OzoneAsai's picture
Create app.py
4ce4f5d verified
raw
history blame
6.17 kB
# app.py
from flask import Flask, request, jsonify, render_template_string
from llama_cpp import Llama
from pydantic import BaseModel, ValidationError
from typing import List
import logging
app = Flask(__name__)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize the Llama model
llm = Llama.from_pretrained(
repo_id="bartowski/Marco-o1-GGUF",
filename="Marco-o1-Q3_K_M.gguf",
)
# Pydantic Models
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: List[Message]
class ChatResponse(BaseModel):
response: str
# Route to serve the chat interface
@app.route('/')
def index():
html_content = """
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Llama Chat Interface</title>
<style>
body { font-family: Arial, sans-serif; background-color: #f4f4f4; padding: 20px; }
#chat-container { max-width: 600px; margin: auto; background: #fff; padding: 20px; border-radius: 5px; }
#messages { border: 1px solid #ccc; padding: 10px; height: 300px; overflow-y: scroll; }
.message { margin-bottom: 15px; }
.user { color: blue; }
.assistant { color: green; }
#input-form { display: flex; margin-top: 10px; }
#input-form input { flex: 1; padding: 10px; border: 1px solid #ccc; border-radius: 3px; }
#input-form button { padding: 10px; border: none; background: #28a745; color: #fff; cursor: pointer; border-radius: 3px; margin-left: 5px; }
#input-form button:hover { background: #218838; }
</style>
</head>
<body>
<div id="chat-container">
<h2>Llama Chatbot</h2>
<div id="messages"></div>
<form id="input-form">
<input type="text" id="user-input" placeholder="Type your message here..." required />
<button type="submit">Send</button>
</form>
</div>
<!-- Babel CDN -->
<script src="https://unpkg.com/@babel/standalone/babel.min.js"></script>
<!-- Your JavaScript Code -->
<script type="text/babel">
const chatContainer = document.getElementById('messages');
const inputForm = document.getElementById('input-form');
const userInput = document.getElementById('user-input');
// Function to append messages to the chat container
function appendMessage(role, content) {
const messageDiv = document.createElement('div');
messageDiv.classList.add('message');
if (role === 'user') {
messageDiv.classList.add('user');
messageDiv.innerHTML = '<strong>You:</strong> ' + content;
} else if (role === 'assistant') {
messageDiv.classList.add('assistant');
messageDiv.innerHTML = '<strong>Assistant:</strong> ' + content;
}
chatContainer.appendChild(messageDiv);
chatContainer.scrollTop = chatContainer.scrollHeight;
}
// Handle form submission
inputForm.addEventListener('submit', async (e) => {
e.preventDefault();
const message = userInput.value.trim();
if (message === '') return;
appendMessage('user', message);
userInput.value = '';
try {
const response = await fetch('/chat', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
messages: [
{
role: 'user',
content: message
}
]
})
});
if (!response.ok) {
const errorData = await response.json();
appendMessage('assistant', 'Error: ' + (errorData.error || 'Unknown error'));
return;
}
const data = await response.json();
appendMessage('assistant', data.response);
} catch (error) {
appendMessage('assistant', 'Error: ' + error.message);
}
});
</script>
</body>
</html>
"""
return render_template_string(html_content)
# Chat API Endpoint
@app.route('/chat', methods=['POST'])
def chat():
try:
# Parse and validate the JSON request using Pydantic
json_data = request.get_json()
if not json_data:
logger.warning("Invalid JSON payload received.")
return jsonify({'error': 'Invalid JSON payload'}), 400
chat_request = ChatRequest(**json_data)
logger.info(f"Received messages: {chat_request.messages}")
# Convert Pydantic models to the format expected by Llama
messages = [message.dict() for message in chat_request.messages]
# Generate the chat completion
completion = llm.create_chat_completion(messages=messages)
logger.info(f"Generated completion: {completion}")
# Create the response using Pydantic
chat_response = ChatResponse(response=completion)
return jsonify(chat_response.dict())
except ValidationError as ve:
# Handle validation errors from Pydantic
logger.error(f"Pydantic validation error: {ve.errors()}")
errors = [{"field": error['loc'][0], "message": error['msg']} for error in ve.errors()]
return jsonify({'error': errors}), 422
except Exception as e:
# Handle unexpected errors
logger.error(f"Unexpected error: {str(e)}")
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=True)