lev1's picture
Initial commit
8fd2f2f
raw
history blame
18.2 kB
import io
import math
import os
import PIL.Image
import numpy as np
import imageio.v3 as iio
import warnings
from torchvision.utils import flow_to_image
import torch
import torchvision.transforms.functional as TF
from scipy.ndimage import binary_dilation, binary_erosion
import cv2
from ..animation import Animation
from .. import config
from .. import libimage
import re
def torch2np(x, vmin=-1, vmax=1):
if x.ndim != 4:
# raise Exception("Please only use (B,C,H,W) torch tensors!")
warnings.warn(
"Warning! Shape of the image was not provided in (B,C,H,W) format, the shape was inferred automatically!")
if x.ndim == 3:
x = x[None]
if x.ndim == 2:
x = x[None, None]
assert x.shape[1] == 3 or x.shape[1] == 1
x = x.detach().cpu().float()
if x.dtype == torch.uint8:
return x.numpy().astype(np.uint8)
elif vmin is not None and vmax is not None:
x = (255 * (x.clip(vmin, vmax) - vmin) / (vmax - vmin))
x = x.permute(0, 2, 3, 1).to(torch.uint8)
return x.numpy()
else:
raise NotImplementedError()
class IImage:
'''
Generic media storage. Can store both images and videos.
Stores data as a numpy array by default.
Can be viewed in a jupyter notebook.
'''
@staticmethod
def open(path):
iio_obj = iio.imopen(path, 'r')
data = iio_obj.read()
try:
# .properties() does not work for images but for gif files
if not iio_obj.properties().is_batch:
data = data[None]
except AttributeError as e:
# this one works for gif files
if not "duration" in iio_obj.metadata():
data = data[None]
if data.ndim == 3:
data = data[..., None]
image = IImage(data)
image.link = os.path.abspath(path)
return image
@staticmethod
def flow_field(flow):
flow_images = flow_to_image(flow)
return IImage(flow_images, vmin=0, vmax=255)
@staticmethod
def normalized(x, dims=[-1, -2]):
x = (x - x.amin(dims, True)) / \
(x.amax(dims, True) - x.amin(dims, True))
return IImage(x, 0)
def numpy(self): return self.data
def torch(self, vmin=-1, vmax=1):
if self.data.ndim == 3:
data = self.data.transpose(2, 0, 1) / 255.
else:
data = self.data.transpose(0, 3, 1, 2) / 255.
return vmin + torch.from_numpy(data).float().to(self.device) * (vmax - vmin)
def cuda(self):
self.device = 'cuda'
return self
def cpu(self):
self.device = 'cpu'
return self
def pil(self):
ans = []
for x in self.data:
if x.shape[-1] == 1:
x = x[..., 0]
ans.append(PIL.Image.fromarray(x))
if len(ans) == 1:
return ans[0]
return ans
def is_iimage(self):
return True
@property
def shape(self): return self.data.shape
@property
def size(self): return (self.data.shape[-2], self.data.shape[-3])
def setFps(self, fps):
self.fps = fps
self.generate_display()
return self
def __init__(self, x, vmin=-1, vmax=1, fps=None):
if isinstance(x, PIL.Image.Image):
self.data = np.array(x)
if self.data.ndim == 2:
self.data = self.data[..., None] # (H,W,C)
self.data = self.data[None] # (B,H,W,C)
elif isinstance(x, IImage):
self.data = x.data.copy() # Simple Copy
elif isinstance(x, np.ndarray):
self.data = x.copy().astype(np.uint8)
if self.data.ndim == 2:
self.data = self.data[None, ..., None]
if self.data.ndim == 3:
warnings.warn(
"Inferred dimensions for a 3D array as (H,W,C), but could've been (B,H,W)")
self.data = self.data[None]
elif isinstance(x, torch.Tensor):
assert x.min() >= vmin and x.max(
) <= vmax, f"input data was [{x.min()},{x.max()}], but expected [{vmin},{vmax}]"
self.data = torch2np(x, vmin, vmax)
self.display_str = None
self.device = 'cpu'
self.fps = fps if fps is not None else (
1 if len(self.data) < 10 else 30)
self.link = None
def generate_display(self):
if config.IMG_THUMBSIZE is not None:
if self.size[1] < self.size[0]:
thumb = self.resize(
(self.size[1]*config.IMG_THUMBSIZE//self.size[0], config.IMG_THUMBSIZE))
else:
thumb = self.resize(
(config.IMG_THUMBSIZE, self.size[0]*config.IMG_THUMBSIZE//self.size[1]))
else:
thumb = self
if self.is_video():
self.anim = Animation(thumb.data, fps=self.fps)
self.anim.render()
self.display_str = self.anim.anim_str
else:
b = io.BytesIO()
data = thumb.data[0]
if data.shape[-1] == 1:
data = data[..., 0]
PIL.Image.fromarray(data).save(b, "PNG")
self.display_str = b.getvalue()
return self.display_str
def resize(self, size, *args, **kwargs):
if size is None:
return self
use_small_edge_when_int = kwargs.pop('use_small_edge_when_int', False)
# Backward compatibility
resample = kwargs.pop('filter', PIL.Image.BICUBIC)
resample = kwargs.pop('resample', resample)
if isinstance(size, int):
if use_small_edge_when_int:
h, w = self.data.shape[1:3]
aspect_ratio = h / w
size = (max(size, int(size * aspect_ratio)),
max(size, int(size / aspect_ratio)))
else:
h, w = self.data.shape[1:3]
aspect_ratio = h / w
size = (min(size, int(size * aspect_ratio)),
min(size, int(size / aspect_ratio)))
if self.size == size[::-1]:
return self
return libimage.stack([IImage(x.pil().resize(size[::-1], *args, resample=resample, **kwargs)) for x in self])
# return IImage(TF.resize(self.cpu().torch(0), size, *args, **kwargs), 0)
def pad(self, padding, *args, **kwargs):
return IImage(TF.pad(self.torch(0), padding=padding, *args, **kwargs), 0)
def padx(self, multiplier, *args, **kwargs):
size = np.array(self.size)
padding = np.concatenate(
[[0, 0], np.ceil(size / multiplier).astype(int) * multiplier - size])
return self.pad(list(padding), *args, **kwargs)
def pad2wh(self, w=0, h=0, **kwargs):
cw, ch = self.size
return self.pad([0, 0, max(0, w - cw), max(0, h-ch)], **kwargs)
def pad2square(self, *args, **kwargs):
if self.size[0] > self.size[1]:
dx = self.size[0] - self.size[1]
return self.pad([0, dx//2, 0, dx-dx//2], *args, **kwargs)
elif self.size[0] < self.size[1]:
dx = self.size[1] - self.size[0]
return self.pad([dx//2, 0, dx-dx//2, 0], *args, **kwargs)
return self
def crop2square(self, *args, **kwargs):
if self.size[0] > self.size[1]:
dx = self.size[0] - self.size[1]
return self.crop([dx//2, 0, self.size[1], self.size[1]], *args, **kwargs)
elif self.size[0] < self.size[1]:
dx = self.size[1] - self.size[0]
return self.crop([0, dx//2, self.size[0], self.size[0]], *args, **kwargs)
return self
def alpha(self):
return IImage(self.data[..., -1, None], fps=self.fps)
def rgb(self):
return IImage(self.pil().convert('RGB'), fps=self.fps)
def png(self):
return IImage(np.concatenate([self.data, 255 * np.ones_like(self.data)[..., :1]], -1))
def grid(self, nrows=None, ncols=None):
if nrows is not None:
ncols = math.ceil(self.data.shape[0] / nrows)
elif ncols is not None:
nrows = math.ceil(self.data.shape[0] / ncols)
else:
warnings.warn(
"No dimensions specified, creating a grid with 5 columns (default)")
ncols = 5
nrows = math.ceil(self.data.shape[0] / ncols)
pad = nrows * ncols - self.data.shape[0]
data = np.pad(self.data, ((0, pad), (0, 0), (0, 0), (0, 0)))
rows = [np.concatenate(x, 1, dtype=np.uint8)
for x in np.array_split(data, nrows)]
return IImage(np.concatenate(rows, 0, dtype=np.uint8)[None])
def hstack(self):
return IImage(np.concatenate(self.data, 1, dtype=np.uint8)[None])
def vstack(self):
return IImage(np.concatenate(self.data, 0, dtype=np.uint8)[None])
def vsplit(self, number_of_splits):
return IImage(np.concatenate(np.split(self.data, number_of_splits, 1)))
def hsplit(self, number_of_splits):
return IImage(np.concatenate(np.split(self.data, number_of_splits, 2)))
def heatmap(self, resize=None, cmap=cv2.COLORMAP_JET):
data = np.stack([cv2.cvtColor(cv2.applyColorMap(
x, cmap), cv2.COLOR_BGR2RGB) for x in self.data])
return IImage(data).resize(resize, use_small_edge_when_int=True)
def display(self):
try:
display(self)
except:
print("No display")
return self
def dilate(self, iterations=1, *args, **kwargs):
if iterations == 0:
return IImage(self.data)
return IImage((binary_dilation(self.data, iterations=iterations, *args, *kwargs)*255.).astype(np.uint8))
def erode(self, iterations=1, *args, **kwargs):
return IImage((binary_erosion(self.data, iterations=iterations, *args, *kwargs)*255.).astype(np.uint8))
def hull(self):
convex_hulls = []
for frame in self.data:
contours, hierarchy = cv2.findContours(
frame, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = [x.astype(np.int32) for x in contours]
mask_contours = [cv2.convexHull(np.concatenate(contours))]
canvas = np.zeros(self.data[0].shape, np.uint8)
convex_hull = cv2.drawContours(
canvas, mask_contours, -1, (255, 0, 0), -1)
convex_hulls.append(convex_hull)
return IImage(np.array(convex_hulls))
def is_video(self):
return self.data.shape[0] > 1
def __getitem__(self, idx):
return IImage(self.data[None, idx], fps=self.fps)
# if self.is_video(): return IImage(self.data[idx], fps = self.fps)
# return self
def _repr_png_(self):
if self.is_video():
return None
if self.display_str is None:
self.generate_display()
return self.display_str
def _repr_html_(self):
if not self.is_video():
return None
if self.display_str is None:
self.generate_display()
return self.display_str
def save(self, path):
_, ext = os.path.splitext(path)
if self.is_video():
# if ext in ['.jpg', '.png']:
if self.display_str is None:
self.generate_display()
if ext == ".apng":
self.anim.anim_obj.save(path, writer="pillow")
else:
self.anim.anim_obj.save(path)
else:
data = self.data if self.data.ndim == 3 else self.data[0]
if data.shape[-1] == 1:
data = data[:, :, 0]
PIL.Image.fromarray(data).save(path)
return self
def to_html(self, width='auto', root_path='/'):
if self.display_str is None:
self.generate_display()
# print (self.display_str)
html_tag = bytes2html(self.display_str, width=width)
if self.link is not None:
link = os.path.relpath(self.link, root_path)
return f'<a href="{link}" >{html_tag}</a>'
return html_tag
def write(self, text, center=(0, 25), font_scale=0.8, color=(255, 255, 255), thickness=2):
if not isinstance(text, list):
text = [text for _ in self.data]
data = np.stack([cv2.putText(x.copy(), t, center, cv2.FONT_HERSHEY_COMPLEX,
font_scale, color, thickness) for x, t in zip(self.data, text)])
return IImage(data)
def append_text(self, text, padding, font_scale=0.8, color=(255, 255, 255), thickness=2, scale_factor=0.9, center=(0, 0), fill=0):
assert np.count_nonzero(padding) == 1
axis_padding = np.nonzero(padding)[0][0]
scale_padding = padding[axis_padding]
y_0 = 0
x_0 = 0
if axis_padding == 0:
width = scale_padding
y_max = self.shape[1]
elif axis_padding == 1:
width = self.shape[2]
y_max = scale_padding
elif axis_padding == 2:
x_0 = self.shape[2]
width = scale_padding
y_max = self.shape[1]
elif axis_padding == 3:
width = self.shape[2]
y_0 = self.shape[1]
y_max = self.shape[1]+scale_padding
width -= center[0]
x_0 += center[0]
y_0 += center[1]
self = self.pad(padding, fill=fill)
def wrap_text(text, width, _font_scale):
allowed_seperator = ' |-|_|/|\n'
words = re.split(allowed_seperator, text)
# words = text.split()
lines = []
current_line = words[0]
sep_list = []
start_idx = 0
for start_word in words[:-1]:
pos = text.find(start_word, start_idx)
pos += len(start_word)
sep_list.append(text[pos])
start_idx = pos+1
for word, separator in zip(words[1:], sep_list):
if cv2.getTextSize(current_line + separator + word, cv2.FONT_HERSHEY_COMPLEX, _font_scale, thickness)[0][0] <= width:
current_line += separator + word
else:
if cv2.getTextSize(current_line, cv2.FONT_HERSHEY_COMPLEX, _font_scale, thickness)[0][0] <= width:
lines.append(current_line)
current_line = word
else:
return []
if cv2.getTextSize(current_line, cv2.FONT_HERSHEY_COMPLEX, _font_scale, thickness)[0][0] <= width:
lines.append(current_line)
else:
return []
return lines
def wrap_text_and_scale(text, width, _font_scale, y_0, y_max):
height = y_max+1
while height > y_max:
text_lines = wrap_text(text, width, _font_scale)
if len(text) > 0 and len(text_lines) == 0:
height = y_max+1
else:
line_height = cv2.getTextSize(
text_lines[0], cv2.FONT_HERSHEY_COMPLEX, _font_scale, thickness)[0][1]
height = line_height * len(text_lines) + y_0
# scale font if out of frame
if height > y_max:
_font_scale = _font_scale * scale_factor
return text_lines, line_height, _font_scale
result = []
if not isinstance(text, list):
text = [text for _ in self.data]
else:
assert len(text) == len(self.data)
for x, t in zip(self.data, text):
x = x.copy()
text_lines, line_height, _font_scale = wrap_text_and_scale(
t, width, font_scale, y_0, y_max)
y = line_height
for line in text_lines:
x = cv2.putText(
x, line, (x_0, y_0+y), cv2.FONT_HERSHEY_COMPLEX, _font_scale, color, thickness)
y += line_height
result.append(x)
data = np.stack(result)
return IImage(data)
# ========== OPERATORS =============
def __or__(self, other):
# TODO: fix for variable sizes
return IImage(np.concatenate([self.data, other.data], 2))
def __truediv__(self, other):
# TODO: fix for variable sizes
return IImage(np.concatenate([self.data, other.data], 1))
def __and__(self, other):
return IImage(np.concatenate([self.data, other.data], 0))
def __add__(self, other):
return IImage(0.5 * self.data + 0.5 * other.data)
def __mul__(self, other):
if isinstance(other, IImage):
return IImage(self.data / 255. * other.data)
return IImage(self.data * other / 255.)
def __xor__(self, other):
return IImage(0.5 * self.data + 0.5 * other.data + 0.5 * self.data * (other.data.sum(-1, keepdims=True) == 0))
def __invert__(self):
return IImage(255 - self.data)
__rmul__ = __mul__
def bbox(self):
return [cv2.boundingRect(x) for x in self.data]
def fill_bbox(self, bbox_list, fill=255):
data = self.data.copy()
for bbox in bbox_list:
x, y, w, h = bbox
data[:, y:y+h, x:x+w, :] = fill
return IImage(data)
def crop(self, bbox):
assert len(bbox) in [2, 4]
if len(bbox) == 2:
x, y = 0, 0
w, h = bbox
elif len(bbox) == 4:
x, y, w, h = bbox
return IImage(self.data[:, y:y+h, x:x+w, :])
# def alpha(self):
# return BetterImage(self.img.split()[-1])
# def resize(self, size, *args, **kwargs):
# if size is None: return self
# return BetterImage(TF.resize(self.img, size, *args, **kwargs))
# def pad(self, *args):
# return BetterImage(TF.pad(self.img, *args))
# def padx(self, mult):
# size = np.array(self.img.size)
# padding = np.concatenate([[0,0],np.ceil(size / mult).astype(int) * mult - size])
# return self.pad(list(padding))
# def crop(self, *args):
# return BetterImage(self.img.crop(*args))
# def torch(self, min = -1., max = 1.):
# return (max - min) * TF.to_tensor(self.img)[None] + min