File size: 5,356 Bytes
714bf26
 
63074f5
 
714bf26
 
 
 
63074f5
 
 
 
 
 
 
 
 
 
 
 
714bf26
 
 
 
12f0eb3
0569f95
 
ae4f698
9a51a98
63074f5
0569f95
 
 
93447a6
714bf26
 
63074f5
 
714bf26
 
 
 
63074f5
 
714bf26
 
 
 
 
 
687b293
714bf26
 
687b293
714bf26
75453c0
63074f5
 
 
 
714bf26
 
63074f5
714bf26
 
75453c0
714bf26
63074f5
75453c0
714bf26
75453c0
714bf26
 
 
 
63074f5
687b293
 
 
 
 
714bf26
75453c0
714bf26
 
 
 
 
75453c0
714bf26
 
75453c0
 
687b293
 
714bf26
 
 
 
 
73813ee
63074f5
714bf26
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
from model import Model
import os
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"


def create_demo(model: Model):
    examples = [
        ['__assets__/pix2pix_video_2fps/camel.mp4',
            'make it Van Gogh Starry Night style', 512, 0, 1.0],
        ['__assets__/pix2pix_video_2fps/mini-cooper.mp4',
            'make it Picasso style', 512, 0, 1.5],
        ['__assets__/pix2pix_video_2fps/snowboard.mp4',
            'replace man with robot', 512, 0, 1.0],
        ['__assets__/pix2pix_video_2fps/white-swan.mp4',
            'replace swan with mallard', 512, 0, 1.5],
        ['__assets__/pix2pix_video_2fps/boat.mp4',
            'add city skyline in the background', 512, 0, 1.5],
        ['__assets__/pix2pix_video_2fps/ballet.mp4',
            'make her a golden sculpture', 512, 0, 1.0],
    ]
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## Video Instruct Pix2Pix')
        with gr.Row():
            gr.HTML(
                """
                <div style="text-align: left; auto;">
                <h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
                    Description: For performance purposes, our current preview release supports any input videos but caps output videos after 80 frames and the input videos are scaled down before processing. For faster inference you can choose lower output frames per seconds from Advanced Options.
                </h3>
                </div>
                """)

        with gr.Row():
            with gr.Column():
                input_image = gr.Video(label="Input Video", source='upload',
                                       type='numpy', format="mp4", visible=True).style(height="auto")
            with gr.Column():
                prompt = gr.Textbox(label='Prompt')
                run_button = gr.Button(label='Run')
                with gr.Accordion('Advanced options', open=False):
                    watermark = gr.Radio(["Picsart AI Research", "Text2Video-Zero",
                                         "None"], label="Watermark", value='Picsart AI Research')
                    image_resolution = gr.Slider(label='Image Resolution',
                                                 minimum=256,
                                                 maximum=1024,
                                                 value=512,
                                                 step=64)
                    seed = gr.Slider(label='Seed',
                                     minimum=-1,
                                     maximum=65536,
                                     value=0,
                                     info="-1 for random seed on each run. Otherwise the seed will be fixed",
                                     step=1)
                    image_guidance = gr.Slider(label='Image guidance scale',
                                               minimum=0.5,
                                               maximum=2,
                                               value=1.0,
                                               step=0.1)
                    start_t = gr.Slider(label='Starting time in seconds',
                                        minimum=0,
                                        maximum=10,
                                        value=0,
                                        step=1)
                    end_t = gr.Slider(label='End time in seconds (-1 corresponds to uploaded video duration)',
                                      minimum=0,
                                      maximum=10,
                                      value=-1,
                                      step=1)
                    out_fps = gr.Slider(label='Output video fps (-1 corresponds to uploaded video fps)',
                                        minimum=1,
                                        maximum=30,
                                        value=-1,
                                        step=1)
                    chunk_size = gr.Slider(
                        label="Chunk size", minimum=2, maximum=16, value=8, step=1, visible=not on_huggingspace,
                        info="Number of frames processed at once. Reduce for lower memory usage.")
                    merging_ratio = gr.Slider(
                        label="Merging ratio", minimum=0.0, maximum=0.9, step=0.1, value=0.0, visible=not on_huggingspace,
                        info="Ratio of how many tokens are merged. The higher the more compression (less memory and faster inference).")
            with gr.Column():
                result = gr.Video(label='Output', show_label=True)
        inputs = [
            input_image,
            prompt,
            image_resolution,
            seed,
            image_guidance,
            start_t,
            end_t,
            out_fps,
            chunk_size,
            watermark,
            merging_ratio
        ]

        gr.Examples(examples=examples,
                    inputs=inputs,
                    outputs=result,
                    fn=model.process_pix2pix,
                    cache_examples=on_huggingspace,
                    run_on_click=False,
                    )

        run_button.click(fn=model.process_pix2pix,
                         inputs=inputs,
                         outputs=result)
    return demo