Spaces:
Runtime error
Runtime error
File size: 15,082 Bytes
75681b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import math
from typing import Optional, Tuple
from transformers import AdamW, get_linear_schedule_with_warmup, AutoConfig
from transformers import BertForPreTraining, BertModel, RobertaModel, AlbertModel, AlbertForMaskedLM, RobertaForMaskedLM
import torch
import torch.nn as nn
import pytorch_lightning as pl
from sklearn.metrics import f1_score
from dataclasses import dataclass
class BERTAlignModel(pl.LightningModule):
def __init__(self, model='bert-base-uncased', using_pretrained=True, *args, **kwargs) -> None:
super().__init__()
# Already defined in lightning: self.device
self.save_hyperparameters()
self.model = model
if 'muppet' in model:
assert using_pretrained == True, "Only support pretrained muppet!"
self.base_model = RobertaModel.from_pretrained(model)
self.mlm_head = RobertaForMaskedLM(AutoConfig.from_pretrained(model)).lm_head
elif 'roberta' in model:
if using_pretrained:
self.base_model = RobertaModel.from_pretrained(model)
self.mlm_head = RobertaForMaskedLM.from_pretrained(model).lm_head
else:
self.base_model = RobertaModel(AutoConfig.from_pretrained(model))
self.mlm_head = RobertaForMaskedLM(AutoConfig.from_pretrained(model)).lm_head
elif 'albert' in model:
if using_pretrained:
self.base_model = AlbertModel.from_pretrained(model)
self.mlm_head = AlbertForMaskedLM.from_pretrained(model).predictions
else:
self.base_model = AlbertModel(AutoConfig.from_pretrained(model))
self.mlm_head = AlbertForMaskedLM(AutoConfig.from_pretrained(model)).predictions
elif 'bert' in model:
if using_pretrained:
self.base_model = BertModel.from_pretrained(model)
self.mlm_head = BertForPreTraining.from_pretrained(model).cls.predictions
else:
self.base_model = BertModel(AutoConfig.from_pretrained(model))
self.mlm_head = BertForPreTraining(AutoConfig.from_pretrained(model)).cls.predictions
elif 'electra' in model:
self.generator = BertModel(AutoConfig.from_pretrained('prajjwal1/bert-small'))
self.generator_mlm = BertForPreTraining(AutoConfig.from_pretrained('prajjwal1/bert-small')).cls.predictions
self.base_model = BertModel(AutoConfig.from_pretrained('bert-base-uncased'))
self.discriminator_predictor = ElectraDiscriminatorPredictions(self.base_model.config)
self.bin_layer = nn.Linear(self.base_model.config.hidden_size, 2)
self.tri_layer = nn.Linear(self.base_model.config.hidden_size, 3)
self.reg_layer = nn.Linear(self.base_model.config.hidden_size, 1)
self.dropout = nn.Dropout(p=0.1)
self.need_mlm = True
self.is_finetune = False
self.mlm_loss_factor = 0.5
self.softmax = nn.Softmax(dim=-1)
def forward(self, batch):
if 'electra' in self.model:
return self.electra_forward(batch)
base_model_output = self.base_model(
input_ids = batch['input_ids'],
attention_mask = batch['attention_mask'],
token_type_ids = batch['token_type_ids'] if 'token_type_ids' in batch.keys() else None
)
prediction_scores = self.mlm_head(base_model_output.last_hidden_state) ## sequence_output for mlm
seq_relationship_score = self.bin_layer(self.dropout(base_model_output.pooler_output)) ## pooled output for classification
tri_label_score = self.tri_layer(self.dropout(base_model_output.pooler_output))
reg_label_score = self.reg_layer(base_model_output.pooler_output)
total_loss = None
if 'mlm_label' in batch.keys(): ### 'mlm_label' and 'align_label' when training
ce_loss_fct = nn.CrossEntropyLoss(reduction='sum')
masked_lm_loss = ce_loss_fct(prediction_scores.view(-1, self.base_model.config.vocab_size), batch['mlm_label'].view(-1)) #/ self.con vocabulary
next_sentence_loss = ce_loss_fct(seq_relationship_score.view(-1, 2), batch['align_label'].view(-1)) / math.log(2)
tri_label_loss = ce_loss_fct(tri_label_score.view(-1, 3), batch['tri_label'].view(-1)) / math.log(3)
reg_label_loss = self.mse_loss(reg_label_score.view(-1), batch['reg_label'].view(-1), reduction='sum')
masked_lm_loss_num = torch.sum(batch['mlm_label'].view(-1) != -100)
next_sentence_loss_num = torch.sum(batch['align_label'].view(-1) != -100)
tri_label_loss_num = torch.sum(batch['tri_label'].view(-1) != -100)
reg_label_loss_num = torch.sum(batch['reg_label'].view(-1) != -100.0)
return ModelOutput(
loss=total_loss,
all_loss=[masked_lm_loss, next_sentence_loss, tri_label_loss, reg_label_loss] if 'mlm_label' in batch.keys() else None,
loss_nums=[masked_lm_loss_num, next_sentence_loss_num, tri_label_loss_num, reg_label_loss_num] if 'mlm_label' in batch.keys() else None,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
tri_label_logits=tri_label_score,
reg_label_logits=reg_label_score,
hidden_states=base_model_output.hidden_states,
attentions=base_model_output.attentions
)
def electra_forward(self, batch):
if 'mlm_label' in batch.keys():
ce_loss_fct = nn.CrossEntropyLoss()
generator_output = self.generator_mlm(self.generator(
input_ids = batch['input_ids'],
attention_mask = batch['attention_mask'],
token_type_ids = batch['token_type_ids'] if 'token_type_ids' in batch.keys() else None
).last_hidden_state)
masked_lm_loss = ce_loss_fct(generator_output.view(-1, self.generator.config.vocab_size), batch['mlm_label'].view(-1))
hallucinated_tokens = batch['input_ids'].clone()
hallucinated_tokens[batch['mlm_label']!=-100] = torch.argmax(generator_output, dim=-1)[batch['mlm_label']!=-100]
replaced_token_label = (batch['input_ids'] == hallucinated_tokens).long()#.type(torch.LongTensor) #[batch['mlm_label'] == -100] = -100
replaced_token_label[batch['mlm_label']!=-100] = (batch['mlm_label'] == hallucinated_tokens)[batch['mlm_label']!=-100].long()
replaced_token_label[batch['input_ids'] == 0] = -100 ### ignore paddings
base_model_output = self.base_model(
input_ids = hallucinated_tokens if 'mlm_label' in batch.keys() else batch['input_ids'],
attention_mask = batch['attention_mask'],
token_type_ids = batch['token_type_ids'] if 'token_type_ids' in batch.keys() else None
)
hallu_detect_score = self.discriminator_predictor(base_model_output.last_hidden_state)
seq_relationship_score = self.bin_layer(self.dropout(base_model_output.pooler_output)) ## pooled output for classification
tri_label_score = self.tri_layer(self.dropout(base_model_output.pooler_output))
reg_label_score = self.reg_layer(base_model_output.pooler_output)
total_loss = None
if 'mlm_label' in batch.keys(): ### 'mlm_label' and 'align_label' when training
total_loss = []
ce_loss_fct = nn.CrossEntropyLoss()
hallu_detect_loss = ce_loss_fct(hallu_detect_score.view(-1,2),replaced_token_label.view(-1))
next_sentence_loss = ce_loss_fct(seq_relationship_score.view(-1, 2), batch['align_label'].view(-1))
tri_label_loss = ce_loss_fct(tri_label_score.view(-1, 3), batch['tri_label'].view(-1))
reg_label_loss = self.mse_loss(reg_label_score.view(-1), batch['reg_label'].view(-1))
total_loss.append(10.0 * hallu_detect_loss if not torch.isnan(hallu_detect_loss).item() else 0.)
total_loss.append(0.2 * masked_lm_loss if (not torch.isnan(masked_lm_loss).item() and self.need_mlm) else 0.)
total_loss.append(next_sentence_loss if not torch.isnan(next_sentence_loss).item() else 0.)
total_loss.append(tri_label_loss if not torch.isnan(tri_label_loss).item() else 0.)
total_loss.append(reg_label_loss if not torch.isnan(reg_label_loss).item() else 0.)
total_loss = sum(total_loss)
return ModelOutput(
loss=total_loss,
all_loss=[masked_lm_loss, next_sentence_loss, tri_label_loss, reg_label_loss, hallu_detect_loss] if 'mlm_label' in batch.keys() else None,
prediction_logits=hallu_detect_score,
seq_relationship_logits=seq_relationship_score,
tri_label_logits=tri_label_score,
reg_label_logits=reg_label_score,
hidden_states=base_model_output.hidden_states,
attentions=base_model_output.attentions
)
def training_step(self, train_batch, batch_idx):
output = self(train_batch)
return {'losses': output.all_loss, 'loss_nums': output.loss_nums}
def training_step_end(self, step_output):
losses = step_output['losses']
loss_nums = step_output['loss_nums']
assert len(loss_nums) == len(losses), 'loss_num should be the same length as losses'
loss_mlm_num = torch.sum(loss_nums[0])
loss_bin_num = torch.sum(loss_nums[1])
loss_tri_num = torch.sum(loss_nums[2])
loss_reg_num = torch.sum(loss_nums[3])
loss_mlm = torch.sum(losses[0]) / loss_mlm_num if loss_mlm_num > 0 else 0.
loss_bin = torch.sum(losses[1]) / loss_bin_num if loss_bin_num > 0 else 0.
loss_tri = torch.sum(losses[2]) / loss_tri_num if loss_tri_num > 0 else 0.
loss_reg = torch.sum(losses[3]) / loss_reg_num if loss_reg_num > 0 else 0.
total_loss = self.mlm_loss_factor * loss_mlm + loss_bin + loss_tri + loss_reg
self.log('train_loss', total_loss)# , sync_dist=True
self.log('mlm_loss', loss_mlm)
self.log('bin_label_loss', loss_bin)
self.log('tri_label_loss', loss_tri)
self.log('reg_label_loss', loss_reg)
return total_loss
def validation_step(self, val_batch, batch_idx):
if not self.is_finetune:
with torch.no_grad():
output = self(val_batch)
return {'losses': output.all_loss, 'loss_nums': output.loss_nums}
with torch.no_grad():
output = self(val_batch)['seq_relationship_logits']
output = self.softmax(output)[:, 1].tolist()
pred = [int(align_prob>0.5) for align_prob in output]
labels = val_batch['align_label'].tolist()
return {"pred": pred, 'labels': labels}#, "preds":preds, "labels":x['labels']}
def validation_step_end(self, step_output):
losses = step_output['losses']
loss_nums = step_output['loss_nums']
assert len(loss_nums) == len(losses), 'loss_num should be the same length as losses'
loss_mlm_num = torch.sum(loss_nums[0])
loss_bin_num = torch.sum(loss_nums[1])
loss_tri_num = torch.sum(loss_nums[2])
loss_reg_num = torch.sum(loss_nums[3])
loss_mlm = torch.sum(losses[0]) / loss_mlm_num if loss_mlm_num > 0 else 0.
loss_bin = torch.sum(losses[1]) / loss_bin_num if loss_bin_num > 0 else 0.
loss_tri = torch.sum(losses[2]) / loss_tri_num if loss_tri_num > 0 else 0.
loss_reg = torch.sum(losses[3]) / loss_reg_num if loss_reg_num > 0 else 0.
total_loss = self.mlm_loss_factor * loss_mlm + loss_bin + loss_tri + loss_reg
self.log('train_loss', total_loss)# , sync_dist=True
self.log('mlm_loss', loss_mlm)
self.log('bin_label_loss', loss_bin)
self.log('tri_label_loss', loss_tri)
self.log('reg_label_loss', loss_reg)
return total_loss
def validation_epoch_end(self, outputs):
if not self.is_finetune:
total_loss = torch.stack(outputs).mean()
self.log("val_loss", total_loss, prog_bar=True, sync_dist=True)
else:
all_predictions = []
all_labels = []
for each_output in outputs:
all_predictions.extend(each_output['pred'])
all_labels.extend(each_output['labels'])
self.log("f1", f1_score(all_labels, all_predictions), prog_bar=True, sync_dist=True)
def configure_optimizers(self):
"""Prepare optimizer and schedule (linear warmup and decay)"""
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.hparams.weight_decay,
},
{
"params": [p for n, p in self.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=int(self.hparams.warmup_steps_portion * self.trainer.estimated_stepping_batches),
num_training_steps=self.trainer.estimated_stepping_batches,
)
scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return [optimizer], [scheduler]
def mse_loss(self, input, target, ignored_index=-100.0, reduction='mean'):
mask = (target == ignored_index)
out = (input[~mask]-target[~mask])**2
if reduction == "mean":
return out.mean()
elif reduction == "sum":
return out.sum()
class ElectraDiscriminatorPredictions(nn.Module):
"""Prediction module for the discriminator, made up of two dense layers."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dense_prediction = nn.Linear(config.hidden_size, 2)
self.config = config
self.gelu = nn.GELU()
def forward(self, discriminator_hidden_states):
hidden_states = self.dense(discriminator_hidden_states)
hidden_states = self.gelu(hidden_states)
logits = self.dense_prediction(hidden_states).squeeze(-1)
return logits
@dataclass
class ModelOutput():
loss: Optional[torch.FloatTensor] = None
all_loss: Optional[list] = None
loss_nums: Optional[list] = None
prediction_logits: torch.FloatTensor = None
seq_relationship_logits: torch.FloatTensor = None
tri_label_logits: torch.FloatTensor = None
reg_label_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None |