from enum import Enum import gc import numpy as np import tomesd import torch from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel from diffusers.schedulers import EulerAncestralDiscreteScheduler, DDIMScheduler from text_to_video_pipeline import TextToVideoPipeline import utils import gradio_utils import os on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR" from einops import rearrange class ModelType(Enum): Pix2Pix_Video = 1, Text2Video = 2, ControlNetCanny = 3, ControlNetCannyDB = 4, ControlNetPose = 5, ControlNetDepth = 6, class Model: def __init__(self, device, dtype, **kwargs): self.device = device self.dtype = dtype self.generator = torch.Generator(device=device) self.pipe_dict = { ModelType.Pix2Pix_Video: StableDiffusionInstructPix2PixPipeline, ModelType.Text2Video: TextToVideoPipeline, ModelType.ControlNetCanny: StableDiffusionControlNetPipeline, ModelType.ControlNetCannyDB: StableDiffusionControlNetPipeline, ModelType.ControlNetPose: StableDiffusionControlNetPipeline, ModelType.ControlNetDepth: StableDiffusionControlNetPipeline, } self.controlnet_attn_proc = utils.CrossFrameAttnProcessor( unet_chunk_size=2) self.pix2pix_attn_proc = utils.CrossFrameAttnProcessor( unet_chunk_size=3) self.text2video_attn_proc = utils.CrossFrameAttnProcessor( unet_chunk_size=2) self.pipe = None self.model_type = None self.states = {} self.model_name = "" def set_model(self, model_type: ModelType, model_id: str, **kwargs): if hasattr(self, "pipe") and self.pipe is not None: del self.pipe torch.cuda.empty_cache() gc.collect() safety_checker = kwargs.pop('safety_checker', None) self.pipe = self.pipe_dict[model_type].from_pretrained( model_id, safety_checker=safety_checker, **kwargs).to(self.device).to(self.dtype) self.model_type = model_type self.model_name = model_id def inference_chunk(self, frame_ids, **kwargs): if not hasattr(self, "pipe") or self.pipe is None: return prompt = np.array(kwargs.pop('prompt')) negative_prompt = np.array(kwargs.pop('negative_prompt', '')) latents = None if 'latents' in kwargs: latents = kwargs.pop('latents')[frame_ids] if 'image' in kwargs: kwargs['image'] = kwargs['image'][frame_ids] if 'video_length' in kwargs: kwargs['video_length'] = len(frame_ids) if self.model_type == ModelType.Text2Video: kwargs["frame_ids"] = frame_ids return self.pipe(prompt=prompt[frame_ids].tolist(), negative_prompt=negative_prompt[frame_ids].tolist(), latents=latents, generator=self.generator, **kwargs) def inference(self, split_to_chunks=False, chunk_size=8, **kwargs): if not hasattr(self, "pipe") or self.pipe is None: return if "merging_ratio" in kwargs: merging_ratio = kwargs.pop("merging_ratio") # if merging_ratio > 0: tomesd.apply_patch(self.pipe, ratio=merging_ratio) seed = kwargs.pop('seed', 0) if seed < 0: seed = self.generator.seed() kwargs.pop('generator', '') if 'image' in kwargs: f = kwargs['image'].shape[0] else: f = kwargs['video_length'] assert 'prompt' in kwargs prompt = [kwargs.pop('prompt')] * f negative_prompt = [kwargs.pop('negative_prompt', '')] * f frames_counter = 0 # Processing chunk-by-chunk if split_to_chunks: chunk_ids = np.arange(0, f, chunk_size - 1) result = [] for i in range(len(chunk_ids)): ch_start = chunk_ids[i] ch_end = f if i == len(chunk_ids) - 1 else chunk_ids[i + 1] frame_ids = [0] + list(range(ch_start, ch_end)) self.generator.manual_seed(seed) print(f'Processing chunk {i + 1} / {len(chunk_ids)}') result.append(self.inference_chunk(frame_ids=frame_ids, prompt=prompt, negative_prompt=negative_prompt, **kwargs).images[1:]) frames_counter += len(chunk_ids)-1 if on_huggingspace and frames_counter >= 80: break result = np.concatenate(result) return result else: self.generator.manual_seed(seed) return self.pipe(prompt=prompt, negative_prompt=negative_prompt, generator=self.generator, **kwargs).images def process_controlnet_canny(self, video_path, prompt, chunk_size=8, watermark='Picsart AI Research', merging_ratio=0.0, num_inference_steps=20, controlnet_conditioning_scale=1.0, guidance_scale=9.0, seed=42, eta=0.0, low_threshold=100, high_threshold=200, resolution=512, use_cf_attn=True, save_path=None): print("Module Canny") video_path = gradio_utils.edge_path_to_video_path(video_path) if self.model_type != ModelType.ControlNetCanny: controlnet = ControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny") self.set_model(ModelType.ControlNetCanny, model_id="runwayml/stable-diffusion-v1-5", controlnet=controlnet) self.pipe.scheduler = DDIMScheduler.from_config( self.pipe.scheduler.config) if use_cf_attn: self.pipe.unet.set_attn_processor( processor=self.controlnet_attn_proc) self.pipe.controlnet.set_attn_processor( processor=self.controlnet_attn_proc) added_prompt = 'best quality, extremely detailed' negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' video, fps = utils.prepare_video( video_path, resolution, self.device, self.dtype, False) control = utils.pre_process_canny( video, low_threshold, high_threshold).to(self.device).to(self.dtype) # canny_to_save = list(rearrange(control, 'f c w h -> f w h c').cpu().detach().numpy()) # _ = utils.create_video(canny_to_save, 4, path="ddxk.mp4", watermark=None) f, _, h, w = video.shape self.generator.manual_seed(seed) latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype, device=self.device, generator=self.generator) latents = latents.repeat(f, 1, 1, 1) result = self.inference(image=control, prompt=prompt + ', ' + added_prompt, height=h, width=w, negative_prompt=negative_prompts, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, controlnet_conditioning_scale=controlnet_conditioning_scale, eta=eta, latents=latents, seed=seed, output_type='numpy', split_to_chunks=True, chunk_size=chunk_size, merging_ratio=merging_ratio, ) return utils.create_video(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark)) def process_controlnet_depth(self, video_path, prompt, chunk_size=8, watermark='Picsart AI Research', merging_ratio=0.0, num_inference_steps=20, controlnet_conditioning_scale=1.0, guidance_scale=9.0, seed=42, eta=0.0, resolution=512, use_cf_attn=True, save_path=None): print("Module Depth") video_path = gradio_utils.edge_path_to_video_path(video_path) if self.model_type != ModelType.ControlNetDepth: controlnet = ControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-depth") self.set_model(ModelType.ControlNetDepth, model_id="runwayml/stable-diffusion-v1-5", controlnet=controlnet) self.pipe.scheduler = DDIMScheduler.from_config( self.pipe.scheduler.config) if use_cf_attn: self.pipe.unet.set_attn_processor( processor=self.controlnet_attn_proc) self.pipe.controlnet.set_attn_processor( processor=self.controlnet_attn_proc) added_prompt = 'best quality, extremely detailed' negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' video, fps = utils.prepare_video( video_path, resolution, self.device, self.dtype, False) control = utils.pre_process_depth( video).to(self.device).to(self.dtype) # depth_map_to_save = list(rearrange(control, 'f c w h -> f w h c').cpu().detach().numpy()) # _ = utils.create_video(depth_map_to_save, 4, path="ddxk.mp4", watermark=None) f, _, h, w = video.shape self.generator.manual_seed(seed) latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype, device=self.device, generator=self.generator) latents = latents.repeat(f, 1, 1, 1) result = self.inference(image=control, prompt=prompt + ', ' + added_prompt, height=h, width=w, negative_prompt=negative_prompts, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, controlnet_conditioning_scale=controlnet_conditioning_scale, eta=eta, latents=latents, seed=seed, output_type='numpy', split_to_chunks=True, chunk_size=chunk_size, merging_ratio=merging_ratio, ) return utils.create_video(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark)) def process_controlnet_pose(self, video_path, prompt, chunk_size=8, watermark='Picsart AI Research', merging_ratio=0.0, num_inference_steps=20, controlnet_conditioning_scale=1.0, guidance_scale=9.0, seed=42, eta=0.0, resolution=512, use_cf_attn=True, save_path=None): print("Module Pose") video_path = gradio_utils.motion_to_video_path(video_path) if self.model_type != ModelType.ControlNetPose: controlnet = ControlNetModel.from_pretrained( "fusing/stable-diffusion-v1-5-controlnet-openpose") self.set_model(ModelType.ControlNetPose, model_id="runwayml/stable-diffusion-v1-5", controlnet=controlnet) self.pipe.scheduler = DDIMScheduler.from_config( self.pipe.scheduler.config) if use_cf_attn: self.pipe.unet.set_attn_processor( processor=self.controlnet_attn_proc) self.pipe.controlnet.set_attn_processor( processor=self.controlnet_attn_proc) video_path = gradio_utils.motion_to_video_path( video_path) if 'Motion' in video_path else video_path added_prompt = 'best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth' negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic' video, fps = utils.prepare_video( video_path, resolution, self.device, self.dtype, False, output_fps=4) control = utils.pre_process_pose( video, apply_pose_detect=False).to(self.device).to(self.dtype) f, _, h, w = video.shape self.generator.manual_seed(seed) latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype, device=self.device, generator=self.generator) latents = latents.repeat(f, 1, 1, 1) result = self.inference(image=control, prompt=prompt + ', ' + added_prompt, height=h, width=w, negative_prompt=negative_prompts, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, controlnet_conditioning_scale=controlnet_conditioning_scale, eta=eta, latents=latents, seed=seed, output_type='numpy', split_to_chunks=True, chunk_size=chunk_size, merging_ratio=merging_ratio, ) return utils.create_gif(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark)) def process_controlnet_canny_db(self, db_path, video_path, prompt, chunk_size=8, watermark='Picsart AI Research', merging_ratio=0.0, num_inference_steps=20, controlnet_conditioning_scale=1.0, guidance_scale=9.0, seed=42, eta=0.0, low_threshold=100, high_threshold=200, resolution=512, use_cf_attn=True, save_path=None): print("Module Canny_DB") db_path = gradio_utils.get_model_from_db_selection(db_path) video_path = gradio_utils.get_video_from_canny_selection(video_path) # Load db and controlnet weights if 'db_path' not in self.states or db_path != self.states['db_path']: controlnet = ControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny") self.set_model(ModelType.ControlNetCannyDB, model_id=db_path, controlnet=controlnet) self.pipe.scheduler = DDIMScheduler.from_config( self.pipe.scheduler.config) self.states['db_path'] = db_path if use_cf_attn: self.pipe.unet.set_attn_processor( processor=self.controlnet_attn_proc) self.pipe.controlnet.set_attn_processor( processor=self.controlnet_attn_proc) added_prompt = 'best quality, extremely detailed' negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' video, fps = utils.prepare_video( video_path, resolution, self.device, self.dtype, False) control = utils.pre_process_canny( video, low_threshold, high_threshold).to(self.device).to(self.dtype) f, _, h, w = video.shape self.generator.manual_seed(seed) latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype, device=self.device, generator=self.generator) latents = latents.repeat(f, 1, 1, 1) result = self.inference(image=control, prompt=prompt + ', ' + added_prompt, height=h, width=w, negative_prompt=negative_prompts, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, controlnet_conditioning_scale=controlnet_conditioning_scale, eta=eta, latents=latents, seed=seed, output_type='numpy', split_to_chunks=True, chunk_size=chunk_size, merging_ratio=merging_ratio, ) return utils.create_gif(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark)) def process_pix2pix(self, video, prompt, resolution=512, seed=0, image_guidance_scale=1.0, start_t=0, end_t=-1, out_fps=-1, chunk_size=8, watermark='Picsart AI Research', merging_ratio=0.0, use_cf_attn=True, save_path=None,): print("Module Pix2Pix") if self.model_type != ModelType.Pix2Pix_Video: self.set_model(ModelType.Pix2Pix_Video, model_id="timbrooks/instruct-pix2pix") self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config( self.pipe.scheduler.config) if use_cf_attn: self.pipe.unet.set_attn_processor( processor=self.pix2pix_attn_proc) video, fps = utils.prepare_video( video, resolution, self.device, self.dtype, True, start_t, end_t, out_fps) self.generator.manual_seed(seed) result = self.inference(image=video, prompt=prompt, seed=seed, output_type='numpy', num_inference_steps=50, image_guidance_scale=image_guidance_scale, split_to_chunks=True, chunk_size=chunk_size, merging_ratio=merging_ratio ) return utils.create_video(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark)) def process_text2video(self, prompt, model_name="dreamlike-art/dreamlike-photoreal-2.0", motion_field_strength_x=12, motion_field_strength_y=12, t0=44, t1=47, n_prompt="", chunk_size=8, video_length=8, watermark='Picsart AI Research', merging_ratio=0.0, seed=0, resolution=512, fps=2, use_cf_attn=True, use_motion_field=True, smooth_bg=False, smooth_bg_strength=0.4, path=None): print("Module Text2Video") if self.model_type != ModelType.Text2Video or model_name != self.model_name: print("Model update") unet = UNet2DConditionModel.from_pretrained( model_name, subfolder="unet") self.set_model(ModelType.Text2Video, model_id=model_name, unet=unet) self.pipe.scheduler = DDIMScheduler.from_config( self.pipe.scheduler.config) if use_cf_attn: self.pipe.unet.set_attn_processor( processor=self.text2video_attn_proc) self.generator.manual_seed(seed) added_prompt = "high quality, HD, 8K, trending on artstation, high focus, dramatic lighting" negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic' prompt = prompt.rstrip() if len(prompt) > 0 and (prompt[-1] == "," or prompt[-1] == "."): prompt = prompt.rstrip()[:-1] prompt = prompt.rstrip() prompt = prompt + ", "+added_prompt if len(n_prompt) > 0: negative_prompt = n_prompt else: negative_prompt = None result = self.inference(prompt=prompt, video_length=video_length, height=resolution, width=resolution, num_inference_steps=50, guidance_scale=7.5, guidance_stop_step=1.0, t0=t0, t1=t1, motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, use_motion_field=use_motion_field, smooth_bg=smooth_bg, smooth_bg_strength=smooth_bg_strength, seed=seed, output_type='numpy', negative_prompt=negative_prompt, merging_ratio=merging_ratio, split_to_chunks=True, chunk_size=chunk_size, ) return utils.create_video(result, fps, path=path, watermark=gradio_utils.logo_name_to_path(watermark))