Spaces:
Runtime error
Runtime error
File size: 5,356 Bytes
714bf26 63074f5 714bf26 63074f5 714bf26 12f0eb3 0569f95 ae4f698 9a51a98 63074f5 0569f95 93447a6 714bf26 63074f5 714bf26 63074f5 714bf26 687b293 714bf26 687b293 714bf26 75453c0 63074f5 714bf26 63074f5 714bf26 75453c0 714bf26 63074f5 75453c0 714bf26 75453c0 714bf26 63074f5 687b293 714bf26 75453c0 714bf26 75453c0 714bf26 75453c0 687b293 714bf26 73813ee 63074f5 714bf26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
from model import Model
import os
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
def create_demo(model: Model):
examples = [
['__assets__/pix2pix_video_2fps/camel.mp4',
'make it Van Gogh Starry Night style', 512, 0, 1.0],
['__assets__/pix2pix_video_2fps/mini-cooper.mp4',
'make it Picasso style', 512, 0, 1.5],
['__assets__/pix2pix_video_2fps/snowboard.mp4',
'replace man with robot', 512, 0, 1.0],
['__assets__/pix2pix_video_2fps/white-swan.mp4',
'replace swan with mallard', 512, 0, 1.5],
['__assets__/pix2pix_video_2fps/boat.mp4',
'add city skyline in the background', 512, 0, 1.5],
['__assets__/pix2pix_video_2fps/ballet.mp4',
'make her a golden sculpture', 512, 0, 1.0],
]
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown('## Video Instruct Pix2Pix')
with gr.Row():
gr.HTML(
"""
<div style="text-align: left; auto;">
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
Description: For performance purposes, our current preview release supports any input videos but caps output videos after 80 frames and the input videos are scaled down before processing. For faster inference you can choose lower output frames per seconds from Advanced Options.
</h3>
</div>
""")
with gr.Row():
with gr.Column():
input_image = gr.Video(label="Input Video", source='upload',
type='numpy', format="mp4", visible=True).style(height="auto")
with gr.Column():
prompt = gr.Textbox(label='Prompt')
run_button = gr.Button(label='Run')
with gr.Accordion('Advanced options', open=False):
watermark = gr.Radio(["Picsart AI Research", "Text2Video-Zero",
"None"], label="Watermark", value='Picsart AI Research')
image_resolution = gr.Slider(label='Image Resolution',
minimum=256,
maximum=1024,
value=512,
step=64)
seed = gr.Slider(label='Seed',
minimum=-1,
maximum=65536,
value=0,
info="-1 for random seed on each run. Otherwise the seed will be fixed",
step=1)
image_guidance = gr.Slider(label='Image guidance scale',
minimum=0.5,
maximum=2,
value=1.0,
step=0.1)
start_t = gr.Slider(label='Starting time in seconds',
minimum=0,
maximum=10,
value=0,
step=1)
end_t = gr.Slider(label='End time in seconds (-1 corresponds to uploaded video duration)',
minimum=0,
maximum=10,
value=-1,
step=1)
out_fps = gr.Slider(label='Output video fps (-1 corresponds to uploaded video fps)',
minimum=1,
maximum=30,
value=-1,
step=1)
chunk_size = gr.Slider(
label="Chunk size", minimum=2, maximum=16, value=8, step=1, visible=not on_huggingspace,
info="Number of frames processed at once. Reduce for lower memory usage.")
merging_ratio = gr.Slider(
label="Merging ratio", minimum=0.0, maximum=0.9, step=0.1, value=0.0, visible=not on_huggingspace,
info="Ratio of how many tokens are merged. The higher the more compression (less memory and faster inference).")
with gr.Column():
result = gr.Video(label='Output', show_label=True)
inputs = [
input_image,
prompt,
image_resolution,
seed,
image_guidance,
start_t,
end_t,
out_fps,
chunk_size,
watermark,
merging_ratio
]
gr.Examples(examples=examples,
inputs=inputs,
outputs=result,
fn=model.process_pix2pix,
cache_examples=on_huggingspace,
run_on_click=False,
)
run_button.click(fn=model.process_pix2pix,
inputs=inputs,
outputs=result)
return demo
|