StreamingSVD / models /diffusion /discretizer.py
lev1's picture
Initial commit
8fd2f2f
import numpy as np
import torch
from models.svd.sgm.modules.diffusionmodules.discretizer import Discretization
# Implementation of https://arxiv.org/abs/2404.14507
class AlignYourSteps(Discretization):
def __init__(self, sigma_min=0.002, sigma_max=80.0, rho=7.0):
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.rho = rho
def loglinear_interp(self, t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
def get_sigmas(self, n, device="cpu"):
sampling_schedule = [700.00, 54.5, 15.886, 7.977,
4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]
sigmas = torch.from_numpy(self.loglinear_interp(
sampling_schedule, n)).to(device)
return sigmas