Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- main.py +391 -0
- requirements.txt +2 -0
- ui.py +142 -0
main.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import random
|
3 |
+
from typing import Callable, Optional, Tuple
|
4 |
+
|
5 |
+
|
6 |
+
def initialize_population(services: dict, users: dict, population_size: int) -> list:
|
7 |
+
"""
|
8 |
+
Initialize the population of assignment solutions for the genetic algorithm.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
services (dict): A dictionary containing service constraints.
|
12 |
+
users (dict): A dictionary containing user preferences and constraints.
|
13 |
+
population_size (int): The number of assignment solutions to generate.
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
list: A list of generated assignment solutions.
|
17 |
+
"""
|
18 |
+
population = []
|
19 |
+
|
20 |
+
# Generate population_size number of assignment solutions
|
21 |
+
for _ in range(population_size):
|
22 |
+
assignment_solution = {}
|
23 |
+
|
24 |
+
for service in services.keys():
|
25 |
+
# Randomly assign users to each service, while considering user preferences and constraints
|
26 |
+
assigned_users = []
|
27 |
+
for user, user_info in users.items():
|
28 |
+
# Check if user cannot be assigned to this service
|
29 |
+
if service not in user_info["cannot_assign"]:
|
30 |
+
# Assign user to service based on their preference
|
31 |
+
if service in user_info["preferences"]:
|
32 |
+
assigned_users.append(user)
|
33 |
+
# Assign user to service with a small probability if not in their preferences
|
34 |
+
elif random.random() < 0.1:
|
35 |
+
assigned_users.append(user)
|
36 |
+
|
37 |
+
# Shuffle the list of assigned users to create random assignments
|
38 |
+
random.shuffle(assigned_users)
|
39 |
+
assignment_solution[service] = assigned_users
|
40 |
+
|
41 |
+
# Add the generated assignment solution to the population
|
42 |
+
population.append(assignment_solution)
|
43 |
+
|
44 |
+
return population
|
45 |
+
|
46 |
+
|
47 |
+
def calculate_fitness(population: list, services: dict, users: dict, fitness_fn: Optional[Callable] = None) -> list:
|
48 |
+
"""
|
49 |
+
Calculate the fitness of each assignment solution in the population.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
population (list): A list of assignment solutions.
|
53 |
+
services (dict): A dictionary containing service constraints.
|
54 |
+
users (dict): A dictionary containing user preferences and constraints.
|
55 |
+
fitness_fn (Optional[Callable]): An optional custom fitness function.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
list: A list of fitness scores for each assignment solution in the population.
|
59 |
+
"""
|
60 |
+
if not fitness_fn:
|
61 |
+
fitness_fn = default_fitness_function
|
62 |
+
|
63 |
+
fitness_scores = []
|
64 |
+
|
65 |
+
# Calculate the fitness score for each assignment solution in the population
|
66 |
+
for assignment_solution in population:
|
67 |
+
fitness_score = fitness_fn(assignment_solution, services, users)
|
68 |
+
fitness_scores.append(fitness_score)
|
69 |
+
|
70 |
+
return fitness_scores
|
71 |
+
|
72 |
+
|
73 |
+
def default_fitness_function(assignment_solution: dict, services: dict, users: dict) -> float:
|
74 |
+
"""
|
75 |
+
Calculate the fitness of an assignment solution based on the criteria described in the problem statement,
|
76 |
+
including user preferences and cannot_assign constraints.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
assignment_solution (dict): An assignment solution to evaluate.
|
80 |
+
services (dict): A dictionary containing service constraints.
|
81 |
+
users (dict): A dictionary containing user preferences and constraints.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
float: The fitness score of the given assignment solution.
|
85 |
+
"""
|
86 |
+
fitness = 0
|
87 |
+
|
88 |
+
for service, assigned_users in assignment_solution.items():
|
89 |
+
service_info = services[service]
|
90 |
+
num_assigned_users = len(assigned_users)
|
91 |
+
|
92 |
+
# Bonus for solutions that assign users near the recommended value
|
93 |
+
if service_info["min"] <= num_assigned_users <= service_info["max"]:
|
94 |
+
fitness += abs(num_assigned_users - service_info["rec"])
|
95 |
+
|
96 |
+
# Punish solutions that assign users below the minimum value
|
97 |
+
elif num_assigned_users < service_info["min"]:
|
98 |
+
fitness -= (service_info["min"] - num_assigned_users) * service_info["priority"]
|
99 |
+
|
100 |
+
# Punish solutions that assign users above the maximum value
|
101 |
+
else: # num_assigned_users > service_info["max"]:
|
102 |
+
fitness -= (num_assigned_users - service_info["max"]) * service_info["priority"]
|
103 |
+
|
104 |
+
# Punish solutions that assign users to their cannot_assign services
|
105 |
+
for user in assigned_users:
|
106 |
+
if service in users[user]["cannot_assign"]:
|
107 |
+
fitness -= 100 * service_info["priority"]
|
108 |
+
|
109 |
+
# Bonus solutions that assign users to their preferred services
|
110 |
+
for user, user_info in users.items():
|
111 |
+
if service in user_info["preferences"] and user in assigned_users:
|
112 |
+
fitness += 10
|
113 |
+
|
114 |
+
return -fitness
|
115 |
+
|
116 |
+
|
117 |
+
def selection(fitness_scores: list) -> Tuple[int, int]:
|
118 |
+
"""
|
119 |
+
Select two parent solutions from the population based on their fitness scores.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
fitness_scores (list): A list of fitness scores for each assignment solution in the population.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
Tuple[int, int]: The indices of the two selected parent solutions in the population.
|
126 |
+
"""
|
127 |
+
# Calculate the total fitness of the population
|
128 |
+
total_fitness = sum(fitness_scores)
|
129 |
+
|
130 |
+
# Calculate the relative fitness of each solution
|
131 |
+
relative_fitness = [f / total_fitness for f in fitness_scores]
|
132 |
+
|
133 |
+
# Select the first parent using roulette wheel selection
|
134 |
+
parent1_index = -1
|
135 |
+
r = random.random()
|
136 |
+
accumulator = 0
|
137 |
+
for i, rf in enumerate(relative_fitness):
|
138 |
+
accumulator += rf
|
139 |
+
if accumulator >= r:
|
140 |
+
parent1_index = i
|
141 |
+
break
|
142 |
+
|
143 |
+
# Select the second parent using roulette wheel selection, ensuring it's different from the first parent
|
144 |
+
parent2_index = -1
|
145 |
+
while parent2_index == -1 or parent2_index == parent1_index:
|
146 |
+
r = random.random()
|
147 |
+
accumulator = 0
|
148 |
+
for i, rf in enumerate(relative_fitness):
|
149 |
+
accumulator += rf
|
150 |
+
if accumulator >= r:
|
151 |
+
parent2_index = i
|
152 |
+
break
|
153 |
+
|
154 |
+
return parent1_index, parent2_index
|
155 |
+
|
156 |
+
|
157 |
+
def crossover(parent1: dict, parent2: dict) -> dict:
|
158 |
+
"""
|
159 |
+
Combine two parent assignment solutions to create a child solution.
|
160 |
+
|
161 |
+
Args:
|
162 |
+
parent1 (dict): The first parent assignment solution.
|
163 |
+
parent2 (dict): The second parent assignment solution.
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
dict: The child assignment solution created by combining the parents.
|
167 |
+
"""
|
168 |
+
child_solution = {}
|
169 |
+
|
170 |
+
# Iterate over the services in the parents
|
171 |
+
for service in parent1.keys():
|
172 |
+
# Create two sets of users assigned to the current service in parent1 and parent2
|
173 |
+
assigned_users_parent1 = set(parent1[service])
|
174 |
+
assigned_users_parent2 = set(parent2[service])
|
175 |
+
|
176 |
+
# Perform set union to combine users assigned in both parents
|
177 |
+
combined_assigned_users = assigned_users_parent1 | assigned_users_parent2
|
178 |
+
|
179 |
+
# Randomly assign each user from the combined set to the child solution
|
180 |
+
child_assigned_users = []
|
181 |
+
for user in combined_assigned_users:
|
182 |
+
if random.random() < 0.5:
|
183 |
+
child_assigned_users.append(user)
|
184 |
+
|
185 |
+
child_solution[service] = child_assigned_users
|
186 |
+
|
187 |
+
return child_solution
|
188 |
+
|
189 |
+
|
190 |
+
def mutation(solution: dict, users: dict, mutation_rate: float = 0.01) -> dict:
|
191 |
+
"""
|
192 |
+
Mutate an assignment solution by randomly reassigning users to services.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
solution (dict): The assignment solution to mutate.
|
196 |
+
users (dict): A dictionary containing user preferences and constraints.
|
197 |
+
mutation_rate (float): The probability of mutation for each user in the solution (default: 0.01).
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
dict: The mutated assignment solution.
|
201 |
+
"""
|
202 |
+
mutated_solution = copy.deepcopy(solution)
|
203 |
+
|
204 |
+
# Iterate over the services in the solution
|
205 |
+
for service, assigned_users in mutated_solution.items():
|
206 |
+
for user in assigned_users:
|
207 |
+
# Check if the user should be mutated based on the mutation rate
|
208 |
+
if random.random() < mutation_rate:
|
209 |
+
# Remove the user from the current service
|
210 |
+
assigned_users.remove(user)
|
211 |
+
|
212 |
+
# Find a new service for the user while considering their cannot_assign constraints
|
213 |
+
new_service = service
|
214 |
+
while new_service == service or new_service in users[user]["cannot_assign"]:
|
215 |
+
new_service = random.choice(list(mutated_solution.keys()))
|
216 |
+
|
217 |
+
# Assign the user to the new service
|
218 |
+
mutated_solution[new_service].append(user)
|
219 |
+
|
220 |
+
return mutated_solution
|
221 |
+
|
222 |
+
|
223 |
+
def report_generation(generation: int, fitness_scores: list, best_solution: dict, services: dict, users: dict) -> None:
|
224 |
+
"""
|
225 |
+
Print a report of the genetic algorithm's progress for the current generation.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
generation (int): The current generation number.
|
229 |
+
fitness_scores (list): The fitness scores for the current population.
|
230 |
+
best_solution (dict): The best assignment solution found so far.
|
231 |
+
services (dict): The input services dictionary.
|
232 |
+
users (dict): The input users dictionary.
|
233 |
+
"""
|
234 |
+
best_fitness = min(fitness_scores)
|
235 |
+
worst_fitness = max(fitness_scores)
|
236 |
+
avg_fitness = sum(fitness_scores) / len(fitness_scores)
|
237 |
+
generation_errors = polish_errors(calculate_errors(best_solution, services, users))
|
238 |
+
|
239 |
+
print(f"Generation {generation}:")
|
240 |
+
print(f" Best fitness: {best_fitness}")
|
241 |
+
print(f" Worst fitness: {worst_fitness}")
|
242 |
+
print(f" Average fitness: {avg_fitness}")
|
243 |
+
print(f" Best solution so far: {best_solution}")
|
244 |
+
print(f" Errors so far: {generation_errors}")
|
245 |
+
|
246 |
+
|
247 |
+
def calculate_errors(solution: dict, services: dict, users: dict) -> dict:
|
248 |
+
"""
|
249 |
+
Calculate the errors in the assignment solution based on the user and service constraints.
|
250 |
+
|
251 |
+
Args:
|
252 |
+
solution (dict): The assignment solution to analyze.
|
253 |
+
services (dict): The input services dictionary.
|
254 |
+
users (dict): The input users dictionary.
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
dict: A dictionary containing the errors for each user and service in the assignment solution.
|
258 |
+
"""
|
259 |
+
errors = {"users": {}, "services": {}}
|
260 |
+
|
261 |
+
# Analyze user errors
|
262 |
+
for user, user_data in users.items():
|
263 |
+
errors["users"][user] = {"unmet_max_assignments": False, "unmet_preference": [], "unmet_cannot_assign": []}
|
264 |
+
|
265 |
+
user_assignments = [service for service, assigned_users in solution.items() if user in assigned_users]
|
266 |
+
if len(user_assignments) > user_data["max_assignments"]:
|
267 |
+
errors["users"][user]["unmet_max_assignments"] = True
|
268 |
+
errors["users"][user]["effective_assignments"] = len(user_assignments)
|
269 |
+
|
270 |
+
for preferred_service in user_data["preferences"]:
|
271 |
+
if preferred_service not in user_assignments:
|
272 |
+
errors["users"][user]["unmet_preference"].append(preferred_service)
|
273 |
+
|
274 |
+
for cannot_assign_service in user_data["cannot_assign"]:
|
275 |
+
if cannot_assign_service in user_assignments:
|
276 |
+
errors["users"][user]["unmet_cannot_assign"].append(cannot_assign_service)
|
277 |
+
|
278 |
+
# Analyze service errors
|
279 |
+
for service, service_data in services.items():
|
280 |
+
errors["services"][service] = {"unmet_constraint": None, "extra_users": []}
|
281 |
+
|
282 |
+
assigned_users = solution[service]
|
283 |
+
num_assigned_users = len(assigned_users)
|
284 |
+
|
285 |
+
if num_assigned_users < service_data["min"]:
|
286 |
+
errors["services"][service]["unmet_constraint"] = "min"
|
287 |
+
elif num_assigned_users > service_data["rec"]:
|
288 |
+
errors["services"][service]["unmet_constraint"] = "rec"
|
289 |
+
elif num_assigned_users > service_data["max"]:
|
290 |
+
errors["services"][service]["unmet_constraint"] = "max"
|
291 |
+
extra_users = assigned_users[service_data["max"]:]
|
292 |
+
errors["services"][service]["extra_users"] = extra_users
|
293 |
+
|
294 |
+
return errors
|
295 |
+
|
296 |
+
|
297 |
+
def polish_errors(errors: dict) -> dict:
|
298 |
+
"""
|
299 |
+
Remove users and services without unmet constraints from the errors object.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
errors (dict): The errors object to polish.
|
303 |
+
|
304 |
+
Returns:
|
305 |
+
dict: A polished errors object without users and services with no unmet constraints.
|
306 |
+
"""
|
307 |
+
polished_errors = {"users": {}, "services": {}}
|
308 |
+
|
309 |
+
for user, user_errors in errors["users"].items():
|
310 |
+
polished_user_errors = {}
|
311 |
+
|
312 |
+
if user_errors["unmet_max_assignments"]:
|
313 |
+
polished_user_errors["unmet_max_assignments"] = True
|
314 |
+
|
315 |
+
for key, value in user_errors.items():
|
316 |
+
if key not in ["unmet_max_assignments"] and value:
|
317 |
+
polished_user_errors[key] = value
|
318 |
+
|
319 |
+
if polished_user_errors:
|
320 |
+
polished_errors["users"][user] = polished_user_errors
|
321 |
+
|
322 |
+
for service, service_errors in errors["services"].items():
|
323 |
+
polished_service_errors = {}
|
324 |
+
|
325 |
+
for key, value in service_errors.items():
|
326 |
+
if value:
|
327 |
+
polished_service_errors[key] = value
|
328 |
+
|
329 |
+
if polished_service_errors:
|
330 |
+
polished_errors["services"][service] = polished_service_errors
|
331 |
+
|
332 |
+
return polished_errors
|
333 |
+
|
334 |
+
|
335 |
+
def genetic_algorithm(services: dict, users: dict, population_size: int = 100, num_generations: int = 100,
|
336 |
+
mutation_rate: float = 0.01, fitness_fn: Optional[Callable] = None) -> dict:
|
337 |
+
"""
|
338 |
+
Run the genetic algorithm to find an optimal assignment solution based on user preferences and constraints.
|
339 |
+
|
340 |
+
Args:
|
341 |
+
services (dict): The input services dictionary.
|
342 |
+
users (dict): The input users dictionary.
|
343 |
+
population_size (int): The size of the population for each generation (default: 100).
|
344 |
+
num_generations (int): The number of generations for the genetic algorithm to run (default: 100).
|
345 |
+
mutation_rate (float): The probability of mutation for each individual in the population (default: 0.01).
|
346 |
+
fitness_fn (Callable, optional): An optional custom fitness function.
|
347 |
+
|
348 |
+
Returns:
|
349 |
+
dict: The best assignment solution found by the genetic algorithm.
|
350 |
+
"""
|
351 |
+
# Initialize the population
|
352 |
+
population = initialize_population(services, users, population_size)
|
353 |
+
|
354 |
+
# If no custom fitness function is provided, use the default fitness function
|
355 |
+
if fitness_fn is None:
|
356 |
+
fitness_fn = default_fitness_function
|
357 |
+
|
358 |
+
# Calculate the initial fitness scores for the population
|
359 |
+
fitness_scores = calculate_fitness(population, services, users, fitness_fn)
|
360 |
+
|
361 |
+
best_solution = None
|
362 |
+
best_fitness = float('inf')
|
363 |
+
|
364 |
+
# Main loop of the genetic algorithm
|
365 |
+
for generation in range(num_generations):
|
366 |
+
# Select two parent solutions based on their fitness scores
|
367 |
+
parent1_index, parent2_index = selection(fitness_scores)
|
368 |
+
|
369 |
+
# Create a child solution by combining the parents using crossover
|
370 |
+
child_solution = crossover(population[parent1_index], population[parent2_index])
|
371 |
+
|
372 |
+
# Mutate the child solution
|
373 |
+
mutated_child_solution = mutation(child_solution, users, mutation_rate)
|
374 |
+
|
375 |
+
# Calculate the fitness of the child solution
|
376 |
+
child_fitness = fitness_fn(mutated_child_solution, services, users)
|
377 |
+
|
378 |
+
# Replace the least-fit solution in the population with the child solution
|
379 |
+
worst_fitness_index = fitness_scores.index(max(fitness_scores))
|
380 |
+
population[worst_fitness_index] = mutated_child_solution
|
381 |
+
fitness_scores[worst_fitness_index] = child_fitness
|
382 |
+
|
383 |
+
# Update the best solution found so far
|
384 |
+
if child_fitness < best_fitness:
|
385 |
+
best_solution = mutated_child_solution
|
386 |
+
best_fitness = child_fitness
|
387 |
+
|
388 |
+
# Print the progress of the algorithm
|
389 |
+
report_generation(generation, fitness_scores, best_solution, services, users)
|
390 |
+
|
391 |
+
return best_solution
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
clipboard
|
ui.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import required libraries
|
2 |
+
import streamlit as st
|
3 |
+
import json
|
4 |
+
import clipboard
|
5 |
+
|
6 |
+
from main import genetic_algorithm, polish_errors, calculate_errors
|
7 |
+
|
8 |
+
# Initialize session state
|
9 |
+
if 'services' not in st.session_state:
|
10 |
+
st.session_state.services = {}
|
11 |
+
if 'users' not in st.session_state:
|
12 |
+
st.session_state.users = {}
|
13 |
+
|
14 |
+
# App title
|
15 |
+
st.title('Services and Users JSON Builder')
|
16 |
+
|
17 |
+
# Add sliders for population_size, num_generations, and mutation_rate
|
18 |
+
st.subheader('Genetic Algorithm Parameters')
|
19 |
+
population_size = st.slider('Population Size', min_value=500, max_value=5000, value=2500, step=100)
|
20 |
+
num_generations = st.slider('Number of Generations', min_value=1000, max_value=10000, value=5000, step=500)
|
21 |
+
mutation_rate = st.slider('Mutation Rate', min_value=0.0, max_value=1.0, value=0.01, step=0.01)
|
22 |
+
|
23 |
+
# Button to run the genetic algorithm
|
24 |
+
if st.button('Run Genetic Algorithm'):
|
25 |
+
# Call the genetic_algorithm function and get the best_solution
|
26 |
+
best_solution = genetic_algorithm(st.session_state.services, st.session_state.users, population_size,
|
27 |
+
num_generations, mutation_rate)
|
28 |
+
|
29 |
+
# Convert the best_solution to JSON
|
30 |
+
best_solution_json = json.dumps(best_solution, indent=4)
|
31 |
+
best_solution_errors = calculate_errors(best_solution, st.session_state.services, st.session_state.users)
|
32 |
+
best_solution_errors = polish_errors(best_solution_errors)
|
33 |
+
best_solution_errors = json.dumps(best_solution_errors, indent=4)
|
34 |
+
|
35 |
+
# Display the output JSON in a read-only form
|
36 |
+
st.subheader('Best Solution JSON')
|
37 |
+
st.text_area('Best Solution', value=best_solution_json, height=400, max_chars=None, key=None, disabled=True)
|
38 |
+
st.text_area('Unmet constraints', value=best_solution_errors, height=200, max_chars=None, key=None, disabled=True)
|
39 |
+
|
40 |
+
if st.button('Copy solution to Clipboard'):
|
41 |
+
clipboard.copy(best_solution_json)
|
42 |
+
st.success('JSON copied to clipboard!')
|
43 |
+
if st.button('Copy unmet constraints to Clipboard'):
|
44 |
+
clipboard.copy(best_solution_errors)
|
45 |
+
st.success('JSON copied to clipboard!')
|
46 |
+
|
47 |
+
# Sidebar for uploading previously generated JSON
|
48 |
+
with st.sidebar.expander('Upload previously generated JSON'):
|
49 |
+
uploaded_json = st.text_area('Paste your JSON here')
|
50 |
+
merge_json = st.button('Merge with JSON')
|
51 |
+
reset_json = st.button('Reset JSON')
|
52 |
+
|
53 |
+
if reset_json:
|
54 |
+
st.session_state.services = {}
|
55 |
+
st.session_state.users = {}
|
56 |
+
|
57 |
+
if merge_json and uploaded_json:
|
58 |
+
try:
|
59 |
+
loaded_data = json.loads(uploaded_json)
|
60 |
+
st.session_state.services.update(loaded_data.get('services', {}))
|
61 |
+
st.session_state.users.update(loaded_data.get('users', {}))
|
62 |
+
st.success('JSON loaded successfully')
|
63 |
+
except json.JSONDecodeError:
|
64 |
+
st.error('Invalid JSON format')
|
65 |
+
|
66 |
+
# Update existing user or service object
|
67 |
+
with st.sidebar.expander('Update existing user or service'):
|
68 |
+
object_type = st.selectbox('Choose object type', ('Service', 'User'))
|
69 |
+
|
70 |
+
if object_type == 'Service':
|
71 |
+
service_key = st.selectbox('Select a service', list(st.session_state.services.keys()), key='update_service_key')
|
72 |
+
if service_key and st.button('Load Service'):
|
73 |
+
st.session_state.service_name = service_key
|
74 |
+
st.session_state.min_val = st.session_state.services[service_key]['min']
|
75 |
+
st.session_state.rec_val = st.session_state.services[service_key]['rec']
|
76 |
+
st.session_state.max_val = st.session_state.services[service_key]['max']
|
77 |
+
st.session_state.priority = st.session_state.services[service_key]['priority']
|
78 |
+
|
79 |
+
elif object_type == 'User':
|
80 |
+
user_key = st.selectbox('Select a user', list(st.session_state.users.keys()), key='update_user_key')
|
81 |
+
if user_key and st.button('Load User'):
|
82 |
+
st.session_state.user_name = user_key
|
83 |
+
st.session_state.max_assignments = st.session_state.users[user_key]['max_assignments']
|
84 |
+
st.session_state.preferences = st.session_state.users[user_key]['preferences']
|
85 |
+
st.session_state.cannot_assign = st.session_state.users[user_key]['cannot_assign']
|
86 |
+
|
87 |
+
# Add a service form
|
88 |
+
with st.form(key='service_form'):
|
89 |
+
st.subheader('Add a Service')
|
90 |
+
service_name = st.text_input('Service Name', value=st.session_state.get('service_name', ''))
|
91 |
+
min_val = st.number_input('Minimum Value', value=st.session_state.get('min_val', 0))
|
92 |
+
rec_val = st.number_input('Recommended Value', value=st.session_state.get('rec_val', 0))
|
93 |
+
max_val = st.number_input('Maximum Value', value=st.session_state.get('max_val', 0))
|
94 |
+
priority = st.number_input('Priority', value=st.session_state.get('priority', 0))
|
95 |
+
submit_service = st.form_submit_button('Save Service')
|
96 |
+
|
97 |
+
# Add a user form
|
98 |
+
with st.form(key='user_form'):
|
99 |
+
st.subheader('Add a User')
|
100 |
+
user_name = st.text_input('User Name', key='user_name', value=st.session_state.get('user_name', ''))
|
101 |
+
max_assignments = st.number_input('Max Assignments', value=st.session_state.get('max_assignments', 0),
|
102 |
+
key='max_assignments')
|
103 |
+
preferences = st.multiselect('Preferences', options=list(st.session_state.services.keys()),
|
104 |
+
default=st.session_state.get('preferences', []), key='preferences')
|
105 |
+
cannot_assign = st.multiselect('Cannot Assign', options=list(st.session_state.services.keys()),
|
106 |
+
default=st.session_state.get('cannot_assign', []), key='cannot_assign')
|
107 |
+
submit_user = st.form_submit_button('Save User')
|
108 |
+
|
109 |
+
# Add the submitted service to the services dictionary
|
110 |
+
if submit_service:
|
111 |
+
st.session_state.services[service_name] = {
|
112 |
+
'min': min_val,
|
113 |
+
'rec': rec_val,
|
114 |
+
'max': max_val,
|
115 |
+
'priority': priority
|
116 |
+
}
|
117 |
+
|
118 |
+
# Add the submitted user to the users dictionary
|
119 |
+
if submit_user:
|
120 |
+
st.session_state.users[user_name] = {
|
121 |
+
'max_assignments': max_assignments,
|
122 |
+
'preferences': preferences,
|
123 |
+
'cannot_assign': cannot_assign
|
124 |
+
}
|
125 |
+
|
126 |
+
# Combine services and users dictionaries
|
127 |
+
combined_data = {
|
128 |
+
'services': st.session_state.services,
|
129 |
+
'users': st.session_state.users
|
130 |
+
}
|
131 |
+
|
132 |
+
# Convert combined_data to JSON
|
133 |
+
json_data = json.dumps(combined_data, indent=4)
|
134 |
+
|
135 |
+
# Display the generated JSON
|
136 |
+
st.subheader('Generated JSON')
|
137 |
+
st.code(json_data, language='json')
|
138 |
+
|
139 |
+
# Button to copy JSON to clipboard
|
140 |
+
if st.button('Copy JSON to Clipboard'):
|
141 |
+
clipboard.copy(json_data)
|
142 |
+
st.success('JSON copied to clipboard!')
|