Spaces:
Runtime error
Runtime error
Text to video files
Browse files- models/cldm_v15.yaml +81 -0
- models/cldm_v15_no_cf_attn.yaml +81 -0
- models/cldm_v21.yaml +85 -0
- text_to_video/text_to_video_generator.py +77 -0
- text_to_video/text_to_video_pipeline.py +550 -0
models/cldm_v15.yaml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: cldm.cldm.ControlLDM
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
num_timesteps_cond: 1
|
7 |
+
log_every_t: 200
|
8 |
+
timesteps: 1000
|
9 |
+
first_stage_key: "jpg"
|
10 |
+
cond_stage_key: "txt"
|
11 |
+
control_key: "hint"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
only_mid_control: False
|
20 |
+
|
21 |
+
control_stage_config:
|
22 |
+
target: cldm.cldm.ControlNet
|
23 |
+
params:
|
24 |
+
image_size: 32 # unused
|
25 |
+
in_channels: 4
|
26 |
+
hint_channels: 3
|
27 |
+
model_channels: 320
|
28 |
+
attention_resolutions: [ 4, 2, 1 ]
|
29 |
+
num_res_blocks: 2
|
30 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
31 |
+
num_heads: 8
|
32 |
+
use_spatial_transformer: True
|
33 |
+
transformer_depth: 1
|
34 |
+
context_dim: 768
|
35 |
+
use_checkpoint: True
|
36 |
+
use_cf_attn: True
|
37 |
+
legacy: False
|
38 |
+
|
39 |
+
unet_config:
|
40 |
+
target: cldm.cldm.ControlledUnetModel
|
41 |
+
params:
|
42 |
+
image_size: 32 # unused
|
43 |
+
in_channels: 4
|
44 |
+
out_channels: 4
|
45 |
+
model_channels: 320
|
46 |
+
attention_resolutions: [ 4, 2, 1 ]
|
47 |
+
num_res_blocks: 2
|
48 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
49 |
+
num_heads: 8
|
50 |
+
use_spatial_transformer: True
|
51 |
+
transformer_depth: 1
|
52 |
+
context_dim: 768
|
53 |
+
use_checkpoint: True
|
54 |
+
legacy: False
|
55 |
+
use_cf_attn: True
|
56 |
+
|
57 |
+
first_stage_config:
|
58 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
59 |
+
params:
|
60 |
+
embed_dim: 4
|
61 |
+
monitor: val/rec_loss
|
62 |
+
ddconfig:
|
63 |
+
double_z: true
|
64 |
+
z_channels: 4
|
65 |
+
resolution: 256
|
66 |
+
in_channels: 3
|
67 |
+
out_ch: 3
|
68 |
+
ch: 128
|
69 |
+
ch_mult:
|
70 |
+
- 1
|
71 |
+
- 2
|
72 |
+
- 4
|
73 |
+
- 4
|
74 |
+
num_res_blocks: 2
|
75 |
+
attn_resolutions: []
|
76 |
+
dropout: 0.0
|
77 |
+
lossconfig:
|
78 |
+
target: torch.nn.Identity
|
79 |
+
|
80 |
+
cond_stage_config:
|
81 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
models/cldm_v15_no_cf_attn.yaml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: cldm.cldm.ControlLDM
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
num_timesteps_cond: 1
|
7 |
+
log_every_t: 200
|
8 |
+
timesteps: 1000
|
9 |
+
first_stage_key: "jpg"
|
10 |
+
cond_stage_key: "txt"
|
11 |
+
control_key: "hint"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
only_mid_control: False
|
20 |
+
|
21 |
+
control_stage_config:
|
22 |
+
target: cldm.cldm.ControlNet
|
23 |
+
params:
|
24 |
+
image_size: 32 # unused
|
25 |
+
in_channels: 4
|
26 |
+
hint_channels: 3
|
27 |
+
model_channels: 320
|
28 |
+
attention_resolutions: [ 4, 2, 1 ]
|
29 |
+
num_res_blocks: 2
|
30 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
31 |
+
num_heads: 8
|
32 |
+
use_spatial_transformer: True
|
33 |
+
transformer_depth: 1
|
34 |
+
context_dim: 768
|
35 |
+
use_checkpoint: True
|
36 |
+
use_cf_attn: False
|
37 |
+
legacy: False
|
38 |
+
|
39 |
+
unet_config:
|
40 |
+
target: cldm.cldm.ControlledUnetModel
|
41 |
+
params:
|
42 |
+
image_size: 32 # unused
|
43 |
+
in_channels: 4
|
44 |
+
out_channels: 4
|
45 |
+
model_channels: 320
|
46 |
+
attention_resolutions: [ 4, 2, 1 ]
|
47 |
+
num_res_blocks: 2
|
48 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
49 |
+
num_heads: 8
|
50 |
+
use_spatial_transformer: True
|
51 |
+
transformer_depth: 1
|
52 |
+
context_dim: 768
|
53 |
+
use_checkpoint: True
|
54 |
+
legacy: False
|
55 |
+
use_cf_attn: False
|
56 |
+
|
57 |
+
first_stage_config:
|
58 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
59 |
+
params:
|
60 |
+
embed_dim: 4
|
61 |
+
monitor: val/rec_loss
|
62 |
+
ddconfig:
|
63 |
+
double_z: true
|
64 |
+
z_channels: 4
|
65 |
+
resolution: 256
|
66 |
+
in_channels: 3
|
67 |
+
out_ch: 3
|
68 |
+
ch: 128
|
69 |
+
ch_mult:
|
70 |
+
- 1
|
71 |
+
- 2
|
72 |
+
- 4
|
73 |
+
- 4
|
74 |
+
num_res_blocks: 2
|
75 |
+
attn_resolutions: []
|
76 |
+
dropout: 0.0
|
77 |
+
lossconfig:
|
78 |
+
target: torch.nn.Identity
|
79 |
+
|
80 |
+
cond_stage_config:
|
81 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
models/cldm_v21.yaml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: cldm.cldm.ControlLDM
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
num_timesteps_cond: 1
|
7 |
+
log_every_t: 200
|
8 |
+
timesteps: 1000
|
9 |
+
first_stage_key: "jpg"
|
10 |
+
cond_stage_key: "txt"
|
11 |
+
control_key: "hint"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
only_mid_control: False
|
20 |
+
|
21 |
+
control_stage_config:
|
22 |
+
target: cldm.cldm.ControlNet
|
23 |
+
params:
|
24 |
+
use_checkpoint: True
|
25 |
+
image_size: 32 # unused
|
26 |
+
in_channels: 4
|
27 |
+
hint_channels: 3
|
28 |
+
model_channels: 320
|
29 |
+
attention_resolutions: [ 4, 2, 1 ]
|
30 |
+
num_res_blocks: 2
|
31 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
32 |
+
num_head_channels: 64 # need to fix for flash-attn
|
33 |
+
use_spatial_transformer: True
|
34 |
+
use_linear_in_transformer: True
|
35 |
+
transformer_depth: 1
|
36 |
+
context_dim: 1024
|
37 |
+
legacy: False
|
38 |
+
|
39 |
+
unet_config:
|
40 |
+
target: cldm.cldm.ControlledUnetModel
|
41 |
+
params:
|
42 |
+
use_checkpoint: True
|
43 |
+
image_size: 32 # unused
|
44 |
+
in_channels: 4
|
45 |
+
out_channels: 4
|
46 |
+
model_channels: 320
|
47 |
+
attention_resolutions: [ 4, 2, 1 ]
|
48 |
+
num_res_blocks: 2
|
49 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
50 |
+
num_head_channels: 64 # need to fix for flash-attn
|
51 |
+
use_spatial_transformer: True
|
52 |
+
use_linear_in_transformer: True
|
53 |
+
transformer_depth: 1
|
54 |
+
context_dim: 1024
|
55 |
+
legacy: False
|
56 |
+
|
57 |
+
first_stage_config:
|
58 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
59 |
+
params:
|
60 |
+
embed_dim: 4
|
61 |
+
monitor: val/rec_loss
|
62 |
+
ddconfig:
|
63 |
+
#attn_type: "vanilla-xformers"
|
64 |
+
double_z: true
|
65 |
+
z_channels: 4
|
66 |
+
resolution: 256
|
67 |
+
in_channels: 3
|
68 |
+
out_ch: 3
|
69 |
+
ch: 128
|
70 |
+
ch_mult:
|
71 |
+
- 1
|
72 |
+
- 2
|
73 |
+
- 4
|
74 |
+
- 4
|
75 |
+
num_res_blocks: 2
|
76 |
+
attn_resolutions: []
|
77 |
+
dropout: 0.0
|
78 |
+
lossconfig:
|
79 |
+
target: torch.nn.Identity
|
80 |
+
|
81 |
+
cond_stage_config:
|
82 |
+
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
83 |
+
params:
|
84 |
+
freeze: True
|
85 |
+
layer: "penultimate"
|
text_to_video/text_to_video_generator.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from text_to_video.tuneavideo.pipelines.pipeline_text_to_video import TuneAVideoPipeline
|
2 |
+
from text_to_video.tuneavideo.models.unet import UNet3DConditionModel
|
3 |
+
import torch
|
4 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
5 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
6 |
+
|
7 |
+
|
8 |
+
class TextToVideo():
|
9 |
+
|
10 |
+
|
11 |
+
def __init__(self,sd_path = None,motion_field_strength = 12, video_length = 8,t0 = 881, t1=941,use_cf_attn=True,use_motion_field=True) -> None:
|
12 |
+
g = torch.Generator(device='cuda')
|
13 |
+
g.manual_seed(22)
|
14 |
+
self.g = g
|
15 |
+
|
16 |
+
print(f"Loading model SD-Net model file from {sd_path}")
|
17 |
+
|
18 |
+
self.dtype = torch.float16
|
19 |
+
noise_scheduler = DDIMScheduler.from_pretrained(
|
20 |
+
sd_path, subfolder="scheduler")
|
21 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
22 |
+
sd_path, subfolder="tokenizer")
|
23 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
24 |
+
sd_path, subfolder="text_encoder")
|
25 |
+
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae")
|
26 |
+
|
27 |
+
|
28 |
+
unet = UNet3DConditionModel.from_pretrained_2d(
|
29 |
+
sd_path, subfolder="unet", use_cf_attn=use_cf_attn)
|
30 |
+
self.pipe = TuneAVideoPipeline(
|
31 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
|
32 |
+
scheduler=DDIMScheduler.from_pretrained(
|
33 |
+
sd_path, subfolder="scheduler")
|
34 |
+
).to('cuda').to(self.dtype)
|
35 |
+
|
36 |
+
noise_scheduler.set_timesteps(50, device='cuda')
|
37 |
+
|
38 |
+
# t0 parameter (DDIM backward from noise until t0)
|
39 |
+
self.t0 = t0
|
40 |
+
|
41 |
+
|
42 |
+
# from t0 apply DDPM forward until t1
|
43 |
+
self.t1 = t1
|
44 |
+
|
45 |
+
self.use_foreground_motion_field = False # apply motion field on forground object (not used)
|
46 |
+
|
47 |
+
# strength of motion field (delta_x = delta_y in Sect 3.3.1)
|
48 |
+
self.motion_field_strength = motion_field_strength
|
49 |
+
self.use_motion_field = use_motion_field # apply general motion field
|
50 |
+
self.smooth_bg = False # temporally smooth background
|
51 |
+
self.smooth_bg_strength = 0.4 # alpha = (1-self.smooth_bg_strength) in Eq (9)
|
52 |
+
|
53 |
+
|
54 |
+
self.video_length = video_length
|
55 |
+
|
56 |
+
def inference(self, prompt):
|
57 |
+
|
58 |
+
prompt_compute = [prompt]
|
59 |
+
xT = torch.randn((1, 4, 1, 64, 64), dtype=self.dtype, device="cuda")
|
60 |
+
result = self.pipe(prompt_compute,
|
61 |
+
video_length=self.video_length,
|
62 |
+
height=512,
|
63 |
+
width=512,
|
64 |
+
num_inference_steps=50,
|
65 |
+
guidance_scale=7.5,
|
66 |
+
guidance_stop_step=1.0,
|
67 |
+
t0=self.t0,
|
68 |
+
t1=self.t1,
|
69 |
+
xT=xT,
|
70 |
+
use_foreground_motion_field=self.use_foreground_motion_field,
|
71 |
+
motion_field_strength=self.motion_field_strength,
|
72 |
+
use_motion_field=self.use_motion_field,
|
73 |
+
smooth_bg=self.smooth_bg,
|
74 |
+
smooth_bg_strength=self.smooth_bg_strength,
|
75 |
+
generator=self.g)
|
76 |
+
|
77 |
+
return result.videos[0]
|
text_to_video/text_to_video_pipeline.py
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import StableDiffusionPipeline
|
2 |
+
import torch
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Callable, List, Optional, Union
|
5 |
+
import numpy as np
|
6 |
+
from diffusers.utils import deprecate, logging, BaseOutput
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
from torch.nn.functional import grid_sample
|
9 |
+
import torchvision.transforms as T
|
10 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
11 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
12 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
13 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class TextToVideoPipelineOutput(BaseOutput):
|
17 |
+
videos: Union[torch.Tensor, np.ndarray]
|
18 |
+
code: Union[torch.Tensor, np.ndarray]
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
def coords_grid(batch, ht, wd, device):
|
23 |
+
# Adapted from https://github.com/princeton-vl/RAFT/blob/master/core/utils/utils.py
|
24 |
+
coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device))
|
25 |
+
coords = torch.stack(coords[::-1], dim=0).float()
|
26 |
+
return coords[None].repeat(batch, 1, 1, 1)
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
class TextToVideoPipeline(StableDiffusionPipeline):
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
vae: AutoencoderKL,
|
34 |
+
text_encoder: CLIPTextModel,
|
35 |
+
tokenizer: CLIPTokenizer,
|
36 |
+
unet: UNet2DConditionModel,
|
37 |
+
scheduler: KarrasDiffusionSchedulers,
|
38 |
+
safety_checker: StableDiffusionSafetyChecker,
|
39 |
+
feature_extractor: CLIPFeatureExtractor,
|
40 |
+
requires_safety_checker: bool = True,
|
41 |
+
):
|
42 |
+
#super().__init__(*args,**kwargs)
|
43 |
+
super().__init__(vae,text_encoder,tokenizer,unet,scheduler,safety_checker,feature_extractor,requires_safety_checker)
|
44 |
+
|
45 |
+
|
46 |
+
def DDPM_forward(self, x0, t0, tMax, generator, device, shape, text_embeddings):
|
47 |
+
rand_device = "cpu" if device.type == "mps" else device
|
48 |
+
|
49 |
+
if x0 is None:
|
50 |
+
return torch.randn(shape, generator=generator, device=rand_device, dtype=text_embeddings.dtype).to(device)
|
51 |
+
else:
|
52 |
+
eps = torch.randn_like(x0, dtype=text_embeddings.dtype).to(device)
|
53 |
+
alpha_vec = torch.prod(self.scheduler.alphas[t0:tMax])
|
54 |
+
xt = torch.sqrt(alpha_vec) * x0 + \
|
55 |
+
torch.sqrt(1-alpha_vec) * eps
|
56 |
+
return xt
|
57 |
+
|
58 |
+
|
59 |
+
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
|
60 |
+
shape = (batch_size, num_channels_latents, video_length, height //
|
61 |
+
self.vae_scale_factor, width // self.vae_scale_factor)
|
62 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
63 |
+
raise ValueError(
|
64 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
65 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
66 |
+
)
|
67 |
+
|
68 |
+
if latents is None:
|
69 |
+
rand_device = "cpu" if device.type == "mps" else device
|
70 |
+
|
71 |
+
if isinstance(generator, list):
|
72 |
+
shape = (1,) + shape[1:]
|
73 |
+
latents = [
|
74 |
+
torch.randn(
|
75 |
+
shape, generator=generator[i], device=rand_device, dtype=dtype)
|
76 |
+
for i in range(batch_size)
|
77 |
+
]
|
78 |
+
latents = torch.cat(latents, dim=0).to(device)
|
79 |
+
else:
|
80 |
+
latents = torch.randn(
|
81 |
+
shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
82 |
+
else:
|
83 |
+
latents = latents.to(device)
|
84 |
+
|
85 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
86 |
+
latents = latents * self.scheduler.init_noise_sigma
|
87 |
+
return latents
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
def warp_latents(self, latents, reference_flow):
|
92 |
+
_, _, H, W = reference_flow.size()
|
93 |
+
b, c, f, h, w = latents.size()
|
94 |
+
coords0 = coords_grid(f, H, W, device=latents.device).to(latents.dtype)
|
95 |
+
coords_t0 = coords0 + reference_flow
|
96 |
+
coords_t0[:, 0] /= W
|
97 |
+
coords_t0[:, 1] /= H
|
98 |
+
coords_t0 = coords_t0 * 2.0 - 1.0
|
99 |
+
coords_t0 = T.Resize((h, w))(coords_t0)
|
100 |
+
coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
|
101 |
+
latents_0 = latents[:, :, 0]
|
102 |
+
latents_0 = latents_0.repeat(f, 1, 1, 1)
|
103 |
+
warped = grid_sample(latents_0, coords_t0,
|
104 |
+
mode='nearest', padding_mode='reflection')
|
105 |
+
warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
|
106 |
+
return warped
|
107 |
+
|
108 |
+
def warp_latents_independently(self, latents, reference_flow):
|
109 |
+
_, _, H, W = reference_flow.size()
|
110 |
+
b, c, f, h, w = latents.size()
|
111 |
+
assert b == 1
|
112 |
+
coords0 = coords_grid(f, H, W, device=latents.device).to(latents.dtype)
|
113 |
+
coords_t0 = coords0 + reference_flow
|
114 |
+
|
115 |
+
coords_t0[:, 0] /= W
|
116 |
+
coords_t0[:, 1] /= H
|
117 |
+
coords_t0 = coords_t0 * 2.0 - 1.0
|
118 |
+
|
119 |
+
coords_t0 = T.Resize((h, w))(coords_t0)
|
120 |
+
|
121 |
+
coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
|
122 |
+
|
123 |
+
latents_0 = rearrange(latents[0], 'c f h w -> f c h w')
|
124 |
+
|
125 |
+
warped = grid_sample(latents_0, coords_t0,
|
126 |
+
mode='nearest', padding_mode='reflection')
|
127 |
+
warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
|
128 |
+
return warped
|
129 |
+
|
130 |
+
def DDIM_backward(self, num_inference_steps, timesteps, skip_t, t0, t1, do_classifier_free_guidance, null_embs, text_embeddings, latents_local, latents_dtype, guidance_scale, guidance_stop_step, callback, callback_steps, extra_step_kwargs, num_warmup_steps):
|
131 |
+
entered = False
|
132 |
+
|
133 |
+
f = latents_local.shape[2]
|
134 |
+
latents_local = rearrange(latents_local,"b c f w h -> (b f) c w h")
|
135 |
+
|
136 |
+
latents = latents_local.detach().clone()
|
137 |
+
x_t0_1 = None
|
138 |
+
x_t1_1 = None
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
143 |
+
for i, t in enumerate(timesteps):
|
144 |
+
if t > skip_t:
|
145 |
+
# print("Skipping frame!")
|
146 |
+
continue
|
147 |
+
else:
|
148 |
+
if not entered:
|
149 |
+
print(
|
150 |
+
f"Continue DDIM with i = {i}, t = {t}, latent = {latents.shape}, device = {latents.device}, type = {latents.dtype}")
|
151 |
+
entered = True
|
152 |
+
|
153 |
+
latents = latents.detach()
|
154 |
+
# expand the latents if we are doing classifier free guidance
|
155 |
+
latent_model_input = torch.cat(
|
156 |
+
[latents] * 2) if do_classifier_free_guidance else latents
|
157 |
+
latent_model_input = self.scheduler.scale_model_input(
|
158 |
+
latent_model_input, t)
|
159 |
+
|
160 |
+
# predict the noise residual
|
161 |
+
with torch.no_grad():
|
162 |
+
if null_embs is not None:
|
163 |
+
text_embeddings[0] = null_embs[i][0]
|
164 |
+
te = torch.cat([repeat(text_embeddings[0,:,:], "c k -> f c k",f=f),repeat(text_embeddings[1,:,:], "c k -> f c k",f=f)])
|
165 |
+
noise_pred = self.unet(
|
166 |
+
latent_model_input, t, encoder_hidden_states=te).sample.to(dtype=latents_dtype)
|
167 |
+
|
168 |
+
# perform guidance
|
169 |
+
if do_classifier_free_guidance:
|
170 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(
|
171 |
+
2)
|
172 |
+
noise_pred = noise_pred_uncond + guidance_scale * \
|
173 |
+
(noise_pred_text - noise_pred_uncond)
|
174 |
+
|
175 |
+
if i >= guidance_stop_step * len(timesteps):
|
176 |
+
alpha = 0
|
177 |
+
# compute the previous noisy sample x_t -> x_t-1
|
178 |
+
latents = self.scheduler.step(
|
179 |
+
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
180 |
+
# latents = latents - alpha * grads / (torch.norm(grads) + 1e-10)
|
181 |
+
# call the callback, if provided
|
182 |
+
|
183 |
+
if i < len(timesteps)-1 and timesteps[i+1] == t0:
|
184 |
+
x_t0_1 = latents.detach().clone()
|
185 |
+
print(f"latent t0 found at i = {i}, t = {t}")
|
186 |
+
elif i < len(timesteps)-1 and timesteps[i+1] == t1:
|
187 |
+
x_t1_1 = latents.detach().clone()
|
188 |
+
print(f"latent t1 found at i={i}, t = {t}")
|
189 |
+
|
190 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
191 |
+
progress_bar.update()
|
192 |
+
if callback is not None and i % callback_steps == 0:
|
193 |
+
callback(i, t, latents)
|
194 |
+
|
195 |
+
|
196 |
+
latents = rearrange(latents,"(b f) c w h -> b c f w h",f = f)
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
res = {"x0": latents.detach().clone()}
|
201 |
+
if x_t0_1 is not None:
|
202 |
+
x_t0_1 = rearrange(x_t0_1,"(b f) c w h -> b c f w h",f = f)
|
203 |
+
res["x_t0_1"] = x_t0_1.detach().clone()
|
204 |
+
if x_t1_1 is not None:
|
205 |
+
x_t1_1 = rearrange(x_t1_1,"(b f) c w h -> b c f w h",f = f)
|
206 |
+
res["x_t1_1"] = x_t1_1.detach().clone()
|
207 |
+
return res
|
208 |
+
|
209 |
+
def decode_latents(self, latents):
|
210 |
+
video_length = latents.shape[2]
|
211 |
+
latents = 1 / 0.18215 * latents
|
212 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
213 |
+
video = self.vae.decode(latents).sample
|
214 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
215 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
216 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
217 |
+
return video
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
@torch.no_grad()
|
222 |
+
def __call__(
|
223 |
+
self,
|
224 |
+
prompt: Union[str, List[str]],
|
225 |
+
video_length: Optional[int],
|
226 |
+
height: Optional[int] = None,
|
227 |
+
width: Optional[int] = None,
|
228 |
+
num_inference_steps: int = 50,
|
229 |
+
guidance_scale: float = 7.5,
|
230 |
+
guidance_stop_step: float = 0.5,
|
231 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
232 |
+
num_videos_per_prompt: Optional[int] = 1,
|
233 |
+
eta: float = 0.0,
|
234 |
+
generator: Optional[Union[torch.Generator,
|
235 |
+
List[torch.Generator]]] = None,
|
236 |
+
xT: Optional[torch.FloatTensor] = None,
|
237 |
+
null_embs: Optional[torch.FloatTensor] = None,
|
238 |
+
motion_field_strength: float = 12,
|
239 |
+
output_type: Optional[str] = "tensor",
|
240 |
+
return_dict: bool = True,
|
241 |
+
callback: Optional[Callable[[
|
242 |
+
int, int, torch.FloatTensor], None]] = None,
|
243 |
+
callback_steps: Optional[int] = 1,
|
244 |
+
use_foreground_motion_field: bool = True,
|
245 |
+
use_motion_field: bool = True,
|
246 |
+
smooth_bg: bool = True,
|
247 |
+
smooth_bg_strength: float = 0.4,
|
248 |
+
**kwargs,
|
249 |
+
):
|
250 |
+
|
251 |
+
print(f" Use: Motion field = {use_motion_field}")
|
252 |
+
print(f" Use: Background smoothing = {smooth_bg}")
|
253 |
+
# Default height and width to unet
|
254 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
255 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
256 |
+
|
257 |
+
# Check inputs. Raise error if not correct
|
258 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
259 |
+
|
260 |
+
# Define call parameters
|
261 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
262 |
+
device = self._execution_device
|
263 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
264 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
265 |
+
# corresponds to doing no classifier free guidance.
|
266 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
267 |
+
|
268 |
+
# Encode input prompt
|
269 |
+
text_embeddings = self._encode_prompt(
|
270 |
+
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
|
271 |
+
)
|
272 |
+
|
273 |
+
# Prepare timesteps
|
274 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
275 |
+
timesteps = self.scheduler.timesteps
|
276 |
+
|
277 |
+
# print(f" Latent shape = {latents.shape}")
|
278 |
+
|
279 |
+
# Prepare latent variables
|
280 |
+
num_channels_latents = self.unet.in_channels
|
281 |
+
|
282 |
+
xT = self.prepare_latents(
|
283 |
+
batch_size * num_videos_per_prompt,
|
284 |
+
num_channels_latents,
|
285 |
+
video_length,
|
286 |
+
height,
|
287 |
+
width,
|
288 |
+
text_embeddings.dtype,
|
289 |
+
device,
|
290 |
+
generator,
|
291 |
+
xT,
|
292 |
+
)
|
293 |
+
dtype = xT.dtype
|
294 |
+
|
295 |
+
# when motion field is not used, augment with random latent codes
|
296 |
+
if use_motion_field:
|
297 |
+
xT = xT[:, :, :1]
|
298 |
+
else:
|
299 |
+
if xT.shape[2] < video_length:
|
300 |
+
xT_missing = self.prepare_latents(
|
301 |
+
batch_size * num_videos_per_prompt,
|
302 |
+
num_channels_latents,
|
303 |
+
video_length-xT.shape[2],
|
304 |
+
height,
|
305 |
+
width,
|
306 |
+
text_embeddings.dtype,
|
307 |
+
device,
|
308 |
+
generator,
|
309 |
+
None,
|
310 |
+
)
|
311 |
+
xT = torch.cat([xT, xT_missing], dim=2)
|
312 |
+
|
313 |
+
|
314 |
+
xInit = xT.clone()
|
315 |
+
t0 = kwargs["t0"]
|
316 |
+
t1 = kwargs["t1"]
|
317 |
+
x_t1_1 = None
|
318 |
+
|
319 |
+
|
320 |
+
# Prepare extra step kwargs.
|
321 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
322 |
+
# Denoising loop
|
323 |
+
num_warmup_steps = len(timesteps) - \
|
324 |
+
num_inference_steps * self.scheduler.order
|
325 |
+
|
326 |
+
|
327 |
+
|
328 |
+
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
|
329 |
+
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=xT, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
|
330 |
+
|
331 |
+
x0 = ddim_res["x0"].detach()
|
332 |
+
|
333 |
+
if "x_t0_1" in ddim_res:
|
334 |
+
x_t0_1 = ddim_res["x_t0_1"].detach()
|
335 |
+
if "x_t1_1" in ddim_res:
|
336 |
+
x_t1_1 = ddim_res["x_t1_1"].detach()
|
337 |
+
del ddim_res
|
338 |
+
del xT
|
339 |
+
|
340 |
+
if use_motion_field:
|
341 |
+
del x0
|
342 |
+
shape = (batch_size, num_channels_latents, 1, height //
|
343 |
+
self.vae_scale_factor, width // self.vae_scale_factor)
|
344 |
+
|
345 |
+
|
346 |
+
x_t0_k = x_t0_1[:, :, :1, :, :].repeat(1, 1, video_length-1, 1, 1)
|
347 |
+
|
348 |
+
|
349 |
+
reference_flow = torch.zeros(
|
350 |
+
(video_length-1, 2, 512, 512), device=x_t0_1.device, dtype=x_t0_1.dtype)
|
351 |
+
for fr_idx in range(video_length-1):
|
352 |
+
reference_flow[fr_idx, :, :, :] = motion_field_strength*(fr_idx+1)
|
353 |
+
|
354 |
+
for idx, latent in enumerate(x_t0_k):
|
355 |
+
x_t0_k[idx] = self.warp_latents_independently(
|
356 |
+
latent[None], reference_flow)
|
357 |
+
|
358 |
+
# assuming t0=t1=1000, if t0 = 1000
|
359 |
+
if t1 > t0:
|
360 |
+
x_t1_k = self.DDPM_forward(
|
361 |
+
x0=x_t0_k, t0=t0, tMax=t1, device=device, shape=shape, text_embeddings=text_embeddings, generator=generator)
|
362 |
+
else:
|
363 |
+
x_t1_k = x_t0_k
|
364 |
+
|
365 |
+
if x_t1_1 is None:
|
366 |
+
raise Exception
|
367 |
+
|
368 |
+
x_t1 = torch.cat([x_t1_1, x_t1_k], dim=2).clone().detach()
|
369 |
+
|
370 |
+
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
|
371 |
+
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=x_t1, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
|
372 |
+
|
373 |
+
x0 = ddim_res["x0"].detach()
|
374 |
+
del ddim_res
|
375 |
+
else:
|
376 |
+
x_t1 = x_t1_1.clone()
|
377 |
+
x_t1_1 = x_t1_1[:,:,:1,:,:].clone()
|
378 |
+
x_t1_k = x_t1_1[:,:,1:,:,:].clone()
|
379 |
+
x_t0_k = x_t0_1[:, :, 1:, :, :].clone()
|
380 |
+
x_t0_1 = x_t0_1[:,:,:1,:,:].clone()
|
381 |
+
|
382 |
+
|
383 |
+
move_object = use_foreground_motion_field
|
384 |
+
if move_object:
|
385 |
+
h, w = x0.shape[3], x0.shape[4]
|
386 |
+
# Move object
|
387 |
+
# reference_flow = torch.zeros(
|
388 |
+
# (video_length-1, 2, 512, 512), device=x_t0_1.device, dtype=x_t0_1.dtype)
|
389 |
+
reference_flow_obj = torch.zeros(
|
390 |
+
(batch_size, video_length, 2, 512, 512), device=x_t0_1.device, dtype=x_t0_1.dtype)
|
391 |
+
|
392 |
+
for batch_idx, x0_b in enumerate(x0):
|
393 |
+
tmp = x0_b[None]
|
394 |
+
z0_b = []
|
395 |
+
for fr_split in range(tmp.shape[2]):
|
396 |
+
z0_b.append(self.decode_latents(
|
397 |
+
tmp[:, :, fr_split, None]).detach())
|
398 |
+
z0_b = torch.cat(z0_b, dim=2)
|
399 |
+
z0_b = rearrange(z0_b[0], "c f h w -> f h w c")
|
400 |
+
shift = (-5 - 5) * torch.rand(2,
|
401 |
+
device=x0.device, dtype=x0.dtype) + 5
|
402 |
+
for frame_idx, z0_f in enumerate(z0_b):
|
403 |
+
if frame_idx > 0:
|
404 |
+
|
405 |
+
z0_f = torch.round(
|
406 |
+
z0_f * 255).cpu().numpy().astype(np.uint8)
|
407 |
+
|
408 |
+
# apply SOD detection to obtain mask of foreground object
|
409 |
+
m_f = torch.tensor(self.sod_model.process_data(
|
410 |
+
z0_f), device=x0.device).to(x0.dtype)
|
411 |
+
kernel = torch.ones(
|
412 |
+
5, 5, device=x0.device, dtype=x0.dtype)
|
413 |
+
mask = dilation(
|
414 |
+
m_f[None, None].to(x0.device), kernel)[0]
|
415 |
+
for coord_idx in range(2):
|
416 |
+
reference_flow_obj[batch_idx, frame_idx,
|
417 |
+
coord_idx, :, :] = (1+frame_idx) * shift[coord_idx] * mask
|
418 |
+
|
419 |
+
|
420 |
+
|
421 |
+
for idx, x_t0_k_b in enumerate(x_t0_k):
|
422 |
+
x_t0_k[idx] = self.warp_latents_independently(
|
423 |
+
x_t0_k_b[None], reference_flow_obj[idx, 1:])
|
424 |
+
|
425 |
+
x_t1_k = self.DDPM_forward(
|
426 |
+
x0=x_t0_k, t0=t0, tMax=t1, device=device, shape=shape, text_embeddings=text_embeddings, generator=generator)
|
427 |
+
|
428 |
+
if x_t1_1 is None:
|
429 |
+
raise Exception
|
430 |
+
x_t1 = torch.cat([x_t1_1, x_t1_k], dim=2)
|
431 |
+
|
432 |
+
# del latent
|
433 |
+
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
|
434 |
+
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=x_t1, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
|
435 |
+
x0 = ddim_res["x0"].detach()
|
436 |
+
del ddim_res
|
437 |
+
|
438 |
+
|
439 |
+
# smooth background
|
440 |
+
if smooth_bg:
|
441 |
+
h, w = x0.shape[3], x0.shape[4]
|
442 |
+
M_FG = torch.zeros((batch_size, video_length, h, w),
|
443 |
+
device=x0.device).to(x0.dtype)
|
444 |
+
for batch_idx, x0_b in enumerate(x0):
|
445 |
+
z0_b = self.decode_latents(x0_b[None]).detach()
|
446 |
+
z0_b = rearrange(z0_b[0], "c f h w -> f h w c")
|
447 |
+
for frame_idx, z0_f in enumerate(z0_b):
|
448 |
+
z0_f = torch.round(
|
449 |
+
z0_f * 255).cpu().numpy().astype(np.uint8)
|
450 |
+
# apply SOD detection
|
451 |
+
m_f = torch.tensor(self.sod_model.process_data(
|
452 |
+
z0_f), device=x0.device).to(x0.dtype)
|
453 |
+
mask = T.Resize(
|
454 |
+
size=(h, w), interpolation=T.InterpolationMode.NEAREST)(m_f[None])
|
455 |
+
kernel = torch.ones(5, 5, device=x0.device, dtype=x0.dtype)
|
456 |
+
mask = dilation(mask[None].to(x0.device), kernel)[0]
|
457 |
+
M_FG[batch_idx, frame_idx, :, :] = mask
|
458 |
+
|
459 |
+
|
460 |
+
x_t1_1_fg_masked = x_t1_1 * \
|
461 |
+
(1 - repeat(M_FG[:, 0, :, :],
|
462 |
+
"b w h -> b c 1 w h", c=x_t1_1.shape[1]))
|
463 |
+
|
464 |
+
|
465 |
+
x_t1_1_fg_masked_moved = []
|
466 |
+
for batch_idx, x_t1_1_fg_masked_b in enumerate(x_t1_1_fg_masked):
|
467 |
+
x_t1_fg_masked_b = x_t1_1_fg_masked_b.clone()
|
468 |
+
|
469 |
+
x_t1_fg_masked_b = x_t1_fg_masked_b.repeat(
|
470 |
+
1, video_length-1, 1, 1)
|
471 |
+
if use_motion_field:
|
472 |
+
x_t1_fg_masked_b = x_t1_fg_masked_b[None]
|
473 |
+
x_t1_fg_masked_b = self.warp_latents_independently(
|
474 |
+
x_t1_fg_masked_b, reference_flow)
|
475 |
+
else:
|
476 |
+
x_t1_fg_masked_b = x_t1_fg_masked_b[None]
|
477 |
+
if move_object:
|
478 |
+
x_t1_fg_masked_b = self.warp_latents_independently(
|
479 |
+
x_t1_fg_masked_b, reference_flow_obj[batch_idx, 1:])
|
480 |
+
|
481 |
+
x_t1_fg_masked_b = torch.cat(
|
482 |
+
[x_t1_1_fg_masked_b[None], x_t1_fg_masked_b], dim=2)
|
483 |
+
x_t1_1_fg_masked_moved.append(x_t1_fg_masked_b)
|
484 |
+
|
485 |
+
x_t1_1_fg_masked_moved = torch.cat(x_t1_1_fg_masked_moved, dim=0)
|
486 |
+
|
487 |
+
M_FG_1 = M_FG[:, :1, :, :]
|
488 |
+
|
489 |
+
M_FG_warped = []
|
490 |
+
for batch_idx, m_fg_1_b in enumerate(M_FG_1):
|
491 |
+
m_fg_1_b = m_fg_1_b[None, None]
|
492 |
+
m_fg_b = m_fg_1_b.repeat(1, 1, video_length-1, 1, 1)
|
493 |
+
if use_motion_field:
|
494 |
+
m_fg_b = self.warp_latents_independently(
|
495 |
+
m_fg_b.clone(), reference_flow)
|
496 |
+
if move_object:
|
497 |
+
m_fg_b = self.warp_latents_independently(
|
498 |
+
m_fg_b, reference_flow_obj[batch_idx, 1:])
|
499 |
+
M_FG_warped.append(
|
500 |
+
torch.cat([m_fg_1_b[:1, 0], m_fg_b[:1, 0]], dim=1))
|
501 |
+
|
502 |
+
M_FG_warped = torch.cat(M_FG_warped, dim=0)
|
503 |
+
|
504 |
+
channels = x0.shape[1]
|
505 |
+
|
506 |
+
M_BG = (1-M_FG) * (1 - M_FG_warped)
|
507 |
+
M_BG = repeat(M_BG, "b f h w -> b c f h w", c=channels)
|
508 |
+
a_convex = smooth_bg_strength
|
509 |
+
|
510 |
+
x_t1_blending = (1-M_BG) * x_t1 + M_BG * (a_convex *
|
511 |
+
x_t1 + (1-a_convex) * x_t1_1_fg_masked_moved)
|
512 |
+
|
513 |
+
'''
|
514 |
+
x_t1_blending = self.DDPM_forward(
|
515 |
+
x0=x_t1_blending, t0=t1, tMax=961, device=device, shape=shape, text_embeddings=text_embeddings, generator=generator)
|
516 |
+
t1 = 961
|
517 |
+
'''
|
518 |
+
latents = x_t1_blending
|
519 |
+
|
520 |
+
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
|
521 |
+
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=latents, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
|
522 |
+
x0 = ddim_res["x0"].detach()
|
523 |
+
del ddim_res
|
524 |
+
|
525 |
+
|
526 |
+
# Post-processing
|
527 |
+
video_list = []
|
528 |
+
for latent in x0:
|
529 |
+
tmp = latent[None]
|
530 |
+
print("Frame spit shape", tmp.shape)
|
531 |
+
frames = []
|
532 |
+
for fr_split in range(tmp.shape[2]):
|
533 |
+
print("frame decoding")
|
534 |
+
frames.append(self.decode_latents(
|
535 |
+
tmp[:, :, fr_split, None]).detach())
|
536 |
+
|
537 |
+
video_list.append(torch.cat(frames, dim=2).cpu().float().numpy())
|
538 |
+
|
539 |
+
# Convert to tensor
|
540 |
+
videos = []
|
541 |
+
if output_type == "tensor":
|
542 |
+
for video in video_list:
|
543 |
+
videos.append(torch.from_numpy(video))
|
544 |
+
if output_type == 'numpy':
|
545 |
+
for video in video_list:
|
546 |
+
videos.append(rearrange(video, 'b c f h w -> (b f) h w c'))
|
547 |
+
if not return_dict:
|
548 |
+
return video
|
549 |
+
|
550 |
+
return TextToVideoPipelineOutput(videos=videos, code=torch.split(xInit.detach().cpu(), 1, dim=0))
|