lev1 commited on
Commit
c24fa23
1 Parent(s): eb37f03

From MP4 to GIF

Browse files
Files changed (2) hide show
  1. app_pose.py +2 -1
  2. model.py +2 -41
app_pose.py CHANGED
@@ -27,7 +27,8 @@ def create_demo(model: Model):
27
  prompt = gr.Textbox(label='Prompt')
28
  run_button = gr.Button(label='Run')
29
  with gr.Column():
30
- result = gr.Video(label="Generated Video")
 
31
 
32
  input_video_path.change(on_video_path_update, None, pose_sequence_selector)
33
  gallery_pose_sequence.select(pose_gallery_callback, None, input_video_path)
 
27
  prompt = gr.Textbox(label='Prompt')
28
  run_button = gr.Button(label='Run')
29
  with gr.Column():
30
+ # result = gr.Video(label="Generated Video")
31
+ result = gr.Image(label="Generated Video")
32
 
33
  input_video_path.change(on_video_path_update, None, pose_sequence_selector)
34
  gallery_pose_sequence.select(pose_gallery_callback, None, input_video_path)
model.py CHANGED
@@ -186,7 +186,8 @@ class Model:
186
  split_to_chunks=True,
187
  chunk_size=8,
188
  )
189
- return utils.create_video(result, fps)
 
190
 
191
  def process_controlnet_canny_db(self,
192
  db_path,
@@ -255,46 +256,6 @@ class Model:
255
  )
256
  return utils.create_video(result, fps)
257
 
258
- # def process_text2video(self, prompt, resolution=512, seed=24, num_frames=8, fps=4, t0=881, t1=941,
259
- # use_cf_attn=True, use_motion_field=True, use_foreground_motion_field=False,
260
- # smooth_bg=False, smooth_bg_strength=0.4, motion_field_strength=12):
261
-
262
- # if self.model_type != ModelType.Text2Video:
263
- # unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
264
- # self.set_model(ModelType.Text2Video, model_id="runwayml/stable-diffusion-v1-5", unet=unet)
265
- # self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
266
- # self.pipe.unet.set_attn_processor(processor=self.text2video_attn_proc)
267
- # self.generator.manual_seed(seed)
268
-
269
-
270
- # added_prompt = "high quality, HD, 8K, trending on artstation, high focus, dramatic lighting"
271
- # self.generator.manual_seed(seed)
272
-
273
- # prompt = prompt.rstrip()
274
- # if len(prompt) > 0 and (prompt[-1] == "," or prompt[-1] == "."):
275
- # prompt = prompt.rstrip()[:-1]
276
- # prompt = prompt.rstrip()
277
- # prompt = prompt + ", "+added_prompt
278
-
279
- # result = self.inference(prompt=[prompt],
280
- # video_length=num_frames,
281
- # height=resolution,
282
- # width=resolution,
283
- # num_inference_steps=50,
284
- # guidance_scale=7.5,
285
- # guidance_stop_step=1.0,
286
- # t0=t0,
287
- # t1=t1,
288
- # use_foreground_motion_field=use_foreground_motion_field,
289
- # motion_field_strength=motion_field_strength,
290
- # use_motion_field=use_motion_field,
291
- # smooth_bg=smooth_bg,
292
- # smooth_bg_strength=smooth_bg_strength,
293
- # seed=seed,
294
- # output_type='numpy',
295
- # )
296
- # return utils.create_video(result, fps)
297
-
298
  def process_text2video(self, prompt, motion_field_strength_x=12,motion_field_strength_y=12, n_prompt="", resolution=512, seed=24, num_frames=8, fps=4, t0=881, t1=941,
299
  use_cf_attn=True, use_motion_field=True,
300
  smooth_bg=False, smooth_bg_strength=0.4 ):
 
186
  split_to_chunks=True,
187
  chunk_size=8,
188
  )
189
+ return utils.create_gif(result, fps)
190
+ # return utils.create_video(result, fps)
191
 
192
  def process_controlnet_canny_db(self,
193
  db_path,
 
256
  )
257
  return utils.create_video(result, fps)
258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259
  def process_text2video(self, prompt, motion_field_strength_x=12,motion_field_strength_y=12, n_prompt="", resolution=512, seed=24, num_frames=8, fps=4, t0=881, t1=941,
260
  use_cf_attn=True, use_motion_field=True,
261
  smooth_bg=False, smooth_bg_strength=0.4 ):