,
"HI": 128.0,
"CuCl": 99.0,
"Cu2O": 143.0,
"CuF": 82.5,
"Cu2S": 159.0,
"CuOH": 80.5,
"CuI": 190.5,
"CuCl2": 134.5,
"CuO": 79.5,
"CuF2": 101.5,
"CuS": 95.5,
"Cu(OH)2": 97.5,
"CuI2": 317.5,
"AgCl": 143.5,
"Ag2O": 232.0,
"AgF": 127.0,
"Ag2S": 248.0,
"AgOH": 125.0,
"AgI": 235.0,
"BaCl2": 208.0,
"BaO": 153.0,
"BaF2": 175.0,
"BaS": 169.0,
"Ba(OH)2": 171.0,
"BaI2": 391.0,
"FeCl2": 127.0,
"FeO": 72.0,
"FeF2": 94.0,
"FeS": 88.0,
"Fe(OH)2": 90.0,
"FeI2": 310.0,
"MnCl2": 126.0,
"MnO": 71.0,
"MnF2": 93.0,
"MnS": 87.0,
"Mn(OH)2": 89.0,
"MnI2": 309.0,
"PbCl2": 278.0,
"PbO": 223.0,
"PbF2": 245.0,
"PbS": 239.0,
"Pb(OH)2": 241.0,
"PbI2": 461.0,
"AlCl3": 133.5,
"Al2O3": 102.0,
"AlF3": 84.0,
"Al2S3": 150.0,
"Al(OH)3": 78.0,
"AlI3": 408.0,
"FeCl3": 162.5,
"Fe2O3": 160.0,
"FeF3": 113.0,
"Fe2S3": 208.0,
"Fe(OH)3": 107.0,
"FeI3": 437.0,
"NH4Cl": 53.5,
"(NH4)2O": 52.0,
"NH4F": 37.0,
"(NH4)2S": 68.0,
"NH4OH": 35.0,
"NH4I": 145.0,
"MgSO4": 120.0,
"MgCO3": 84.0,
"MgC2O4": 112.0,
"MgCrO4": 140.0,
"MgCr2O7": 240.0,
"MgS2O3": 136.0,
"Mg3(PO4)2": 262.0,
"CaSO4": 136.0,
"CaCO3": 100.0,
"CaC2O4": 128.0,
"CaCrO4": 156.0,
"CaCr2O7": 256.0,
"CaS2O3": 152.0,
"Ca3(PO4)2": 310.0,
"ZnSO4": 161.0,
"ZnCO3": 125.0,
"ZnC2O4": 153.0,
"ZnCrO4": 181.0,
"ZnCr2O": 185.0,
"ZnS2O3": 177.0,
"Zn3(PO4)2": 385.0,
"Na2SO4": 142.0,
"Na2CO3": 106.0,
"Na2C2O4": 134.0,
"Na2CrO4": 162.0,
"Na2Cr2O7": 262.0,
"Na2S2O3": 158.0,
"Na3PO4": 164.0,
"K2SO4": 174.0,
"K2CO3": 138.0,
"K2C2O4": 166.0,
"K2CrO4": 194.0,
"K2Cr2O7": 294.0,
"K2S2O3": 190.0,
"K3PO4": 212.0,
"H2SO4": 98.0,
"H2CO3": 62.0,
"H2C2O4": 90.0,
"H2CrO4": 118.0,
"H2Cr2O7": 218.0,
"H2S2O3": 114.0,
"H3PO4": 98.0,
"Cu2SO4": 223.0,
"Cu2CO3": 187.0,
"Cu2C2O4": 215.0,
"Cu2CrO4": 243.0,
"Cu2Cr2O7": 343.0,
"Cu2S2O3": 239.0,
"Cu3PO4": 285.5,
"CuSO4": 159.5,
"CuCO3": 123.5,
"CuC2O4": 151.5,
"CuCrO4": 179.5,
"CuCr2O7": 279.5,
"CuS2O3": 175.5,
"Cu3(PO4)2": 380.5,
"Ag2SO4": 312.0,
"Ag2CO3": 276.0,
"Ag2C2O4": 304.0,
"Ag2CrO4": 332.0,
"Ag2Cr2O7": 432.0,
"Ag2S2O3": 328.0,
"Ag3PO4": 419.0,
"BaSO4": 233.0,
"BaCO3": 197.0,
"BaC2O4": 225.0,
"BaCrO4": 253.0,
"BaCr2O7": 353.0,
"BaS2O3": 249.0,
"Ba3(PO4)2": 601.0,
"FeSO4": 152.0,
"FeCO3": 116.0,
"FeC2O4": 144.0,
"FeCrO4": 172.0,
"FeCr2O7": 272.0,
"FeS2O3": 168.0,
"Fe3(PO4)2": 358.0,
"MnSO4": 151.0,
"MnCO3": 115.0,
"MnC2O4": 143.0,
"MnCrO4": 171.0,
"MnCr2O)": 175.0,
"MnS2O3": 167.0,
"Mn3(PO4)2": 355.0,
"PbSO4": 303.0,
"PbCO3": 267.0,
"PbC2O4": 295.0,
"PbCrO4": 323.0,
"PbCr2O7": 423.0,
"PbS2O3": 319.0,
"Pb3(PO4)2": 811.0,
"Al2(SO4)3": 342.0,
"Al2(CO3)3": 234.0,
"Al2(C2O4)3": 318.0,
"Al2(CrO4)3": 402.0,
"Al2(Cr2O7)3": 702.0,
"Al2(S2O3)3": 390.0,
"AlPO4": 122.0,
"Fe2(SO4)3": 400.0,
"Fe2(CO3)3": 292.0,
"Fe2(C2O4)3": 376.0,
"Fe2(CrO4)3": 460.0,
"Fe2(Cr2O7)3": 760.0,
"Fe2(S2O3)3": 448.0,
"FePO4": 151.0,
"Mg(NO3)2": 148.0,
"(CH3COO)2Mg": 142.0,
"Mg(MnO4)2": 262.0,
"Ca(NO3)2": 164.0,
"(CH3COO)2Ca": 158.0,
"Ca(MnO4)2": 278.0,
"Zn(NO3)2": 189.0,
"(CH3COO)2Zn": 183.0,
"Zn(MnO4)2": 303.0,
"NaNO3": 85.0,
"CH3COONa": 82.0,
"Na(MnO4)": 142.0,
"KNO3": 101.0,
"CH3COOK": 98.0,
"K(MnO4)": 158.0,
"HNO3": 63.0,
"CH3COOH": 60.0,
"HMnO4": 120.0,
"CuNO3": 125.5,
"CH3COOCu": 122.5,
"CuMnO4": 182.5,
"Cu(NO3)2": 187.5,
"(CH3COO)2Cu": 181.5,
"Cu(MnO4)2": 301.5,
"AgNO3": 170.0,
"AgCH3COO": 167.0,
"AgMnO4": 227.0,
"Ba(NO3)2": 261.0,
"Ba(CH3COO)2": 255.0,
"Ba(MnO4)2": 375.0,
"Fe(NO3)2": 180.0,
"Fe(CH3COO)2": 174.0,
"Fe(MnO4)2": 294.0,
"Mn(NO3)2": 179.0,
"Mn(CH3COO)2": 173.0,
"MnNO3": 117.0,
"MnCH3COO": 114.0,
"Mn(MnO4)2": 293.0,
"Pb(NO3)2": 331.0,
"Pb(CH3COO)2": 325.0,
"Pb(MnO4)2": 445.0,
"Al(NO3)3": 213.0,
"Al(CH3COO)3": 204.0,
"Al(MnO4)3": 384.0,
"Fe(NO3)3": 242.0,
"Fe(CH3COO)3": 233.0,
"Fe(MnO4)3": 413.0,
"Mn(NO3)3": 241.0,
"Mn(CH3COO)3": 232.0,
"Mn(MnO4)3": 412.0,
"Pb(NO3)3": 393.0,
"Pb(CH3COO)3": 384.0,
"Pb(MnO4)3": 564.0,
"Al(NO3)2": 151.0,
"Al(CH3COO)2": 145.0,
"Al(MnO4)2": 265.0,
}
from flask import Flask, render_template, request, redirect, url_for, session
import random
import sympy as sp
app = Flask(__name__)
app.secret_key = 'your_secret_key' # セッションのための秘密鍵
# シンボルの定義と説明
symbols_info = {
'solute_mass': '溶質の質量 (g)',
'solution_mass': '溶液の質量 (g)',
'moles_of_solute': '溶質のモル数 (mol)',
'volume_of_solution': '溶液の体積 (L)',
'mass': '質量 (g)',
'volume': '体積 (mL)',
'density': '密度 (g/mL)',
'molarity': 'モル濃度 (mol/L)',
'mass_percent': '質量パーセント濃度 (%)'
}
solute_mass, solution_mass, moles_of_solute, volume_of_solution, mass, volume, density, molarity, mass_percent = sp.symbols(
'solute_mass solution_mass moles_of_solute volume_of_solution mass volume density molarity mass_percent')
# 質量パーセント濃度を計算する関数
def calculate_mass_percent(solute_mass, solution_mass):
mass_percent = (solute_mass / solution_mass) * 100
return round(float(mass_percent), 3)
def find_mass_percent_value(solute_mass_value, solution_mass_value):
equation = sp.Eq(mass_percent, (solute_mass / solution_mass) * 100)
result = sp.solve(equation.subs({solute_mass: solute_mass_value, solution_mass: solution_mass_value}), mass_percent)
return round(float(result[0]), 3)
# モル濃度を計算する関数
def calculate_molarity(moles_of_solute, volume_of_solution):
molarity = moles_of_solute / volume_of_solution
return round(float(molarity), 3)
def find_molarity_value(moles_of_solute_value, volume_of_solution_value):
equation = sp.Eq(molarity, moles_of_solute / volume_of_solution)
result = sp.solve(equation.subs({moles_of_solute: moles_of_solute_value, volume_of_solution: volume_of_solution_value}), molarity)
return round(float(result[0]), 3)
# 密度を計算する関数
def calculate_density(mass, volume):
density = mass / volume
return round(float(density), 3)
def find_density_value(mass_value, volume_value):
equation = sp.Eq(density, mass / volume)
result = sp.solve(equation.subs({mass: mass_value, volume: volume_value}), density)
return round(float(result[0]), 3)
# 循環小数をチェックする関数
def is_recurring(decimal_str):
if '.' in decimal_str:
fractional_part = decimal_str.split('.')[1]
for i in range(1, len(fractional_part)):
if fractional_part[:i] == fractional_part[i:2*i]:
return True
return False
# 問題文テンプレート生成関数
def generate_problem_statement(method_name, param_values):
templates = {
'calculate_mass_percent': [
"溶質の質量が {solute_mass} g で、溶液の質量が {solution_mass} g の場合、質量パーセント濃度を求めなさい。",
"質量パーセント濃度が {mass_percent}% で、溶液の質量が {solution_mass} g の場合、溶質の質量を求めなさい。",
"質量パーセント濃度が {mass_percent}% で、溶質の質量が {solute_mass} g の場合、溶液の質量を求めなさい。"
],
'calculate_molarity': [
"溶質のモル数が {moles_of_solute} mol で、溶液の体積が {volume_of_solution} L の場合、モル濃度を求めなさい。",
"モル濃度が {molarity} mol/L で、溶液の体積が {volume_of_solution} L の場合、溶質のモル数を求めなさい。",
"モル濃度が {molarity} mol/L で、溶質のモル数が {moles_of_solute} mol の場合、溶液の体積を求めなさい。"
],
'calculate_density': [
"質量が {mass} g で、体積が {volume} mL の場合、密度を求めなさい。",
"密度が {density} g/mL で、体積が {volume} mL の場合、質量を求めなさい。",
"密度が {density} g/mL で、質量が {mass} g の場合、体積を求めなさい。"
]
}
template_list = templates.get(method_name, ["問題文の生成に失敗しました。"])
template = random.choice(template_list)
return template.format(**param_values)
# 公式生成関数
def generate_equation_string(method_name, param_values):
try:
equations = {
'calculate_mass_percent': "質量パーセント濃度 = (溶質の質量 / 溶液の質量) * 100\n質量パーセント濃度 = ({solute_mass} / {solution_mass}) * 100".format(**param_values),
'calculate_molarity': "モル濃度 = 溶質のモル数 / 溶液の体積\nモル濃度 = {moles_of_solute} / {volume_of_solution}".format(**param_values),
'calculate_density': "密度 = 質量 / 体積\n密度 = {mass} / {volume}".format(**param_values),
}
return equations.get(method_name, "公式の生成に失敗しました。")
except KeyError as e:
return f"公式の生成中にエラーが発生しました: {e}"
# 乱数を用いて計算方法を決定し問題を作成する関数
def generate_problem():
methods = [
('calculate_mass_percent', ['solute_mass', 'solution_mass', 'mass_percent']),
('calculate_molarity', ['moles_of_solute', 'volume_of_solution', 'molarity']),
('calculate_density', ['mass', 'volume', 'density']),
]
while True:
method_name, params = random.choice(methods)
param_values = {param: random.randint(1, 100) for param in params}
missing_param = random.choice(params)
param_values[missing_param] = 'x'
equation = generate_equation_string(method_name, param_values).split('\n')[1]
solution = solve_equation(equation, 'x')
if solution and all(isinstance(s, (int, float)) for s in solution):
solution_value = round(float(solution[0]), 16)
solution_str = f'{solution_value:.16f}'
if is_recurring(solution_str):
continue
if len(str(solution_value).split('.')[1]) <= 4:
break
param_values[missing_param] = solution_value
problem_statement = generate_problem_statement(method_name, param_values)
equation_string = generate_equation_string(method_name, param_values)
return method_name, param_values, solution_value, problem_statement, equation_string
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
try:
user_input = float(request.form['user_input'])
solution = float(request.form['solution'])
correct = abs(user_input - solution) < 1e-3
except ValueError:
correct = False
user_input = None
solution = None
return render_template('result.html', correct=correct, user_input=user_input, solution=solution, problem_statement=session.get('problem_statement'), equation_string=session.get('equation_string'))
else:
method_name, param_values, solution, problem_statement, equation_string = generate_problem()
session['problem_statement'] = problem_statement
session['solution'] = solution
session['method_name'] = method_name
session['param_values'] = param_values
session['equation_string'] = equation_string
return render_template('index.html', method_name=method_name, param_values=param_values, solution=solution, problem_statement=problem_statement, symbols_info=symbols_info)
@app.route('/retry', methods=['GET', 'POST'])
def retry():
if request.method == 'POST':
return redirect(url_for('index'))
if 'method_name' not in session or 'param_values' not in session or 'solution' not in session or 'problem_statement' not in session or 'equation_string' not in session:
return redirect(url_for('index'))
return render_template('index.html', method_name=session.get('method_name'), param_values=session.get('param_values'), solution=session.get('solution'), problem_statement=session.get('problem_statement'), symbols_info=symbols_info, equation_string=session.get('equation_string'))
@app.route('/new')
def new_problem():
return redirect(url_for('index'))
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0", port=7860)
|