Spaces:
Runtime error
Runtime error
T2V Tab improvements
Browse files- app_text_to_video.py +31 -12
- model.py +56 -10
- text_to_video/text_to_video_generator.py +2 -0
- text_to_video/text_to_video_pipeline.py +7 -68
app_text_to_video.py
CHANGED
@@ -1,16 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
from model import Model
|
|
|
3 |
|
4 |
examples = [
|
5 |
-
"an astronaut waving the arm on the moon",
|
6 |
-
"a sloth surfing on a wakeboard",
|
7 |
-
|
8 |
-
|
9 |
-
"a horse is galloping on a street",
|
10 |
-
|
11 |
-
"a gorilla walking alone down the street"
|
12 |
-
"a gorilla dancing on times square",
|
13 |
-
"A panda dancing dancing like crazy on Times Square",
|
14 |
]
|
15 |
|
16 |
|
@@ -24,17 +25,35 @@ def create_demo(model: Model):
|
|
24 |
with gr.Column():
|
25 |
prompt = gr.Textbox(label='Prompt')
|
26 |
run_button = gr.Button(label='Run')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
with gr.Column():
|
28 |
result = gr.Video(label="Generated Video")
|
29 |
inputs = [
|
30 |
-
prompt,
|
|
|
|
|
|
|
31 |
]
|
32 |
|
33 |
gr.Examples(examples=examples,
|
34 |
inputs=inputs,
|
35 |
outputs=result,
|
36 |
-
cache_examples=False,
|
37 |
-
|
38 |
run_on_click=False,
|
39 |
)
|
40 |
|
|
|
1 |
import gradio as gr
|
2 |
from model import Model
|
3 |
+
from functools import partial
|
4 |
|
5 |
examples = [
|
6 |
+
["an astronaut waving the arm on the moon"],
|
7 |
+
["a sloth surfing on a wakeboard"],
|
8 |
+
["an astronaut walking on a street"],
|
9 |
+
["a cute cat walking on grass"],
|
10 |
+
["a horse is galloping on a street"],
|
11 |
+
["an astronaut is skiing down the hill"],
|
12 |
+
["a gorilla walking alone down the street"],
|
13 |
+
["a gorilla dancing on times square"],
|
14 |
+
["A panda dancing dancing like crazy on Times Square"],
|
15 |
]
|
16 |
|
17 |
|
|
|
25 |
with gr.Column():
|
26 |
prompt = gr.Textbox(label='Prompt')
|
27 |
run_button = gr.Button(label='Run')
|
28 |
+
with gr.Accordion('Advanced options', open=False):
|
29 |
+
motion_field_strength_x = gr.Slider(label='Global Translation $\delta_{x}$',
|
30 |
+
minimum=-20,
|
31 |
+
maximum=20,
|
32 |
+
value=12,
|
33 |
+
step=1)
|
34 |
+
|
35 |
+
motion_field_strength_y = gr.Slider(label='Global Translation $\delta_{y}$',
|
36 |
+
minimum=-20,
|
37 |
+
maximum=20,
|
38 |
+
value=12,
|
39 |
+
step=1)
|
40 |
+
# a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
41 |
+
n_prompt = gr.Textbox(label="Optional Negative Prompt",
|
42 |
+
value='')
|
43 |
with gr.Column():
|
44 |
result = gr.Video(label="Generated Video")
|
45 |
inputs = [
|
46 |
+
prompt,
|
47 |
+
motion_field_strength_x,
|
48 |
+
motion_field_strength_y,
|
49 |
+
n_prompt
|
50 |
]
|
51 |
|
52 |
gr.Examples(examples=examples,
|
53 |
inputs=inputs,
|
54 |
outputs=result,
|
55 |
+
# cache_examples=False,
|
56 |
+
cache_examples=os.getenv('SYSTEM') == 'spaces',
|
57 |
run_on_click=False,
|
58 |
)
|
59 |
|
model.py
CHANGED
@@ -255,26 +255,71 @@ class Model:
|
|
255 |
)
|
256 |
return utils.create_video(result, fps)
|
257 |
|
258 |
-
def process_text2video(self, prompt, resolution=512, seed=24, num_frames=8, fps=4, t0=881, t1=941,
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
if self.model_type != ModelType.Text2Video:
|
263 |
-
unet = UNet2DConditionModel.from_pretrained(
|
264 |
self.set_model(ModelType.Text2Video, model_id="runwayml/stable-diffusion-v1-5", unet=unet)
|
265 |
self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
|
266 |
-
|
|
|
267 |
self.generator.manual_seed(seed)
|
268 |
-
|
269 |
|
270 |
added_prompt = "high quality, HD, 8K, trending on artstation, high focus, dramatic lighting"
|
271 |
-
|
272 |
|
273 |
prompt = prompt.rstrip()
|
274 |
if len(prompt) > 0 and (prompt[-1] == "," or prompt[-1] == "."):
|
275 |
prompt = prompt.rstrip()[:-1]
|
276 |
prompt = prompt.rstrip()
|
277 |
prompt = prompt + ", "+added_prompt
|
|
|
|
|
|
|
|
|
278 |
|
279 |
result = self.inference(prompt=[prompt],
|
280 |
video_length=num_frames,
|
@@ -285,12 +330,13 @@ class Model:
|
|
285 |
guidance_stop_step=1.0,
|
286 |
t0=t0,
|
287 |
t1=t1,
|
288 |
-
|
289 |
-
|
290 |
use_motion_field=use_motion_field,
|
291 |
smooth_bg=smooth_bg,
|
292 |
smooth_bg_strength=smooth_bg_strength,
|
293 |
seed=seed,
|
294 |
output_type='numpy',
|
|
|
295 |
)
|
296 |
-
return utils.create_video(result, fps)
|
|
|
255 |
)
|
256 |
return utils.create_video(result, fps)
|
257 |
|
258 |
+
# def process_text2video(self, prompt, resolution=512, seed=24, num_frames=8, fps=4, t0=881, t1=941,
|
259 |
+
# use_cf_attn=True, use_motion_field=True, use_foreground_motion_field=False,
|
260 |
+
# smooth_bg=False, smooth_bg_strength=0.4, motion_field_strength=12):
|
261 |
+
|
262 |
+
# if self.model_type != ModelType.Text2Video:
|
263 |
+
# unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
264 |
+
# self.set_model(ModelType.Text2Video, model_id="runwayml/stable-diffusion-v1-5", unet=unet)
|
265 |
+
# self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
|
266 |
+
# self.pipe.unet.set_attn_processor(processor=self.text2video_attn_proc)
|
267 |
+
# self.generator.manual_seed(seed)
|
268 |
+
|
269 |
+
|
270 |
+
# added_prompt = "high quality, HD, 8K, trending on artstation, high focus, dramatic lighting"
|
271 |
+
# self.generator.manual_seed(seed)
|
272 |
+
|
273 |
+
# prompt = prompt.rstrip()
|
274 |
+
# if len(prompt) > 0 and (prompt[-1] == "," or prompt[-1] == "."):
|
275 |
+
# prompt = prompt.rstrip()[:-1]
|
276 |
+
# prompt = prompt.rstrip()
|
277 |
+
# prompt = prompt + ", "+added_prompt
|
278 |
+
|
279 |
+
# result = self.inference(prompt=[prompt],
|
280 |
+
# video_length=num_frames,
|
281 |
+
# height=resolution,
|
282 |
+
# width=resolution,
|
283 |
+
# num_inference_steps=50,
|
284 |
+
# guidance_scale=7.5,
|
285 |
+
# guidance_stop_step=1.0,
|
286 |
+
# t0=t0,
|
287 |
+
# t1=t1,
|
288 |
+
# use_foreground_motion_field=use_foreground_motion_field,
|
289 |
+
# motion_field_strength=motion_field_strength,
|
290 |
+
# use_motion_field=use_motion_field,
|
291 |
+
# smooth_bg=smooth_bg,
|
292 |
+
# smooth_bg_strength=smooth_bg_strength,
|
293 |
+
# seed=seed,
|
294 |
+
# output_type='numpy',
|
295 |
+
# )
|
296 |
+
# return utils.create_video(result, fps)
|
297 |
+
|
298 |
+
def process_text2video(self, prompt, motion_field_strength_x=12,motion_field_strength_y=12, n_prompt="", resolution=512, seed=24, num_frames=8, fps=4, t0=881, t1=941,
|
299 |
+
use_cf_attn=True, use_motion_field=True,
|
300 |
+
smooth_bg=False, smooth_bg_strength=0.4 ):
|
301 |
|
302 |
if self.model_type != ModelType.Text2Video:
|
303 |
+
unet = UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="unet")
|
304 |
self.set_model(ModelType.Text2Video, model_id="runwayml/stable-diffusion-v1-5", unet=unet)
|
305 |
self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
|
306 |
+
if use_cf_attn:
|
307 |
+
self.pipe.unet.set_attn_processor(processor=self.text2video_attn_proc)
|
308 |
self.generator.manual_seed(seed)
|
309 |
+
|
310 |
|
311 |
added_prompt = "high quality, HD, 8K, trending on artstation, high focus, dramatic lighting"
|
312 |
+
negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic'
|
313 |
|
314 |
prompt = prompt.rstrip()
|
315 |
if len(prompt) > 0 and (prompt[-1] == "," or prompt[-1] == "."):
|
316 |
prompt = prompt.rstrip()[:-1]
|
317 |
prompt = prompt.rstrip()
|
318 |
prompt = prompt + ", "+added_prompt
|
319 |
+
if len(n_prompt)>0:
|
320 |
+
negative_prompt = [n_prompt]
|
321 |
+
else:
|
322 |
+
negative_prompt = None
|
323 |
|
324 |
result = self.inference(prompt=[prompt],
|
325 |
video_length=num_frames,
|
|
|
330 |
guidance_stop_step=1.0,
|
331 |
t0=t0,
|
332 |
t1=t1,
|
333 |
+
motion_field_strength_x=motion_field_strength_x,
|
334 |
+
motion_field_strength_y=motion_field_strength_y,
|
335 |
use_motion_field=use_motion_field,
|
336 |
smooth_bg=smooth_bg,
|
337 |
smooth_bg_strength=smooth_bg_strength,
|
338 |
seed=seed,
|
339 |
output_type='numpy',
|
340 |
+
negative_prompt = negative_prompt,
|
341 |
)
|
342 |
+
return utils.create_video(result, fps)
|
text_to_video/text_to_video_generator.py
CHANGED
@@ -13,6 +13,8 @@ class TextToVideo():
|
|
13 |
g.manual_seed(22)
|
14 |
self.g = g
|
15 |
|
|
|
|
|
16 |
print(f"Loading model SD-Net model file from {sd_path}")
|
17 |
|
18 |
self.dtype = torch.float16
|
|
|
13 |
g.manual_seed(22)
|
14 |
self.g = g
|
15 |
|
16 |
+
assert sd_path is not None
|
17 |
+
|
18 |
print(f"Loading model SD-Net model file from {sd_path}")
|
19 |
|
20 |
self.dtype = torch.float16
|
text_to_video/text_to_video_pipeline.py
CHANGED
@@ -142,7 +142,6 @@ class TextToVideoPipeline(StableDiffusionPipeline):
|
|
142 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
143 |
for i, t in enumerate(timesteps):
|
144 |
if t > skip_t:
|
145 |
-
# print("Skipping frame!")
|
146 |
continue
|
147 |
else:
|
148 |
if not entered:
|
@@ -235,19 +234,20 @@ class TextToVideoPipeline(StableDiffusionPipeline):
|
|
235 |
List[torch.Generator]]] = None,
|
236 |
xT: Optional[torch.FloatTensor] = None,
|
237 |
null_embs: Optional[torch.FloatTensor] = None,
|
238 |
-
motion_field_strength: float = 12,
|
|
|
|
|
239 |
output_type: Optional[str] = "tensor",
|
240 |
return_dict: bool = True,
|
241 |
callback: Optional[Callable[[
|
242 |
int, int, torch.FloatTensor], None]] = None,
|
243 |
callback_steps: Optional[int] = 1,
|
244 |
-
use_foreground_motion_field: bool = True,
|
245 |
use_motion_field: bool = True,
|
246 |
smooth_bg: bool = True,
|
247 |
smooth_bg_strength: float = 0.4,
|
248 |
**kwargs,
|
249 |
):
|
250 |
-
|
251 |
print(f" Use: Motion field = {use_motion_field}")
|
252 |
print(f" Use: Background smoothing = {smooth_bg}")
|
253 |
# Default height and width to unet
|
@@ -349,7 +349,9 @@ class TextToVideoPipeline(StableDiffusionPipeline):
|
|
349 |
reference_flow = torch.zeros(
|
350 |
(video_length-1, 2, 512, 512), device=x_t0_1.device, dtype=x_t0_1.dtype)
|
351 |
for fr_idx in range(video_length-1):
|
352 |
-
reference_flow[fr_idx, :, :, :] = motion_field_strength*(fr_idx+1)
|
|
|
|
|
353 |
|
354 |
for idx, latent in enumerate(x_t0_k):
|
355 |
x_t0_k[idx] = self.warp_latents_independently(
|
@@ -379,63 +381,6 @@ class TextToVideoPipeline(StableDiffusionPipeline):
|
|
379 |
x_t0_k = x_t0_1[:, :, 1:, :, :].clone()
|
380 |
x_t0_1 = x_t0_1[:,:,:1,:,:].clone()
|
381 |
|
382 |
-
|
383 |
-
move_object = use_foreground_motion_field
|
384 |
-
if move_object:
|
385 |
-
h, w = x0.shape[3], x0.shape[4]
|
386 |
-
# Move object
|
387 |
-
# reference_flow = torch.zeros(
|
388 |
-
# (video_length-1, 2, 512, 512), device=x_t0_1.device, dtype=x_t0_1.dtype)
|
389 |
-
reference_flow_obj = torch.zeros(
|
390 |
-
(batch_size, video_length, 2, 512, 512), device=x_t0_1.device, dtype=x_t0_1.dtype)
|
391 |
-
|
392 |
-
for batch_idx, x0_b in enumerate(x0):
|
393 |
-
tmp = x0_b[None]
|
394 |
-
z0_b = []
|
395 |
-
for fr_split in range(tmp.shape[2]):
|
396 |
-
z0_b.append(self.decode_latents(
|
397 |
-
tmp[:, :, fr_split, None]).detach())
|
398 |
-
z0_b = torch.cat(z0_b, dim=2)
|
399 |
-
z0_b = rearrange(z0_b[0], "c f h w -> f h w c")
|
400 |
-
shift = (-5 - 5) * torch.rand(2,
|
401 |
-
device=x0.device, dtype=x0.dtype) + 5
|
402 |
-
for frame_idx, z0_f in enumerate(z0_b):
|
403 |
-
if frame_idx > 0:
|
404 |
-
|
405 |
-
z0_f = torch.round(
|
406 |
-
z0_f * 255).cpu().numpy().astype(np.uint8)
|
407 |
-
|
408 |
-
# apply SOD detection to obtain mask of foreground object
|
409 |
-
m_f = torch.tensor(self.sod_model.process_data(
|
410 |
-
z0_f), device=x0.device).to(x0.dtype)
|
411 |
-
kernel = torch.ones(
|
412 |
-
5, 5, device=x0.device, dtype=x0.dtype)
|
413 |
-
mask = dilation(
|
414 |
-
m_f[None, None].to(x0.device), kernel)[0]
|
415 |
-
for coord_idx in range(2):
|
416 |
-
reference_flow_obj[batch_idx, frame_idx,
|
417 |
-
coord_idx, :, :] = (1+frame_idx) * shift[coord_idx] * mask
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
for idx, x_t0_k_b in enumerate(x_t0_k):
|
422 |
-
x_t0_k[idx] = self.warp_latents_independently(
|
423 |
-
x_t0_k_b[None], reference_flow_obj[idx, 1:])
|
424 |
-
|
425 |
-
x_t1_k = self.DDPM_forward(
|
426 |
-
x0=x_t0_k, t0=t0, tMax=t1, device=device, shape=shape, text_embeddings=text_embeddings, generator=generator)
|
427 |
-
|
428 |
-
if x_t1_1 is None:
|
429 |
-
raise Exception
|
430 |
-
x_t1 = torch.cat([x_t1_1, x_t1_k], dim=2)
|
431 |
-
|
432 |
-
# del latent
|
433 |
-
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
|
434 |
-
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=x_t1, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
|
435 |
-
x0 = ddim_res["x0"].detach()
|
436 |
-
del ddim_res
|
437 |
-
|
438 |
-
|
439 |
# smooth background
|
440 |
if smooth_bg:
|
441 |
h, w = x0.shape[3], x0.shape[4]
|
@@ -474,9 +419,6 @@ class TextToVideoPipeline(StableDiffusionPipeline):
|
|
474 |
x_t1_fg_masked_b, reference_flow)
|
475 |
else:
|
476 |
x_t1_fg_masked_b = x_t1_fg_masked_b[None]
|
477 |
-
if move_object:
|
478 |
-
x_t1_fg_masked_b = self.warp_latents_independently(
|
479 |
-
x_t1_fg_masked_b, reference_flow_obj[batch_idx, 1:])
|
480 |
|
481 |
x_t1_fg_masked_b = torch.cat(
|
482 |
[x_t1_1_fg_masked_b[None], x_t1_fg_masked_b], dim=2)
|
@@ -493,9 +435,6 @@ class TextToVideoPipeline(StableDiffusionPipeline):
|
|
493 |
if use_motion_field:
|
494 |
m_fg_b = self.warp_latents_independently(
|
495 |
m_fg_b.clone(), reference_flow)
|
496 |
-
if move_object:
|
497 |
-
m_fg_b = self.warp_latents_independently(
|
498 |
-
m_fg_b, reference_flow_obj[batch_idx, 1:])
|
499 |
M_FG_warped.append(
|
500 |
torch.cat([m_fg_1_b[:1, 0], m_fg_b[:1, 0]], dim=1))
|
501 |
|
|
|
142 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
143 |
for i, t in enumerate(timesteps):
|
144 |
if t > skip_t:
|
|
|
145 |
continue
|
146 |
else:
|
147 |
if not entered:
|
|
|
234 |
List[torch.Generator]]] = None,
|
235 |
xT: Optional[torch.FloatTensor] = None,
|
236 |
null_embs: Optional[torch.FloatTensor] = None,
|
237 |
+
#motion_field_strength: float = 12,
|
238 |
+
motion_field_strength_x: float = 12,
|
239 |
+
motion_field_strength_y: float = 12,
|
240 |
output_type: Optional[str] = "tensor",
|
241 |
return_dict: bool = True,
|
242 |
callback: Optional[Callable[[
|
243 |
int, int, torch.FloatTensor], None]] = None,
|
244 |
callback_steps: Optional[int] = 1,
|
|
|
245 |
use_motion_field: bool = True,
|
246 |
smooth_bg: bool = True,
|
247 |
smooth_bg_strength: float = 0.4,
|
248 |
**kwargs,
|
249 |
):
|
250 |
+
print(motion_field_strength_x,motion_field_strength_y)
|
251 |
print(f" Use: Motion field = {use_motion_field}")
|
252 |
print(f" Use: Background smoothing = {smooth_bg}")
|
253 |
# Default height and width to unet
|
|
|
349 |
reference_flow = torch.zeros(
|
350 |
(video_length-1, 2, 512, 512), device=x_t0_1.device, dtype=x_t0_1.dtype)
|
351 |
for fr_idx in range(video_length-1):
|
352 |
+
#reference_flow[fr_idx, :, :, :] = motion_field_strength*(fr_idx+1)
|
353 |
+
reference_flow[fr_idx, 0, :, :] = motion_field_strength_x*(fr_idx+1)
|
354 |
+
reference_flow[fr_idx, 1, :, :] = motion_field_strength_y*(fr_idx+1)
|
355 |
|
356 |
for idx, latent in enumerate(x_t0_k):
|
357 |
x_t0_k[idx] = self.warp_latents_independently(
|
|
|
381 |
x_t0_k = x_t0_1[:, :, 1:, :, :].clone()
|
382 |
x_t0_1 = x_t0_1[:,:,:1,:,:].clone()
|
383 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
# smooth background
|
385 |
if smooth_bg:
|
386 |
h, w = x0.shape[3], x0.shape[4]
|
|
|
419 |
x_t1_fg_masked_b, reference_flow)
|
420 |
else:
|
421 |
x_t1_fg_masked_b = x_t1_fg_masked_b[None]
|
|
|
|
|
|
|
422 |
|
423 |
x_t1_fg_masked_b = torch.cat(
|
424 |
[x_t1_1_fg_masked_b[None], x_t1_fg_masked_b], dim=2)
|
|
|
435 |
if use_motion_field:
|
436 |
m_fg_b = self.warp_latents_independently(
|
437 |
m_fg_b.clone(), reference_flow)
|
|
|
|
|
|
|
438 |
M_FG_warped.append(
|
439 |
torch.cat([m_fg_1_b[:1, 0], m_fg_b[:1, 0]], dim=1))
|
440 |
|