Spaces:
Runtime error
Runtime error
import os | |
import requests | |
import tempfile | |
import shutil | |
import torch | |
from pytorch_lightning import LightningModule | |
from safetensors.torch import save_file | |
from torch import nn | |
import gradio as gr | |
from modelalign import BERTAlignModel | |
# =========================== | |
# Utility Functions | |
# =========================== | |
def download_checkpoint(url: str, dest_path: str): | |
""" | |
Downloads the checkpoint from the specified URL to the destination path. | |
""" | |
try: | |
with requests.get(url, stream=True) as response: | |
response.raise_for_status() | |
with open(dest_path, 'wb') as f: | |
shutil.copyfileobj(response.raw, f) | |
return True, "Checkpoint downloaded successfully." | |
except Exception as e: | |
return False, f"Failed to download checkpoint: {str(e)}" | |
def initialize_model(model_name: str, device: str = 'cpu'): | |
""" | |
Initializes the BERTAlignModel based on the provided model name. | |
""" | |
try: | |
model = BERTAlignModel(base_model_name=model_name) | |
model.to(device) | |
model.eval() # Set to evaluation mode | |
return True, model | |
except Exception as e: | |
return False, f"Failed to initialize model: {str(e)}" | |
def load_checkpoint(model: LightningModule, checkpoint_path: str, device: str = 'cpu'): | |
""" | |
Loads the checkpoint into the model. | |
""" | |
try: | |
# Load the checkpoint; adjust map_location based on device | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
# Assuming the checkpoint has a 'state_dict' key | |
if 'state_dict' in checkpoint: | |
model.load_state_dict(checkpoint['state_dict'], strict=False) | |
else: | |
model.load_state_dict(checkpoint, strict=False) | |
return True, "Checkpoint loaded successfully." | |
except Exception as e: | |
return False, f"Failed to load checkpoint: {str(e)}" | |
def convert_to_safetensors(model: LightningModule, save_path: str): | |
""" | |
Converts the model's state_dict to the safetensors format. | |
""" | |
try: | |
state_dict = model.state_dict() | |
save_file(state_dict, save_path) | |
return True, "Model converted to SafeTensors successfully." | |
except Exception as e: | |
return False, f"Failed to convert to SafeTensors: {str(e)}" | |
# =========================== | |
# Gradio Interface Function | |
# =========================== | |
def convert_checkpoint_to_safetensors(checkpoint_url: str, model_name: str): | |
""" | |
Orchestrates the download, loading, conversion, and preparation for download. | |
Returns the safetensors file or an error message. | |
""" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
checkpoint_path = os.path.join(tmpdir, "model.ckpt") | |
safetensors_path = os.path.join(tmpdir, "model.safetensors") | |
# Step 1: Download the checkpoint | |
success, message = download_checkpoint(checkpoint_url, checkpoint_path) | |
if not success: | |
return None, message | |
# Step 2: Initialize the model | |
success, model_or_msg = initialize_model(model_name) | |
if not success: | |
return None, model_or_msg | |
model = model_or_msg | |
# Step 3: Load the checkpoint | |
success, message = load_checkpoint(model, checkpoint_path) | |
if not success: | |
return None, message | |
# Step 4: Convert to SafeTensors | |
success, message = convert_to_safetensors(model, safetensors_path) | |
if not success: | |
return None, message | |
# Step 5: Read the safetensors file for download | |
try: | |
return safetensors_path, "Conversion successful! Download your SafeTensors file below." | |
except Exception as e: | |
return None, f"Failed to prepare download: {str(e)}" | |
# =========================== | |
# Gradio Interface Setup | |
# =========================== | |
title = "Checkpoint to SafeTensors Converter" | |
description = """ | |
Convert your PyTorch Lightning .ckpt checkpoints to the secure safetensors format. | |
**Inputs**: | |
- **Checkpoint URL**: Direct link to the .ckpt file. | |
- **Model Name**: Name of the base model (e.g., roberta-base, bert-base-uncased). | |
**Output**: | |
- Downloadable safetensors file. | |
""" | |
iface = gr.Interface( | |
fn=convert_checkpoint_to_safetensors, | |
inputs=[ | |
gr.Textbox( | |
lines=2, | |
placeholder="Enter the checkpoint URL here...", | |
label="Checkpoint URL" | |
), | |
gr.Textbox( | |
lines=1, | |
placeholder="e.g., roberta-base", | |
label="Model Name" | |
) | |
], | |
outputs=[ | |
gr.File(label="Download SafeTensors File"), | |
gr.Textbox(label="Status") | |
], | |
title=title, | |
description=description, | |
allow_flagging="never" | |
) | |
# =========================== | |
# Launch the Interface | |
# =========================== | |
if __name__ == "__main__": | |
iface.launch() | |