Spaces:
Running
Running
Upload 7 files
Browse files- multitask_prompt_tuning.ipynb +408 -0
- peft_ia3_seq2seq.ipynb +2711 -0
- peft_lora_seq2seq.ipynb +486 -0
- peft_lora_seq2seq_accelerate_big_model_inference.ipynb +253 -0
- peft_prefix_tuning_seq2seq.ipynb +516 -0
- peft_prompt_tuning_seq2seq.ipynb +804 -0
- peft_prompt_tuning_seq2seq_with_generate.ipynb +757 -0
multitask_prompt_tuning.ipynb
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "58ff91ca-ce92-43d0-ae8b-4e9e89e193f6",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"from datasets import load_dataset\n",
|
13 |
+
"from transformers import set_seed, AutoModelForSeq2SeqLM, AutoTokenizer\n",
|
14 |
+
"from peft import get_peft_model, MultitaskPromptTuningConfig, TaskType, MultitaskPromptTuningInit\n",
|
15 |
+
"\n",
|
16 |
+
"set_seed(42)\n",
|
17 |
+
"\n",
|
18 |
+
"model_name = \"google/flan-t5-base\"\n",
|
19 |
+
"\n",
|
20 |
+
"peft_config = MultitaskPromptTuningConfig(\n",
|
21 |
+
" tokenizer_name_or_path=model_name,\n",
|
22 |
+
" num_tasks=2,\n",
|
23 |
+
" task_type=TaskType.SEQ_2_SEQ_LM,\n",
|
24 |
+
" prompt_tuning_init=MultitaskPromptTuningInit.TEXT,\n",
|
25 |
+
" num_virtual_tokens=50,\n",
|
26 |
+
" num_transformer_submodules=1,\n",
|
27 |
+
" prompt_tuning_init_text=\"classify the following into either positive or negative, or entailment, neutral or contradiction:\",\n",
|
28 |
+
")\n",
|
29 |
+
"\n",
|
30 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
31 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name)\n",
|
32 |
+
"model = get_peft_model(model, peft_config)\n",
|
33 |
+
"\n",
|
34 |
+
"model = model.cuda()\n",
|
35 |
+
"\n",
|
36 |
+
"\n",
|
37 |
+
"def send_to_device(batch):\n",
|
38 |
+
" for i in batch:\n",
|
39 |
+
" batch[i] = batch[i].cuda()\n",
|
40 |
+
" return batch"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": null,
|
46 |
+
"id": "eb112bc1-ffaf-49fa-a216-0d601ec304ee",
|
47 |
+
"metadata": {
|
48 |
+
"tags": []
|
49 |
+
},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"def get_sst2(split: str):\n",
|
53 |
+
" examples = load_dataset(\"sst2\")[split]\n",
|
54 |
+
" result_examples = []\n",
|
55 |
+
" for example in examples:\n",
|
56 |
+
" result_examples.append({})\n",
|
57 |
+
"\n",
|
58 |
+
" result_examples[-1][\"input\"] = example[\"sentence\"].strip() + \"</s>\"\n",
|
59 |
+
" result_examples[-1][\"output\"] = (\n",
|
60 |
+
" f\"positive{tokenizer.eos_token}\" if example[\"label\"] == 1 else f\"negative{tokenizer.eos_token}\"\n",
|
61 |
+
" )\n",
|
62 |
+
" result_examples[-1][\"task_id\"] = 0\n",
|
63 |
+
"\n",
|
64 |
+
" return result_examples\n",
|
65 |
+
"\n",
|
66 |
+
"\n",
|
67 |
+
"def get_mnli(split: str):\n",
|
68 |
+
" examples = load_dataset(\"multi_nli\")[split]\n",
|
69 |
+
" result_examples = []\n",
|
70 |
+
" for example in examples:\n",
|
71 |
+
" result_examples.append({})\n",
|
72 |
+
"\n",
|
73 |
+
" result_examples[-1][\"input\"] = example[\"premise\"].strip() + \" \" + example[\"hypothesis\"].strip() + \"</s>\"\n",
|
74 |
+
"\n",
|
75 |
+
" if example[\"label\"] == 0:\n",
|
76 |
+
" result_examples[-1][\"output\"] = f\"entailment{tokenizer.eos_token}\"\n",
|
77 |
+
" elif example[\"label\"] == 1:\n",
|
78 |
+
" result_examples[-1][\"output\"] = f\"neutral{tokenizer.eos_token}\"\n",
|
79 |
+
" else:\n",
|
80 |
+
" result_examples[-1][\"output\"] = f\"contradiction{tokenizer.eos_token}\"\n",
|
81 |
+
"\n",
|
82 |
+
" result_examples[-1][\"task_id\"] = 1\n",
|
83 |
+
"\n",
|
84 |
+
" return result_examples"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": null,
|
90 |
+
"id": "e5a16ec4-8fef-4ba9-95b6-a661eb51e50c",
|
91 |
+
"metadata": {
|
92 |
+
"tags": []
|
93 |
+
},
|
94 |
+
"outputs": [],
|
95 |
+
"source": [
|
96 |
+
"from typing import Tuple\n",
|
97 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
98 |
+
"import torch\n",
|
99 |
+
"\n",
|
100 |
+
"\n",
|
101 |
+
"class MyDataset(Dataset):\n",
|
102 |
+
" def __init__(self, split: str, mode: str = \"source\") -> None:\n",
|
103 |
+
" super().__init__()\n",
|
104 |
+
"\n",
|
105 |
+
" if split == \"train\":\n",
|
106 |
+
" if mode == \"source\":\n",
|
107 |
+
" self.examples = get_sst2(split) + get_mnli(split)\n",
|
108 |
+
" elif mode == \"target\":\n",
|
109 |
+
" self.examples = get_sst2(split)\n",
|
110 |
+
" if split == \"val\":\n",
|
111 |
+
" self.examples = get_sst2(\"validation\")\n",
|
112 |
+
" if split == \"test\":\n",
|
113 |
+
" self.examples = get_sst2(\"validation\")\n",
|
114 |
+
"\n",
|
115 |
+
" def __getitem__(self, index) -> dict:\n",
|
116 |
+
" return self.examples[index]\n",
|
117 |
+
"\n",
|
118 |
+
" def __len__(self) -> int:\n",
|
119 |
+
" return len(self.examples)\n",
|
120 |
+
"\n",
|
121 |
+
" def __getitem__(self, index) -> dict:\n",
|
122 |
+
" return self.examples[index]\n",
|
123 |
+
"\n",
|
124 |
+
" def __len__(self) -> int:\n",
|
125 |
+
" return len(self.examples)\n",
|
126 |
+
"\n",
|
127 |
+
"\n",
|
128 |
+
"def collate_fn(batch: dict) -> Tuple[torch.Tensor, torch.Tensor]:\n",
|
129 |
+
" input = [i[\"input\"] for i in batch]\n",
|
130 |
+
" input = tokenizer(input, add_special_tokens=False, return_tensors=\"pt\", padding=True)\n",
|
131 |
+
"\n",
|
132 |
+
" output = [i[\"output\"] for i in batch]\n",
|
133 |
+
" output = tokenizer(output, add_special_tokens=False, return_tensors=\"pt\", padding=True).input_ids\n",
|
134 |
+
" output[output == tokenizer.pad_token_id] = -100\n",
|
135 |
+
"\n",
|
136 |
+
" task_ids = [i[\"task_id\"] for i in batch]\n",
|
137 |
+
" task_ids = torch.tensor(task_ids)\n",
|
138 |
+
"\n",
|
139 |
+
" return {\n",
|
140 |
+
" \"input_ids\": input.input_ids,\n",
|
141 |
+
" \"attention_mask\": input.attention_mask,\n",
|
142 |
+
" \"labels\": output,\n",
|
143 |
+
" \"task_ids\": task_ids,\n",
|
144 |
+
" }\n",
|
145 |
+
"\n",
|
146 |
+
"\n",
|
147 |
+
"train = DataLoader(MyDataset(\"train\"), shuffle=True, batch_size=8, collate_fn=collate_fn)\n",
|
148 |
+
"val = DataLoader(MyDataset(\"val\"), shuffle=False, batch_size=8, collate_fn=collate_fn)\n",
|
149 |
+
"test = DataLoader(MyDataset(\"test\"), shuffle=False, batch_size=8, collate_fn=collate_fn)"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "markdown",
|
154 |
+
"id": "fe0aec7b-f61e-4b00-a90e-c1201dc1f84c",
|
155 |
+
"metadata": {},
|
156 |
+
"source": [
|
157 |
+
"## source training"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": null,
|
163 |
+
"id": "cceecc94-f43a-4f62-8d45-926f2f02f36d",
|
164 |
+
"metadata": {
|
165 |
+
"tags": []
|
166 |
+
},
|
167 |
+
"outputs": [],
|
168 |
+
"source": [
|
169 |
+
"from torch.optim.adamw import AdamW\n",
|
170 |
+
"from transformers import get_cosine_schedule_with_warmup\n",
|
171 |
+
"from tqdm import tqdm\n",
|
172 |
+
"from sklearn.metrics import f1_score"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": null,
|
178 |
+
"id": "eae5516b-73ab-44a8-a083-4e8de6127f30",
|
179 |
+
"metadata": {
|
180 |
+
"tags": []
|
181 |
+
},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"POSITIVE_TOKEN_ID = tokenizer(\" positive\", add_special_tokens=False)[\"input_ids\"][0]\n",
|
185 |
+
"NEGATIVE_TOKEN_ID = tokenizer(\" negative\", add_special_tokens=False)[\"input_ids\"][0]\n",
|
186 |
+
"\n",
|
187 |
+
"\n",
|
188 |
+
"def classify(batch):\n",
|
189 |
+
" batch = send_to_device(batch)\n",
|
190 |
+
" # we pass labels here since we need to generate and peft doesn't support generation yet.\n",
|
191 |
+
" # No clue how to get around this\n",
|
192 |
+
" scores = model(**batch).logits\n",
|
193 |
+
" preds = []\n",
|
194 |
+
" for i in range(scores.shape[0]):\n",
|
195 |
+
" if scores[i, 0, POSITIVE_TOKEN_ID] > scores[i, 0, NEGATIVE_TOKEN_ID]:\n",
|
196 |
+
" preds.append(POSITIVE_TOKEN_ID)\n",
|
197 |
+
" else:\n",
|
198 |
+
" preds.append(NEGATIVE_TOKEN_ID)\n",
|
199 |
+
" return preds\n",
|
200 |
+
"\n",
|
201 |
+
"\n",
|
202 |
+
"@torch.inference_mode()\n",
|
203 |
+
"def evaluate(model, data):\n",
|
204 |
+
" loss = 0\n",
|
205 |
+
" preds = []\n",
|
206 |
+
" golds = []\n",
|
207 |
+
"\n",
|
208 |
+
" for batch in tqdm(data):\n",
|
209 |
+
" batch = send_to_device(batch)\n",
|
210 |
+
" loss += model(**batch).loss\n",
|
211 |
+
" golds.extend(batch[\"labels\"][:, 0].tolist())\n",
|
212 |
+
" preds.extend(classify(batch))\n",
|
213 |
+
"\n",
|
214 |
+
" return loss / len(val), f1_score(golds, preds, pos_label=POSITIVE_TOKEN_ID)\n",
|
215 |
+
"\n",
|
216 |
+
"\n",
|
217 |
+
"optimizer = AdamW(model.parameters(), lr=1e-4)\n",
|
218 |
+
"scheduler = get_cosine_schedule_with_warmup(optimizer, 200, len(train))\n",
|
219 |
+
"\n",
|
220 |
+
"n = 1000\n",
|
221 |
+
"step = 0\n",
|
222 |
+
"train_ = tqdm(train)\n",
|
223 |
+
"\n",
|
224 |
+
"val_loss, f1 = evaluate(model, val)\n",
|
225 |
+
"print(\n",
|
226 |
+
" f\"\"\"\n",
|
227 |
+
"before source training\n",
|
228 |
+
"val loss = {val_loss}\n",
|
229 |
+
"f1 = {f1}\"\"\"\n",
|
230 |
+
")\n",
|
231 |
+
"\n",
|
232 |
+
"for batch in train_:\n",
|
233 |
+
" if step % n == 0:\n",
|
234 |
+
" val_loss, f1 = evaluate(model, val)\n",
|
235 |
+
" print(\n",
|
236 |
+
" f\"\"\"\n",
|
237 |
+
"step = {step}\n",
|
238 |
+
"val loss = {val_loss}\n",
|
239 |
+
"f1 = {f1}\"\"\"\n",
|
240 |
+
" )\n",
|
241 |
+
" model.save_pretrained(f\"checkpoints_source/{step}\")\n",
|
242 |
+
"\n",
|
243 |
+
" step += 1\n",
|
244 |
+
" batch = send_to_device(batch)\n",
|
245 |
+
" loss = model(**batch).loss\n",
|
246 |
+
" loss.backward()\n",
|
247 |
+
" optimizer.step()\n",
|
248 |
+
" scheduler.step()\n",
|
249 |
+
" train_.set_postfix(train_loss=loss)"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "markdown",
|
254 |
+
"id": "74168ef3-66f3-41a7-a40b-7840b103fbf9",
|
255 |
+
"metadata": {},
|
256 |
+
"source": [
|
257 |
+
"## target training"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "code",
|
262 |
+
"execution_count": null,
|
263 |
+
"id": "b09fd456-163e-4dc1-b24d-f2d0d349036c",
|
264 |
+
"metadata": {
|
265 |
+
"tags": []
|
266 |
+
},
|
267 |
+
"outputs": [],
|
268 |
+
"source": [
|
269 |
+
"train = DataLoader(MyDataset(\"train\", \"target\"), shuffle=True, batch_size=8, collate_fn=collate_fn)\n",
|
270 |
+
"val = DataLoader(MyDataset(\"val\", \"target\"), shuffle=False, batch_size=8, collate_fn=collate_fn)\n",
|
271 |
+
"test = DataLoader(MyDataset(\"test\", \"target\"), shuffle=False, batch_size=8, collate_fn=collate_fn)"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "markdown",
|
276 |
+
"id": "4a539944-f16c-4c3f-bb4a-7b5d9a6042e2",
|
277 |
+
"metadata": {},
|
278 |
+
"source": [
|
279 |
+
"#### create a fresh model"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"execution_count": null,
|
285 |
+
"id": "5520d904-aa6c-4654-9335-ed4e7d76cba2",
|
286 |
+
"metadata": {
|
287 |
+
"tags": []
|
288 |
+
},
|
289 |
+
"outputs": [],
|
290 |
+
"source": [
|
291 |
+
"peft_config = MultitaskPromptTuningConfig(\n",
|
292 |
+
" tokenizer_name_or_path=model_name,\n",
|
293 |
+
" num_tasks=1,\n",
|
294 |
+
" task_type=TaskType.SEQ_2_SEQ_LM,\n",
|
295 |
+
" prompt_tuning_init=MultitaskPromptTuningInit.EXACT_SOURCE_TASK,\n",
|
296 |
+
" prompt_tuning_init_state_dict_path=\"checkpoints_source/50000/adapter_model.bin\",\n",
|
297 |
+
" num_virtual_tokens=50,\n",
|
298 |
+
" num_transformer_submodules=1,\n",
|
299 |
+
")\n",
|
300 |
+
"\n",
|
301 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
302 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name)\n",
|
303 |
+
"model = get_peft_model(model, peft_config)\n",
|
304 |
+
"\n",
|
305 |
+
"model = model.cuda()"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"cell_type": "code",
|
310 |
+
"execution_count": null,
|
311 |
+
"id": "dfa39c2d-d1c5-4ed4-90f8-26e8e324371c",
|
312 |
+
"metadata": {
|
313 |
+
"tags": []
|
314 |
+
},
|
315 |
+
"outputs": [],
|
316 |
+
"source": [
|
317 |
+
"optimizer = AdamW(model.parameters(), lr=1e-4)\n",
|
318 |
+
"scheduler = get_cosine_schedule_with_warmup(optimizer, 200, len(train))\n",
|
319 |
+
"\n",
|
320 |
+
"n = 1000\n",
|
321 |
+
"step = 0\n",
|
322 |
+
"train_ = tqdm(train)\n",
|
323 |
+
"\n",
|
324 |
+
"val_loss, f1 = evaluate(model, val)\n",
|
325 |
+
"print(\n",
|
326 |
+
" f\"\"\"\n",
|
327 |
+
"before target training\n",
|
328 |
+
"val loss = {val_loss}\n",
|
329 |
+
"f1 = {f1}\"\"\"\n",
|
330 |
+
")\n",
|
331 |
+
"\n",
|
332 |
+
"for batch in train_:\n",
|
333 |
+
" if step % n == 0:\n",
|
334 |
+
" val_loss, f1 = evaluate(model, val)\n",
|
335 |
+
" print(\n",
|
336 |
+
" f\"\"\"\n",
|
337 |
+
"step = {step}\n",
|
338 |
+
"val loss = {val_loss}\n",
|
339 |
+
"f1 = {f1}\"\"\"\n",
|
340 |
+
" )\n",
|
341 |
+
" model.save_pretrained(f\"checkpoints_target/{step}\")\n",
|
342 |
+
"\n",
|
343 |
+
" step += 1\n",
|
344 |
+
" batch = send_to_device(batch)\n",
|
345 |
+
" loss = model(**batch).loss\n",
|
346 |
+
" loss.backward()\n",
|
347 |
+
" optimizer.step()\n",
|
348 |
+
" scheduler.step()\n",
|
349 |
+
" train_.set_postfix(train_loss=loss)"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": null,
|
355 |
+
"id": "b6a6eeda-1e09-49a6-8845-cd96c8573145",
|
356 |
+
"metadata": {
|
357 |
+
"tags": []
|
358 |
+
},
|
359 |
+
"outputs": [],
|
360 |
+
"source": [
|
361 |
+
"# load last checkpoint for now\n",
|
362 |
+
"from peft import set_peft_model_state_dict\n",
|
363 |
+
"\n",
|
364 |
+
"sd_6000 = torch.load(\"checkpoints_target/6000/adapter_model.bin\")\n",
|
365 |
+
"set_peft_model_state_dict(model, sd_6000)\n",
|
366 |
+
"\n",
|
367 |
+
"# evaluate val\n",
|
368 |
+
"val_loss, f1 = evaluate(model, val)\n",
|
369 |
+
"print(\n",
|
370 |
+
" f\"\"\"\n",
|
371 |
+
"final\n",
|
372 |
+
"val loss = {val_loss}\n",
|
373 |
+
"f1 = {f1}\"\"\"\n",
|
374 |
+
")\n",
|
375 |
+
"\n",
|
376 |
+
"# evaluate test\n",
|
377 |
+
"test_loss, f1 = evaluate(model, test)\n",
|
378 |
+
"print(\n",
|
379 |
+
" f\"\"\"\n",
|
380 |
+
"final\n",
|
381 |
+
"test loss = {test_loss}\n",
|
382 |
+
"f1 = {f1}\"\"\"\n",
|
383 |
+
")"
|
384 |
+
]
|
385 |
+
}
|
386 |
+
],
|
387 |
+
"metadata": {
|
388 |
+
"kernelspec": {
|
389 |
+
"display_name": "Python 3 (ipykernel)",
|
390 |
+
"language": "python",
|
391 |
+
"name": "python3"
|
392 |
+
},
|
393 |
+
"language_info": {
|
394 |
+
"codemirror_mode": {
|
395 |
+
"name": "ipython",
|
396 |
+
"version": 3
|
397 |
+
},
|
398 |
+
"file_extension": ".py",
|
399 |
+
"mimetype": "text/x-python",
|
400 |
+
"name": "python",
|
401 |
+
"nbconvert_exporter": "python",
|
402 |
+
"pygments_lexer": "ipython3",
|
403 |
+
"version": "3.9.13"
|
404 |
+
}
|
405 |
+
},
|
406 |
+
"nbformat": 4,
|
407 |
+
"nbformat_minor": 5
|
408 |
+
}
|
peft_ia3_seq2seq.ipynb
ADDED
@@ -0,0 +1,2711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 12,
|
6 |
+
"metadata": {
|
7 |
+
"id": "5f93b7d1"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"from transformers import AutoModelForSeq2SeqLM\n",
|
12 |
+
"import peft\n",
|
13 |
+
"from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, IA3Config, TaskType\n",
|
14 |
+
"import torch\n",
|
15 |
+
"from datasets import load_dataset\n",
|
16 |
+
"import os\n",
|
17 |
+
"\n",
|
18 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
19 |
+
"from transformers import AutoTokenizer\n",
|
20 |
+
"from torch.utils.data import DataLoader\n",
|
21 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
22 |
+
"from tqdm import tqdm\n",
|
23 |
+
"from datasets import load_dataset\n",
|
24 |
+
"\n",
|
25 |
+
"device = \"cuda\"\n",
|
26 |
+
"model_name_or_path = \"bigscience/mt0-large\"\n",
|
27 |
+
"tokenizer_name_or_path = \"bigscience/mt0-large\"\n",
|
28 |
+
"\n",
|
29 |
+
"checkpoint_name = \"financial_sentiment_analysis_ia3_v1.pt\"\n",
|
30 |
+
"text_column = \"sentence\"\n",
|
31 |
+
"label_column = \"text_label\"\n",
|
32 |
+
"max_length = 128\n",
|
33 |
+
"lr = 8e-3\n",
|
34 |
+
"num_epochs = 3\n",
|
35 |
+
"batch_size = 8"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 13,
|
41 |
+
"metadata": {
|
42 |
+
"colab": {
|
43 |
+
"base_uri": "https://localhost:8080/"
|
44 |
+
},
|
45 |
+
"id": "b9e6368c",
|
46 |
+
"outputId": "fc2888a8-4fe9-4d61-dd2d-753e751e1416"
|
47 |
+
},
|
48 |
+
"outputs": [
|
49 |
+
{
|
50 |
+
"data": {
|
51 |
+
"text/plain": [
|
52 |
+
"<module 'peft' from '/usr/local/lib/python3.10/dist-packages/peft/__init__.py'>"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"execution_count": 13,
|
56 |
+
"metadata": {},
|
57 |
+
"output_type": "execute_result"
|
58 |
+
}
|
59 |
+
],
|
60 |
+
"source": [
|
61 |
+
"import importlib\n",
|
62 |
+
"\n",
|
63 |
+
"importlib.reload(peft)"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 14,
|
69 |
+
"metadata": {
|
70 |
+
"id": "8d0850ac"
|
71 |
+
},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"# creating model\n",
|
75 |
+
"peft_config = IA3Config(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, feedforward_modules=[])\n",
|
76 |
+
"\n",
|
77 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": 15,
|
83 |
+
"metadata": {
|
84 |
+
"colab": {
|
85 |
+
"base_uri": "https://localhost:8080/"
|
86 |
+
},
|
87 |
+
"id": "e10c3831",
|
88 |
+
"outputId": "e69c5e07-ae58-446c-8301-e99ac6b85d62"
|
89 |
+
},
|
90 |
+
"outputs": [
|
91 |
+
{
|
92 |
+
"data": {
|
93 |
+
"text/plain": [
|
94 |
+
"MT5ForConditionalGeneration(\n",
|
95 |
+
" (shared): Embedding(250112, 1024)\n",
|
96 |
+
" (encoder): MT5Stack(\n",
|
97 |
+
" (embed_tokens): Embedding(250112, 1024)\n",
|
98 |
+
" (block): ModuleList(\n",
|
99 |
+
" (0): MT5Block(\n",
|
100 |
+
" (layer): ModuleList(\n",
|
101 |
+
" (0): MT5LayerSelfAttention(\n",
|
102 |
+
" (SelfAttention): MT5Attention(\n",
|
103 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
104 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
105 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
106 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
107 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
108 |
+
" )\n",
|
109 |
+
" (layer_norm): MT5LayerNorm()\n",
|
110 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
111 |
+
" )\n",
|
112 |
+
" (1): MT5LayerFF(\n",
|
113 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
114 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
115 |
+
" (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
116 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
117 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
118 |
+
" (act): NewGELUActivation()\n",
|
119 |
+
" )\n",
|
120 |
+
" (layer_norm): MT5LayerNorm()\n",
|
121 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
122 |
+
" )\n",
|
123 |
+
" )\n",
|
124 |
+
" )\n",
|
125 |
+
" (1-23): 23 x MT5Block(\n",
|
126 |
+
" (layer): ModuleList(\n",
|
127 |
+
" (0): MT5LayerSelfAttention(\n",
|
128 |
+
" (SelfAttention): MT5Attention(\n",
|
129 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
130 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
131 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
132 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
133 |
+
" )\n",
|
134 |
+
" (layer_norm): MT5LayerNorm()\n",
|
135 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
136 |
+
" )\n",
|
137 |
+
" (1): MT5LayerFF(\n",
|
138 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
139 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
140 |
+
" (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
141 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
142 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
143 |
+
" (act): NewGELUActivation()\n",
|
144 |
+
" )\n",
|
145 |
+
" (layer_norm): MT5LayerNorm()\n",
|
146 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
147 |
+
" )\n",
|
148 |
+
" )\n",
|
149 |
+
" )\n",
|
150 |
+
" )\n",
|
151 |
+
" (final_layer_norm): MT5LayerNorm()\n",
|
152 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
153 |
+
" )\n",
|
154 |
+
" (decoder): MT5Stack(\n",
|
155 |
+
" (embed_tokens): Embedding(250112, 1024)\n",
|
156 |
+
" (block): ModuleList(\n",
|
157 |
+
" (0): MT5Block(\n",
|
158 |
+
" (layer): ModuleList(\n",
|
159 |
+
" (0): MT5LayerSelfAttention(\n",
|
160 |
+
" (SelfAttention): MT5Attention(\n",
|
161 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
162 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
163 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
164 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
165 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
166 |
+
" )\n",
|
167 |
+
" (layer_norm): MT5LayerNorm()\n",
|
168 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
169 |
+
" )\n",
|
170 |
+
" (1): MT5LayerCrossAttention(\n",
|
171 |
+
" (EncDecAttention): MT5Attention(\n",
|
172 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
173 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
174 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
175 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
176 |
+
" )\n",
|
177 |
+
" (layer_norm): MT5LayerNorm()\n",
|
178 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
179 |
+
" )\n",
|
180 |
+
" (2): MT5LayerFF(\n",
|
181 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
182 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
183 |
+
" (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
184 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
185 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
186 |
+
" (act): NewGELUActivation()\n",
|
187 |
+
" )\n",
|
188 |
+
" (layer_norm): MT5LayerNorm()\n",
|
189 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
190 |
+
" )\n",
|
191 |
+
" )\n",
|
192 |
+
" )\n",
|
193 |
+
" (1-23): 23 x MT5Block(\n",
|
194 |
+
" (layer): ModuleList(\n",
|
195 |
+
" (0): MT5LayerSelfAttention(\n",
|
196 |
+
" (SelfAttention): MT5Attention(\n",
|
197 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
198 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
199 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
200 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
201 |
+
" )\n",
|
202 |
+
" (layer_norm): MT5LayerNorm()\n",
|
203 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
204 |
+
" )\n",
|
205 |
+
" (1): MT5LayerCrossAttention(\n",
|
206 |
+
" (EncDecAttention): MT5Attention(\n",
|
207 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
208 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
209 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
210 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
211 |
+
" )\n",
|
212 |
+
" (layer_norm): MT5LayerNorm()\n",
|
213 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
214 |
+
" )\n",
|
215 |
+
" (2): MT5LayerFF(\n",
|
216 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
217 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
218 |
+
" (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
219 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
220 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
221 |
+
" (act): NewGELUActivation()\n",
|
222 |
+
" )\n",
|
223 |
+
" (layer_norm): MT5LayerNorm()\n",
|
224 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
225 |
+
" )\n",
|
226 |
+
" )\n",
|
227 |
+
" )\n",
|
228 |
+
" )\n",
|
229 |
+
" (final_layer_norm): MT5LayerNorm()\n",
|
230 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
231 |
+
" )\n",
|
232 |
+
" (lm_head): Linear(in_features=1024, out_features=250112, bias=False)\n",
|
233 |
+
")"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
"execution_count": 15,
|
237 |
+
"metadata": {},
|
238 |
+
"output_type": "execute_result"
|
239 |
+
}
|
240 |
+
],
|
241 |
+
"source": [
|
242 |
+
"model"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"cell_type": "code",
|
247 |
+
"execution_count": 16,
|
248 |
+
"metadata": {
|
249 |
+
"colab": {
|
250 |
+
"base_uri": "https://localhost:8080/"
|
251 |
+
},
|
252 |
+
"id": "05978e96",
|
253 |
+
"outputId": "ea9b7d40-010f-4df0-ec64-a7146a5f8b08"
|
254 |
+
},
|
255 |
+
"outputs": [
|
256 |
+
{
|
257 |
+
"name": "stdout",
|
258 |
+
"output_type": "stream",
|
259 |
+
"text": [
|
260 |
+
"trainable params: 282,624 || all params: 1,229,863,936 || trainable%: 0.022980103060766553\n"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"data": {
|
265 |
+
"text/plain": [
|
266 |
+
"PeftModelForSeq2SeqLM(\n",
|
267 |
+
" (base_model): IA3Model(\n",
|
268 |
+
" (model): MT5ForConditionalGeneration(\n",
|
269 |
+
" (shared): Embedding(250112, 1024)\n",
|
270 |
+
" (encoder): MT5Stack(\n",
|
271 |
+
" (embed_tokens): Embedding(250112, 1024)\n",
|
272 |
+
" (block): ModuleList(\n",
|
273 |
+
" (0): MT5Block(\n",
|
274 |
+
" (layer): ModuleList(\n",
|
275 |
+
" (0): MT5LayerSelfAttention(\n",
|
276 |
+
" (SelfAttention): MT5Attention(\n",
|
277 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
278 |
+
" (k): Linear(\n",
|
279 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
280 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
281 |
+
" )\n",
|
282 |
+
" (v): Linear(\n",
|
283 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
284 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
285 |
+
" )\n",
|
286 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
287 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
288 |
+
" )\n",
|
289 |
+
" (layer_norm): MT5LayerNorm()\n",
|
290 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
291 |
+
" )\n",
|
292 |
+
" (1): MT5LayerFF(\n",
|
293 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
294 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
295 |
+
" (wi_1): Linear(\n",
|
296 |
+
" in_features=1024, out_features=2816, bias=False\n",
|
297 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n",
|
298 |
+
" )\n",
|
299 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
300 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
301 |
+
" (act): NewGELUActivation()\n",
|
302 |
+
" )\n",
|
303 |
+
" (layer_norm): MT5LayerNorm()\n",
|
304 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
305 |
+
" )\n",
|
306 |
+
" )\n",
|
307 |
+
" )\n",
|
308 |
+
" (1-23): 23 x MT5Block(\n",
|
309 |
+
" (layer): ModuleList(\n",
|
310 |
+
" (0): MT5LayerSelfAttention(\n",
|
311 |
+
" (SelfAttention): MT5Attention(\n",
|
312 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
313 |
+
" (k): Linear(\n",
|
314 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
315 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
316 |
+
" )\n",
|
317 |
+
" (v): Linear(\n",
|
318 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
319 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
320 |
+
" )\n",
|
321 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
322 |
+
" )\n",
|
323 |
+
" (layer_norm): MT5LayerNorm()\n",
|
324 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
325 |
+
" )\n",
|
326 |
+
" (1): MT5LayerFF(\n",
|
327 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
328 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
329 |
+
" (wi_1): Linear(\n",
|
330 |
+
" in_features=1024, out_features=2816, bias=False\n",
|
331 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n",
|
332 |
+
" )\n",
|
333 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
334 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
335 |
+
" (act): NewGELUActivation()\n",
|
336 |
+
" )\n",
|
337 |
+
" (layer_norm): MT5LayerNorm()\n",
|
338 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
339 |
+
" )\n",
|
340 |
+
" )\n",
|
341 |
+
" )\n",
|
342 |
+
" )\n",
|
343 |
+
" (final_layer_norm): MT5LayerNorm()\n",
|
344 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
345 |
+
" )\n",
|
346 |
+
" (decoder): MT5Stack(\n",
|
347 |
+
" (embed_tokens): Embedding(250112, 1024)\n",
|
348 |
+
" (block): ModuleList(\n",
|
349 |
+
" (0): MT5Block(\n",
|
350 |
+
" (layer): ModuleList(\n",
|
351 |
+
" (0): MT5LayerSelfAttention(\n",
|
352 |
+
" (SelfAttention): MT5Attention(\n",
|
353 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
354 |
+
" (k): Linear(\n",
|
355 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
356 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
357 |
+
" )\n",
|
358 |
+
" (v): Linear(\n",
|
359 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
360 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
361 |
+
" )\n",
|
362 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
363 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
364 |
+
" )\n",
|
365 |
+
" (layer_norm): MT5LayerNorm()\n",
|
366 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
367 |
+
" )\n",
|
368 |
+
" (1): MT5LayerCrossAttention(\n",
|
369 |
+
" (EncDecAttention): MT5Attention(\n",
|
370 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
371 |
+
" (k): Linear(\n",
|
372 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
373 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
374 |
+
" )\n",
|
375 |
+
" (v): Linear(\n",
|
376 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
377 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
378 |
+
" )\n",
|
379 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
380 |
+
" )\n",
|
381 |
+
" (layer_norm): MT5LayerNorm()\n",
|
382 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
383 |
+
" )\n",
|
384 |
+
" (2): MT5LayerFF(\n",
|
385 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
386 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
387 |
+
" (wi_1): Linear(\n",
|
388 |
+
" in_features=1024, out_features=2816, bias=False\n",
|
389 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n",
|
390 |
+
" )\n",
|
391 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
392 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
393 |
+
" (act): NewGELUActivation()\n",
|
394 |
+
" )\n",
|
395 |
+
" (layer_norm): MT5LayerNorm()\n",
|
396 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
397 |
+
" )\n",
|
398 |
+
" )\n",
|
399 |
+
" )\n",
|
400 |
+
" (1-23): 23 x MT5Block(\n",
|
401 |
+
" (layer): ModuleList(\n",
|
402 |
+
" (0): MT5LayerSelfAttention(\n",
|
403 |
+
" (SelfAttention): MT5Attention(\n",
|
404 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
405 |
+
" (k): Linear(\n",
|
406 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
407 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
408 |
+
" )\n",
|
409 |
+
" (v): Linear(\n",
|
410 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
411 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
412 |
+
" )\n",
|
413 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
414 |
+
" )\n",
|
415 |
+
" (layer_norm): MT5LayerNorm()\n",
|
416 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
417 |
+
" )\n",
|
418 |
+
" (1): MT5LayerCrossAttention(\n",
|
419 |
+
" (EncDecAttention): MT5Attention(\n",
|
420 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
421 |
+
" (k): Linear(\n",
|
422 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
423 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
424 |
+
" )\n",
|
425 |
+
" (v): Linear(\n",
|
426 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
427 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
428 |
+
" )\n",
|
429 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
430 |
+
" )\n",
|
431 |
+
" (layer_norm): MT5LayerNorm()\n",
|
432 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
433 |
+
" )\n",
|
434 |
+
" (2): MT5LayerFF(\n",
|
435 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
436 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
437 |
+
" (wi_1): Linear(\n",
|
438 |
+
" in_features=1024, out_features=2816, bias=False\n",
|
439 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n",
|
440 |
+
" )\n",
|
441 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
442 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
443 |
+
" (act): NewGELUActivation()\n",
|
444 |
+
" )\n",
|
445 |
+
" (layer_norm): MT5LayerNorm()\n",
|
446 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
447 |
+
" )\n",
|
448 |
+
" )\n",
|
449 |
+
" )\n",
|
450 |
+
" )\n",
|
451 |
+
" (final_layer_norm): MT5LayerNorm()\n",
|
452 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
453 |
+
" )\n",
|
454 |
+
" (lm_head): Linear(in_features=1024, out_features=250112, bias=False)\n",
|
455 |
+
" )\n",
|
456 |
+
" )\n",
|
457 |
+
")"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
"execution_count": 16,
|
461 |
+
"metadata": {},
|
462 |
+
"output_type": "execute_result"
|
463 |
+
}
|
464 |
+
],
|
465 |
+
"source": [
|
466 |
+
"model = get_peft_model(model, peft_config)\n",
|
467 |
+
"model.print_trainable_parameters()\n",
|
468 |
+
"model"
|
469 |
+
]
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"cell_type": "code",
|
473 |
+
"execution_count": 17,
|
474 |
+
"metadata": {
|
475 |
+
"colab": {
|
476 |
+
"base_uri": "https://localhost:8080/",
|
477 |
+
"height": 140,
|
478 |
+
"referenced_widgets": [
|
479 |
+
"bbfb7533b5ca459194e171df56b79566",
|
480 |
+
"c894e8237aa34c56bb250acab1466005",
|
481 |
+
"a5a126b229064812bf3dcb228118be50",
|
482 |
+
"661e1b29c59a4295b594edfa4f50ff87",
|
483 |
+
"1bcba805972b484d8b6aa6542c81841c",
|
484 |
+
"e71f5c7f1d5d4f83b58c68d2fa310d9c",
|
485 |
+
"6a567e0a1a5447519c5df10e777520cf",
|
486 |
+
"7aeca19b84904906a04c12659f84ff9e",
|
487 |
+
"dd4b895874ce46ceb1ad0d9bc973f98f",
|
488 |
+
"b138f91be7f94008806eaf0a6988bc3f",
|
489 |
+
"da14180f51ab44b48470cb9ea74d3864",
|
490 |
+
"9e12d97af6124a5a8c6627708b300c1e",
|
491 |
+
"faa18df899c14e9cac6721253e6c9128",
|
492 |
+
"79d0ede7a5b24756aa6d34fda8c29159",
|
493 |
+
"3b175b452f4347558aa3c4501cc90030",
|
494 |
+
"fc4637a1b37e4e90874c71aa4271ac74",
|
495 |
+
"1b8aada826a0451bb60c418b19178c8c",
|
496 |
+
"a91916e02e9c424e881e45b3aa978574",
|
497 |
+
"ca509bd409624c998e555c9a779b8aae",
|
498 |
+
"9c890fc422954347b86d3bde7a421caf",
|
499 |
+
"6f9453484ea94587a64d70f1b3a1f6e4",
|
500 |
+
"48770ef159f44c01be2a75c75aecd80f",
|
501 |
+
"0c561dab67914ea9b6e1aab803600551",
|
502 |
+
"1e021a1954b44d69a90101a96c360661",
|
503 |
+
"013e3343285f437a893bdd673fb90e22",
|
504 |
+
"28802da68fb04d70b1c6bc511a04676f",
|
505 |
+
"94174da0d6554be087d4527bea5b511a",
|
506 |
+
"dc8ab16a1e6c4e6893c95ccd16568f9a",
|
507 |
+
"72383136663448d89cf3b82b87cbb392",
|
508 |
+
"5b1bdaf16cbc473081e4237f839167b9",
|
509 |
+
"51f8fb45485540bb985b606d43ae04ea",
|
510 |
+
"f760cd4758334ca9a43fd15612fd808b",
|
511 |
+
"f60e9915d2a74ca7bc010d7684f5acf6"
|
512 |
+
]
|
513 |
+
},
|
514 |
+
"id": "4ee2babf",
|
515 |
+
"outputId": "3c413083-247d-47da-f25c-032764be0beb"
|
516 |
+
},
|
517 |
+
"outputs": [
|
518 |
+
{
|
519 |
+
"name": "stderr",
|
520 |
+
"output_type": "stream",
|
521 |
+
"text": [
|
522 |
+
"WARNING:datasets.builder:Found cached dataset financial_phrasebank (/root/.cache/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n"
|
523 |
+
]
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"data": {
|
527 |
+
"application/vnd.jupyter.widget-view+json": {
|
528 |
+
"model_id": "bbfb7533b5ca459194e171df56b79566",
|
529 |
+
"version_major": 2,
|
530 |
+
"version_minor": 0
|
531 |
+
},
|
532 |
+
"text/plain": [
|
533 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
534 |
+
]
|
535 |
+
},
|
536 |
+
"metadata": {},
|
537 |
+
"output_type": "display_data"
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"data": {
|
541 |
+
"application/vnd.jupyter.widget-view+json": {
|
542 |
+
"model_id": "9e12d97af6124a5a8c6627708b300c1e",
|
543 |
+
"version_major": 2,
|
544 |
+
"version_minor": 0
|
545 |
+
},
|
546 |
+
"text/plain": [
|
547 |
+
"Map: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
"metadata": {},
|
551 |
+
"output_type": "display_data"
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"data": {
|
555 |
+
"application/vnd.jupyter.widget-view+json": {
|
556 |
+
"model_id": "0c561dab67914ea9b6e1aab803600551",
|
557 |
+
"version_major": 2,
|
558 |
+
"version_minor": 0
|
559 |
+
},
|
560 |
+
"text/plain": [
|
561 |
+
"Map: 0%| | 0/227 [00:00<?, ? examples/s]"
|
562 |
+
]
|
563 |
+
},
|
564 |
+
"metadata": {},
|
565 |
+
"output_type": "display_data"
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"data": {
|
569 |
+
"text/plain": [
|
570 |
+
"{'sentence': 'It will be operated by Nokia , and supported by its Nokia NetAct network and service management system .',\n",
|
571 |
+
" 'label': 1,\n",
|
572 |
+
" 'text_label': 'neutral'}"
|
573 |
+
]
|
574 |
+
},
|
575 |
+
"execution_count": 17,
|
576 |
+
"metadata": {},
|
577 |
+
"output_type": "execute_result"
|
578 |
+
}
|
579 |
+
],
|
580 |
+
"source": [
|
581 |
+
"# loading dataset\n",
|
582 |
+
"dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n",
|
583 |
+
"dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n",
|
584 |
+
"dataset[\"validation\"] = dataset[\"test\"]\n",
|
585 |
+
"del dataset[\"test\"]\n",
|
586 |
+
"\n",
|
587 |
+
"classes = dataset[\"train\"].features[\"label\"].names\n",
|
588 |
+
"dataset = dataset.map(\n",
|
589 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n",
|
590 |
+
" batched=True,\n",
|
591 |
+
" num_proc=1,\n",
|
592 |
+
")\n",
|
593 |
+
"\n",
|
594 |
+
"dataset[\"train\"][0]"
|
595 |
+
]
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"cell_type": "code",
|
599 |
+
"execution_count": 18,
|
600 |
+
"metadata": {
|
601 |
+
"colab": {
|
602 |
+
"base_uri": "https://localhost:8080/",
|
603 |
+
"height": 17,
|
604 |
+
"referenced_widgets": [
|
605 |
+
"e1e80a68a9e7429397cafc96c3c11f80",
|
606 |
+
"5307864c2b1143f4b44f3f172611113e",
|
607 |
+
"2e2b6c3f48974ea4aca9b7710a03379e",
|
608 |
+
"aae78f9bd53348bda45967a38736cb78",
|
609 |
+
"34db17e0f28d40d6abafb8acd5dda379",
|
610 |
+
"8361dc2e0a834da6a0ad87f7b0cb4e1b",
|
611 |
+
"56f1d9d56dd44c8aa923d09a59cb0ebc",
|
612 |
+
"d93bfb366db14c2fa77b038752f69b38",
|
613 |
+
"749aaa39135841f98b344ffb840df3d4",
|
614 |
+
"5e5aa58adb0f48579871df33845e30b1",
|
615 |
+
"c25b49b7adaa48a0a3a306aa1e0661b4",
|
616 |
+
"21f582e1208a4a38ae3c0cdce87e5c14",
|
617 |
+
"d9d37b8b79f24dbf837327a250a5a346",
|
618 |
+
"8ba99043c350456d8623ce1d8c98f7a0",
|
619 |
+
"8bf37c12d5f74f7d8dbba423a9ee3ac3",
|
620 |
+
"f9d86ad7fa734f3a857505a542256a3c",
|
621 |
+
"86bf02b06ed740a88015c2b944205c1e",
|
622 |
+
"aef6a6be67f749908060d8038b6d3804",
|
623 |
+
"664c02903cb248fb9339805bccfd6c1d",
|
624 |
+
"82195b807b664a9585a76e0e50fe7609",
|
625 |
+
"8621932be14f42858d841e2ac1b173e7",
|
626 |
+
"71bcdb1e02144c9587879d8d815b91d4"
|
627 |
+
]
|
628 |
+
},
|
629 |
+
"id": "adf9608c",
|
630 |
+
"outputId": "3e4bc95f-1dc4-4d34-c212-6d2374359673"
|
631 |
+
},
|
632 |
+
"outputs": [
|
633 |
+
{
|
634 |
+
"data": {
|
635 |
+
"application/vnd.jupyter.widget-view+json": {
|
636 |
+
"model_id": "e1e80a68a9e7429397cafc96c3c11f80",
|
637 |
+
"version_major": 2,
|
638 |
+
"version_minor": 0
|
639 |
+
},
|
640 |
+
"text/plain": [
|
641 |
+
"Running tokenizer on dataset: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
642 |
+
]
|
643 |
+
},
|
644 |
+
"metadata": {},
|
645 |
+
"output_type": "display_data"
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"data": {
|
649 |
+
"application/vnd.jupyter.widget-view+json": {
|
650 |
+
"model_id": "21f582e1208a4a38ae3c0cdce87e5c14",
|
651 |
+
"version_major": 2,
|
652 |
+
"version_minor": 0
|
653 |
+
},
|
654 |
+
"text/plain": [
|
655 |
+
"Running tokenizer on dataset: 0%| | 0/227 [00:00<?, ? examples/s]"
|
656 |
+
]
|
657 |
+
},
|
658 |
+
"metadata": {},
|
659 |
+
"output_type": "display_data"
|
660 |
+
}
|
661 |
+
],
|
662 |
+
"source": [
|
663 |
+
"# data preprocessing\n",
|
664 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
665 |
+
"\n",
|
666 |
+
"\n",
|
667 |
+
"def preprocess_function(examples):\n",
|
668 |
+
" inputs = examples[text_column]\n",
|
669 |
+
" targets = examples[label_column]\n",
|
670 |
+
" model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
671 |
+
" labels = tokenizer(targets, max_length=3, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
672 |
+
" labels = labels[\"input_ids\"]\n",
|
673 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
674 |
+
" model_inputs[\"labels\"] = labels\n",
|
675 |
+
" return model_inputs\n",
|
676 |
+
"\n",
|
677 |
+
"\n",
|
678 |
+
"processed_datasets = dataset.map(\n",
|
679 |
+
" preprocess_function,\n",
|
680 |
+
" batched=True,\n",
|
681 |
+
" num_proc=1,\n",
|
682 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
683 |
+
" load_from_cache_file=False,\n",
|
684 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
685 |
+
")\n",
|
686 |
+
"\n",
|
687 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
688 |
+
"eval_dataset = processed_datasets[\"validation\"]\n",
|
689 |
+
"\n",
|
690 |
+
"train_dataloader = DataLoader(\n",
|
691 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
692 |
+
")\n",
|
693 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
694 |
+
]
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"cell_type": "code",
|
698 |
+
"execution_count": 19,
|
699 |
+
"metadata": {
|
700 |
+
"id": "f733a3c6"
|
701 |
+
},
|
702 |
+
"outputs": [],
|
703 |
+
"source": [
|
704 |
+
"# optimizer and lr scheduler\n",
|
705 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
706 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
707 |
+
" optimizer=optimizer,\n",
|
708 |
+
" num_warmup_steps=0,\n",
|
709 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
710 |
+
")"
|
711 |
+
]
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"cell_type": "code",
|
715 |
+
"execution_count": 20,
|
716 |
+
"metadata": {
|
717 |
+
"colab": {
|
718 |
+
"base_uri": "https://localhost:8080/"
|
719 |
+
},
|
720 |
+
"id": "6b3a4090",
|
721 |
+
"outputId": "369cfce9-90f2-47a1-8653-ea1168943949"
|
722 |
+
},
|
723 |
+
"outputs": [
|
724 |
+
{
|
725 |
+
"name": "stderr",
|
726 |
+
"output_type": "stream",
|
727 |
+
"text": [
|
728 |
+
"100%|██████████| 255/255 [02:33<00:00, 1.67it/s]\n",
|
729 |
+
"100%|██████████| 29/29 [00:08<00:00, 3.48it/s]\n"
|
730 |
+
]
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"name": "stdout",
|
734 |
+
"output_type": "stream",
|
735 |
+
"text": [
|
736 |
+
"epoch=0: train_ppl=tensor(1.4939, device='cuda:0') train_epoch_loss=tensor(0.4014, device='cuda:0') eval_ppl=tensor(1.0514, device='cuda:0') eval_epoch_loss=tensor(0.0501, device='cuda:0')\n"
|
737 |
+
]
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"name": "stderr",
|
741 |
+
"output_type": "stream",
|
742 |
+
"text": [
|
743 |
+
"100%|██████████| 255/255 [02:32<00:00, 1.67it/s]\n",
|
744 |
+
"100%|██████████| 29/29 [00:08<00:00, 3.43it/s]\n"
|
745 |
+
]
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"name": "stdout",
|
749 |
+
"output_type": "stream",
|
750 |
+
"text": [
|
751 |
+
"epoch=1: train_ppl=tensor(1.0523, device='cuda:0') train_epoch_loss=tensor(0.0510, device='cuda:0') eval_ppl=tensor(1.0383, device='cuda:0') eval_epoch_loss=tensor(0.0376, device='cuda:0')\n"
|
752 |
+
]
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"name": "stderr",
|
756 |
+
"output_type": "stream",
|
757 |
+
"text": [
|
758 |
+
"100%|██████████| 255/255 [02:32<00:00, 1.68it/s]\n",
|
759 |
+
"100%|██████████| 29/29 [00:08<00:00, 3.44it/s]"
|
760 |
+
]
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"name": "stdout",
|
764 |
+
"output_type": "stream",
|
765 |
+
"text": [
|
766 |
+
"epoch=2: train_ppl=tensor(1.0397, device='cuda:0') train_epoch_loss=tensor(0.0389, device='cuda:0') eval_ppl=tensor(1.0392, device='cuda:0') eval_epoch_loss=tensor(0.0385, device='cuda:0')\n"
|
767 |
+
]
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"name": "stderr",
|
771 |
+
"output_type": "stream",
|
772 |
+
"text": [
|
773 |
+
"\n"
|
774 |
+
]
|
775 |
+
}
|
776 |
+
],
|
777 |
+
"source": [
|
778 |
+
"# training and evaluation\n",
|
779 |
+
"model = model.to(device)\n",
|
780 |
+
"\n",
|
781 |
+
"for epoch in range(num_epochs):\n",
|
782 |
+
" model.train()\n",
|
783 |
+
" total_loss = 0\n",
|
784 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
785 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
786 |
+
" outputs = model(**batch)\n",
|
787 |
+
" loss = outputs.loss\n",
|
788 |
+
" total_loss += loss.detach().float()\n",
|
789 |
+
" loss.backward()\n",
|
790 |
+
" optimizer.step()\n",
|
791 |
+
" lr_scheduler.step()\n",
|
792 |
+
" optimizer.zero_grad()\n",
|
793 |
+
"\n",
|
794 |
+
" model.eval()\n",
|
795 |
+
" eval_loss = 0\n",
|
796 |
+
" eval_preds = []\n",
|
797 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
798 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
799 |
+
" with torch.no_grad():\n",
|
800 |
+
" outputs = model(**batch)\n",
|
801 |
+
" loss = outputs.loss\n",
|
802 |
+
" eval_loss += loss.detach().float()\n",
|
803 |
+
" eval_preds.extend(\n",
|
804 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
805 |
+
" )\n",
|
806 |
+
"\n",
|
807 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
808 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
809 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
810 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
811 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
812 |
+
]
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"cell_type": "code",
|
816 |
+
"execution_count": 21,
|
817 |
+
"metadata": {
|
818 |
+
"colab": {
|
819 |
+
"base_uri": "https://localhost:8080/"
|
820 |
+
},
|
821 |
+
"id": "6cafa67b",
|
822 |
+
"outputId": "0db923d2-522c-4cb7-b694-6e2e20beae98"
|
823 |
+
},
|
824 |
+
"outputs": [
|
825 |
+
{
|
826 |
+
"name": "stdout",
|
827 |
+
"output_type": "stream",
|
828 |
+
"text": [
|
829 |
+
"accuracy=96.91629955947137 % on the evaluation dataset\n",
|
830 |
+
"eval_preds[:10]=['neutral', 'neutral', 'neutral', 'neutral', 'positive', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral']\n",
|
831 |
+
"dataset['validation']['text_label'][:10]=['neutral', 'neutral', 'neutral', 'neutral', 'positive', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral']\n"
|
832 |
+
]
|
833 |
+
}
|
834 |
+
],
|
835 |
+
"source": [
|
836 |
+
"# print accuracy\n",
|
837 |
+
"correct = 0\n",
|
838 |
+
"total = 0\n",
|
839 |
+
"for pred, true in zip(eval_preds, dataset[\"validation\"][\"text_label\"]):\n",
|
840 |
+
" if pred.strip() == true.strip():\n",
|
841 |
+
" correct += 1\n",
|
842 |
+
" total += 1\n",
|
843 |
+
"accuracy = correct / total * 100\n",
|
844 |
+
"print(f\"{accuracy=} % on the evaluation dataset\")\n",
|
845 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
846 |
+
"print(f\"{dataset['validation']['text_label'][:10]=}\")"
|
847 |
+
]
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"cell_type": "code",
|
851 |
+
"execution_count": 22,
|
852 |
+
"metadata": {
|
853 |
+
"id": "a8de6005"
|
854 |
+
},
|
855 |
+
"outputs": [],
|
856 |
+
"source": [
|
857 |
+
"# saving model\n",
|
858 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
859 |
+
"model.save_pretrained(peft_model_id)"
|
860 |
+
]
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"cell_type": "code",
|
864 |
+
"execution_count": 23,
|
865 |
+
"metadata": {
|
866 |
+
"colab": {
|
867 |
+
"base_uri": "https://localhost:8080/"
|
868 |
+
},
|
869 |
+
"id": "bd20cd4c",
|
870 |
+
"outputId": "0f25d837-80b1-476f-c897-92c3fef04fb2"
|
871 |
+
},
|
872 |
+
"outputs": [
|
873 |
+
{
|
874 |
+
"name": "stdout",
|
875 |
+
"output_type": "stream",
|
876 |
+
"text": [
|
877 |
+
"1.2M\tbigscience/mt0-large_IA3_SEQ_2_SEQ_LM/adapter_model.bin\n"
|
878 |
+
]
|
879 |
+
}
|
880 |
+
],
|
881 |
+
"source": [
|
882 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
883 |
+
"!du -h $ckpt"
|
884 |
+
]
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"cell_type": "code",
|
888 |
+
"execution_count": 24,
|
889 |
+
"metadata": {
|
890 |
+
"id": "76c2fc29"
|
891 |
+
},
|
892 |
+
"outputs": [],
|
893 |
+
"source": [
|
894 |
+
"from peft import PeftModel, PeftConfig\n",
|
895 |
+
"\n",
|
896 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
897 |
+
"\n",
|
898 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
899 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n",
|
900 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
901 |
+
]
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"cell_type": "code",
|
905 |
+
"execution_count": 25,
|
906 |
+
"metadata": {
|
907 |
+
"colab": {
|
908 |
+
"base_uri": "https://localhost:8080/"
|
909 |
+
},
|
910 |
+
"id": "37d712ce",
|
911 |
+
"outputId": "4828819a-b640-4f6c-91e3-878b648e9a75"
|
912 |
+
},
|
913 |
+
"outputs": [
|
914 |
+
{
|
915 |
+
"name": "stdout",
|
916 |
+
"output_type": "stream",
|
917 |
+
"text": [
|
918 |
+
"25 November 2010 - Finnish paints and coatings company Tikkurila Oyj ( HEL : TIK1V ) said today that Finnish state-owned investment company Solidium Oy sold its 14.7 % stake in the company for a total of EUR98m .\n",
|
919 |
+
"{'input_ids': tensor([[ 877, 3277, 1068, 259, 264, 515, 143136, 42068, 263,\n",
|
920 |
+
" 305, 259, 101264, 263, 5835, 22538, 4496, 2697, 20860,\n",
|
921 |
+
" 385, 274, 76347, 259, 267, 259, 93686, 353, 561,\n",
|
922 |
+
" 259, 271, 2426, 7883, 533, 515, 143136, 6509, 264,\n",
|
923 |
+
" 45815, 37624, 5835, 35133, 16558, 20860, 22026, 2476, 5006,\n",
|
924 |
+
" 487, 1448, 259, 96189, 281, 287, 5835, 332, 259,\n",
|
925 |
+
" 262, 2725, 304, 2687, 5577, 282, 259, 260, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
926 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
927 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
928 |
+
"tensor([[ 0, 59006, 1]])\n",
|
929 |
+
"['neutral']\n"
|
930 |
+
]
|
931 |
+
}
|
932 |
+
],
|
933 |
+
"source": [
|
934 |
+
"model.eval()\n",
|
935 |
+
"i = 13\n",
|
936 |
+
"inputs = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\")\n",
|
937 |
+
"print(dataset[\"validation\"][text_column][i])\n",
|
938 |
+
"print(inputs)\n",
|
939 |
+
"\n",
|
940 |
+
"with torch.no_grad():\n",
|
941 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n",
|
942 |
+
" print(outputs)\n",
|
943 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
944 |
+
]
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"cell_type": "code",
|
948 |
+
"execution_count": null,
|
949 |
+
"metadata": {
|
950 |
+
"id": "66c65ea4"
|
951 |
+
},
|
952 |
+
"outputs": [],
|
953 |
+
"source": []
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"cell_type": "code",
|
957 |
+
"execution_count": null,
|
958 |
+
"metadata": {
|
959 |
+
"id": "65e71f78"
|
960 |
+
},
|
961 |
+
"outputs": [],
|
962 |
+
"source": []
|
963 |
+
}
|
964 |
+
],
|
965 |
+
"metadata": {
|
966 |
+
"accelerator": "GPU",
|
967 |
+
"colab": {
|
968 |
+
"gpuType": "T4",
|
969 |
+
"machine_shape": "hm",
|
970 |
+
"provenance": []
|
971 |
+
},
|
972 |
+
"kernelspec": {
|
973 |
+
"display_name": "Python 3",
|
974 |
+
"language": "python",
|
975 |
+
"name": "python3"
|
976 |
+
},
|
977 |
+
"language_info": {
|
978 |
+
"codemirror_mode": {
|
979 |
+
"name": "ipython",
|
980 |
+
"version": 3
|
981 |
+
},
|
982 |
+
"file_extension": ".py",
|
983 |
+
"mimetype": "text/x-python",
|
984 |
+
"name": "python",
|
985 |
+
"nbconvert_exporter": "python",
|
986 |
+
"pygments_lexer": "ipython3",
|
987 |
+
"version": "3.8.3"
|
988 |
+
},
|
989 |
+
"vscode": {
|
990 |
+
"interpreter": {
|
991 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
992 |
+
}
|
993 |
+
},
|
994 |
+
"widgets": {
|
995 |
+
"application/vnd.jupyter.widget-state+json": {
|
996 |
+
"013e3343285f437a893bdd673fb90e22": {
|
997 |
+
"model_module": "@jupyter-widgets/controls",
|
998 |
+
"model_module_version": "1.5.0",
|
999 |
+
"model_name": "FloatProgressModel",
|
1000 |
+
"state": {
|
1001 |
+
"_dom_classes": [],
|
1002 |
+
"_model_module": "@jupyter-widgets/controls",
|
1003 |
+
"_model_module_version": "1.5.0",
|
1004 |
+
"_model_name": "FloatProgressModel",
|
1005 |
+
"_view_count": null,
|
1006 |
+
"_view_module": "@jupyter-widgets/controls",
|
1007 |
+
"_view_module_version": "1.5.0",
|
1008 |
+
"_view_name": "ProgressView",
|
1009 |
+
"bar_style": "",
|
1010 |
+
"description": "",
|
1011 |
+
"description_tooltip": null,
|
1012 |
+
"layout": "IPY_MODEL_5b1bdaf16cbc473081e4237f839167b9",
|
1013 |
+
"max": 227,
|
1014 |
+
"min": 0,
|
1015 |
+
"orientation": "horizontal",
|
1016 |
+
"style": "IPY_MODEL_51f8fb45485540bb985b606d43ae04ea",
|
1017 |
+
"value": 227
|
1018 |
+
}
|
1019 |
+
},
|
1020 |
+
"0c561dab67914ea9b6e1aab803600551": {
|
1021 |
+
"model_module": "@jupyter-widgets/controls",
|
1022 |
+
"model_module_version": "1.5.0",
|
1023 |
+
"model_name": "HBoxModel",
|
1024 |
+
"state": {
|
1025 |
+
"_dom_classes": [],
|
1026 |
+
"_model_module": "@jupyter-widgets/controls",
|
1027 |
+
"_model_module_version": "1.5.0",
|
1028 |
+
"_model_name": "HBoxModel",
|
1029 |
+
"_view_count": null,
|
1030 |
+
"_view_module": "@jupyter-widgets/controls",
|
1031 |
+
"_view_module_version": "1.5.0",
|
1032 |
+
"_view_name": "HBoxView",
|
1033 |
+
"box_style": "",
|
1034 |
+
"children": [
|
1035 |
+
"IPY_MODEL_1e021a1954b44d69a90101a96c360661",
|
1036 |
+
"IPY_MODEL_013e3343285f437a893bdd673fb90e22",
|
1037 |
+
"IPY_MODEL_28802da68fb04d70b1c6bc511a04676f"
|
1038 |
+
],
|
1039 |
+
"layout": "IPY_MODEL_94174da0d6554be087d4527bea5b511a"
|
1040 |
+
}
|
1041 |
+
},
|
1042 |
+
"1b8aada826a0451bb60c418b19178c8c": {
|
1043 |
+
"model_module": "@jupyter-widgets/base",
|
1044 |
+
"model_module_version": "1.2.0",
|
1045 |
+
"model_name": "LayoutModel",
|
1046 |
+
"state": {
|
1047 |
+
"_model_module": "@jupyter-widgets/base",
|
1048 |
+
"_model_module_version": "1.2.0",
|
1049 |
+
"_model_name": "LayoutModel",
|
1050 |
+
"_view_count": null,
|
1051 |
+
"_view_module": "@jupyter-widgets/base",
|
1052 |
+
"_view_module_version": "1.2.0",
|
1053 |
+
"_view_name": "LayoutView",
|
1054 |
+
"align_content": null,
|
1055 |
+
"align_items": null,
|
1056 |
+
"align_self": null,
|
1057 |
+
"border": null,
|
1058 |
+
"bottom": null,
|
1059 |
+
"display": null,
|
1060 |
+
"flex": null,
|
1061 |
+
"flex_flow": null,
|
1062 |
+
"grid_area": null,
|
1063 |
+
"grid_auto_columns": null,
|
1064 |
+
"grid_auto_flow": null,
|
1065 |
+
"grid_auto_rows": null,
|
1066 |
+
"grid_column": null,
|
1067 |
+
"grid_gap": null,
|
1068 |
+
"grid_row": null,
|
1069 |
+
"grid_template_areas": null,
|
1070 |
+
"grid_template_columns": null,
|
1071 |
+
"grid_template_rows": null,
|
1072 |
+
"height": null,
|
1073 |
+
"justify_content": null,
|
1074 |
+
"justify_items": null,
|
1075 |
+
"left": null,
|
1076 |
+
"margin": null,
|
1077 |
+
"max_height": null,
|
1078 |
+
"max_width": null,
|
1079 |
+
"min_height": null,
|
1080 |
+
"min_width": null,
|
1081 |
+
"object_fit": null,
|
1082 |
+
"object_position": null,
|
1083 |
+
"order": null,
|
1084 |
+
"overflow": null,
|
1085 |
+
"overflow_x": null,
|
1086 |
+
"overflow_y": null,
|
1087 |
+
"padding": null,
|
1088 |
+
"right": null,
|
1089 |
+
"top": null,
|
1090 |
+
"visibility": null,
|
1091 |
+
"width": null
|
1092 |
+
}
|
1093 |
+
},
|
1094 |
+
"1bcba805972b484d8b6aa6542c81841c": {
|
1095 |
+
"model_module": "@jupyter-widgets/base",
|
1096 |
+
"model_module_version": "1.2.0",
|
1097 |
+
"model_name": "LayoutModel",
|
1098 |
+
"state": {
|
1099 |
+
"_model_module": "@jupyter-widgets/base",
|
1100 |
+
"_model_module_version": "1.2.0",
|
1101 |
+
"_model_name": "LayoutModel",
|
1102 |
+
"_view_count": null,
|
1103 |
+
"_view_module": "@jupyter-widgets/base",
|
1104 |
+
"_view_module_version": "1.2.0",
|
1105 |
+
"_view_name": "LayoutView",
|
1106 |
+
"align_content": null,
|
1107 |
+
"align_items": null,
|
1108 |
+
"align_self": null,
|
1109 |
+
"border": null,
|
1110 |
+
"bottom": null,
|
1111 |
+
"display": null,
|
1112 |
+
"flex": null,
|
1113 |
+
"flex_flow": null,
|
1114 |
+
"grid_area": null,
|
1115 |
+
"grid_auto_columns": null,
|
1116 |
+
"grid_auto_flow": null,
|
1117 |
+
"grid_auto_rows": null,
|
1118 |
+
"grid_column": null,
|
1119 |
+
"grid_gap": null,
|
1120 |
+
"grid_row": null,
|
1121 |
+
"grid_template_areas": null,
|
1122 |
+
"grid_template_columns": null,
|
1123 |
+
"grid_template_rows": null,
|
1124 |
+
"height": null,
|
1125 |
+
"justify_content": null,
|
1126 |
+
"justify_items": null,
|
1127 |
+
"left": null,
|
1128 |
+
"margin": null,
|
1129 |
+
"max_height": null,
|
1130 |
+
"max_width": null,
|
1131 |
+
"min_height": null,
|
1132 |
+
"min_width": null,
|
1133 |
+
"object_fit": null,
|
1134 |
+
"object_position": null,
|
1135 |
+
"order": null,
|
1136 |
+
"overflow": null,
|
1137 |
+
"overflow_x": null,
|
1138 |
+
"overflow_y": null,
|
1139 |
+
"padding": null,
|
1140 |
+
"right": null,
|
1141 |
+
"top": null,
|
1142 |
+
"visibility": null,
|
1143 |
+
"width": null
|
1144 |
+
}
|
1145 |
+
},
|
1146 |
+
"1e021a1954b44d69a90101a96c360661": {
|
1147 |
+
"model_module": "@jupyter-widgets/controls",
|
1148 |
+
"model_module_version": "1.5.0",
|
1149 |
+
"model_name": "HTMLModel",
|
1150 |
+
"state": {
|
1151 |
+
"_dom_classes": [],
|
1152 |
+
"_model_module": "@jupyter-widgets/controls",
|
1153 |
+
"_model_module_version": "1.5.0",
|
1154 |
+
"_model_name": "HTMLModel",
|
1155 |
+
"_view_count": null,
|
1156 |
+
"_view_module": "@jupyter-widgets/controls",
|
1157 |
+
"_view_module_version": "1.5.0",
|
1158 |
+
"_view_name": "HTMLView",
|
1159 |
+
"description": "",
|
1160 |
+
"description_tooltip": null,
|
1161 |
+
"layout": "IPY_MODEL_dc8ab16a1e6c4e6893c95ccd16568f9a",
|
1162 |
+
"placeholder": "",
|
1163 |
+
"style": "IPY_MODEL_72383136663448d89cf3b82b87cbb392",
|
1164 |
+
"value": "Map: 0%"
|
1165 |
+
}
|
1166 |
+
},
|
1167 |
+
"21f582e1208a4a38ae3c0cdce87e5c14": {
|
1168 |
+
"model_module": "@jupyter-widgets/controls",
|
1169 |
+
"model_module_version": "1.5.0",
|
1170 |
+
"model_name": "HBoxModel",
|
1171 |
+
"state": {
|
1172 |
+
"_dom_classes": [],
|
1173 |
+
"_model_module": "@jupyter-widgets/controls",
|
1174 |
+
"_model_module_version": "1.5.0",
|
1175 |
+
"_model_name": "HBoxModel",
|
1176 |
+
"_view_count": null,
|
1177 |
+
"_view_module": "@jupyter-widgets/controls",
|
1178 |
+
"_view_module_version": "1.5.0",
|
1179 |
+
"_view_name": "HBoxView",
|
1180 |
+
"box_style": "",
|
1181 |
+
"children": [
|
1182 |
+
"IPY_MODEL_d9d37b8b79f24dbf837327a250a5a346",
|
1183 |
+
"IPY_MODEL_8ba99043c350456d8623ce1d8c98f7a0",
|
1184 |
+
"IPY_MODEL_8bf37c12d5f74f7d8dbba423a9ee3ac3"
|
1185 |
+
],
|
1186 |
+
"layout": "IPY_MODEL_f9d86ad7fa734f3a857505a542256a3c"
|
1187 |
+
}
|
1188 |
+
},
|
1189 |
+
"28802da68fb04d70b1c6bc511a04676f": {
|
1190 |
+
"model_module": "@jupyter-widgets/controls",
|
1191 |
+
"model_module_version": "1.5.0",
|
1192 |
+
"model_name": "HTMLModel",
|
1193 |
+
"state": {
|
1194 |
+
"_dom_classes": [],
|
1195 |
+
"_model_module": "@jupyter-widgets/controls",
|
1196 |
+
"_model_module_version": "1.5.0",
|
1197 |
+
"_model_name": "HTMLModel",
|
1198 |
+
"_view_count": null,
|
1199 |
+
"_view_module": "@jupyter-widgets/controls",
|
1200 |
+
"_view_module_version": "1.5.0",
|
1201 |
+
"_view_name": "HTMLView",
|
1202 |
+
"description": "",
|
1203 |
+
"description_tooltip": null,
|
1204 |
+
"layout": "IPY_MODEL_f760cd4758334ca9a43fd15612fd808b",
|
1205 |
+
"placeholder": "",
|
1206 |
+
"style": "IPY_MODEL_f60e9915d2a74ca7bc010d7684f5acf6",
|
1207 |
+
"value": " 0/227 [00:00<?, ? examples/s]"
|
1208 |
+
}
|
1209 |
+
},
|
1210 |
+
"2e2b6c3f48974ea4aca9b7710a03379e": {
|
1211 |
+
"model_module": "@jupyter-widgets/controls",
|
1212 |
+
"model_module_version": "1.5.0",
|
1213 |
+
"model_name": "FloatProgressModel",
|
1214 |
+
"state": {
|
1215 |
+
"_dom_classes": [],
|
1216 |
+
"_model_module": "@jupyter-widgets/controls",
|
1217 |
+
"_model_module_version": "1.5.0",
|
1218 |
+
"_model_name": "FloatProgressModel",
|
1219 |
+
"_view_count": null,
|
1220 |
+
"_view_module": "@jupyter-widgets/controls",
|
1221 |
+
"_view_module_version": "1.5.0",
|
1222 |
+
"_view_name": "ProgressView",
|
1223 |
+
"bar_style": "",
|
1224 |
+
"description": "",
|
1225 |
+
"description_tooltip": null,
|
1226 |
+
"layout": "IPY_MODEL_d93bfb366db14c2fa77b038752f69b38",
|
1227 |
+
"max": 2037,
|
1228 |
+
"min": 0,
|
1229 |
+
"orientation": "horizontal",
|
1230 |
+
"style": "IPY_MODEL_749aaa39135841f98b344ffb840df3d4",
|
1231 |
+
"value": 2037
|
1232 |
+
}
|
1233 |
+
},
|
1234 |
+
"34db17e0f28d40d6abafb8acd5dda379": {
|
1235 |
+
"model_module": "@jupyter-widgets/base",
|
1236 |
+
"model_module_version": "1.2.0",
|
1237 |
+
"model_name": "LayoutModel",
|
1238 |
+
"state": {
|
1239 |
+
"_model_module": "@jupyter-widgets/base",
|
1240 |
+
"_model_module_version": "1.2.0",
|
1241 |
+
"_model_name": "LayoutModel",
|
1242 |
+
"_view_count": null,
|
1243 |
+
"_view_module": "@jupyter-widgets/base",
|
1244 |
+
"_view_module_version": "1.2.0",
|
1245 |
+
"_view_name": "LayoutView",
|
1246 |
+
"align_content": null,
|
1247 |
+
"align_items": null,
|
1248 |
+
"align_self": null,
|
1249 |
+
"border": null,
|
1250 |
+
"bottom": null,
|
1251 |
+
"display": null,
|
1252 |
+
"flex": null,
|
1253 |
+
"flex_flow": null,
|
1254 |
+
"grid_area": null,
|
1255 |
+
"grid_auto_columns": null,
|
1256 |
+
"grid_auto_flow": null,
|
1257 |
+
"grid_auto_rows": null,
|
1258 |
+
"grid_column": null,
|
1259 |
+
"grid_gap": null,
|
1260 |
+
"grid_row": null,
|
1261 |
+
"grid_template_areas": null,
|
1262 |
+
"grid_template_columns": null,
|
1263 |
+
"grid_template_rows": null,
|
1264 |
+
"height": null,
|
1265 |
+
"justify_content": null,
|
1266 |
+
"justify_items": null,
|
1267 |
+
"left": null,
|
1268 |
+
"margin": null,
|
1269 |
+
"max_height": null,
|
1270 |
+
"max_width": null,
|
1271 |
+
"min_height": null,
|
1272 |
+
"min_width": null,
|
1273 |
+
"object_fit": null,
|
1274 |
+
"object_position": null,
|
1275 |
+
"order": null,
|
1276 |
+
"overflow": null,
|
1277 |
+
"overflow_x": null,
|
1278 |
+
"overflow_y": null,
|
1279 |
+
"padding": null,
|
1280 |
+
"right": null,
|
1281 |
+
"top": null,
|
1282 |
+
"visibility": "hidden",
|
1283 |
+
"width": null
|
1284 |
+
}
|
1285 |
+
},
|
1286 |
+
"3b175b452f4347558aa3c4501cc90030": {
|
1287 |
+
"model_module": "@jupyter-widgets/controls",
|
1288 |
+
"model_module_version": "1.5.0",
|
1289 |
+
"model_name": "HTMLModel",
|
1290 |
+
"state": {
|
1291 |
+
"_dom_classes": [],
|
1292 |
+
"_model_module": "@jupyter-widgets/controls",
|
1293 |
+
"_model_module_version": "1.5.0",
|
1294 |
+
"_model_name": "HTMLModel",
|
1295 |
+
"_view_count": null,
|
1296 |
+
"_view_module": "@jupyter-widgets/controls",
|
1297 |
+
"_view_module_version": "1.5.0",
|
1298 |
+
"_view_name": "HTMLView",
|
1299 |
+
"description": "",
|
1300 |
+
"description_tooltip": null,
|
1301 |
+
"layout": "IPY_MODEL_6f9453484ea94587a64d70f1b3a1f6e4",
|
1302 |
+
"placeholder": "",
|
1303 |
+
"style": "IPY_MODEL_48770ef159f44c01be2a75c75aecd80f",
|
1304 |
+
"value": " 0/2037 [00:00<?, ? examples/s]"
|
1305 |
+
}
|
1306 |
+
},
|
1307 |
+
"48770ef159f44c01be2a75c75aecd80f": {
|
1308 |
+
"model_module": "@jupyter-widgets/controls",
|
1309 |
+
"model_module_version": "1.5.0",
|
1310 |
+
"model_name": "DescriptionStyleModel",
|
1311 |
+
"state": {
|
1312 |
+
"_model_module": "@jupyter-widgets/controls",
|
1313 |
+
"_model_module_version": "1.5.0",
|
1314 |
+
"_model_name": "DescriptionStyleModel",
|
1315 |
+
"_view_count": null,
|
1316 |
+
"_view_module": "@jupyter-widgets/base",
|
1317 |
+
"_view_module_version": "1.2.0",
|
1318 |
+
"_view_name": "StyleView",
|
1319 |
+
"description_width": ""
|
1320 |
+
}
|
1321 |
+
},
|
1322 |
+
"51f8fb45485540bb985b606d43ae04ea": {
|
1323 |
+
"model_module": "@jupyter-widgets/controls",
|
1324 |
+
"model_module_version": "1.5.0",
|
1325 |
+
"model_name": "ProgressStyleModel",
|
1326 |
+
"state": {
|
1327 |
+
"_model_module": "@jupyter-widgets/controls",
|
1328 |
+
"_model_module_version": "1.5.0",
|
1329 |
+
"_model_name": "ProgressStyleModel",
|
1330 |
+
"_view_count": null,
|
1331 |
+
"_view_module": "@jupyter-widgets/base",
|
1332 |
+
"_view_module_version": "1.2.0",
|
1333 |
+
"_view_name": "StyleView",
|
1334 |
+
"bar_color": null,
|
1335 |
+
"description_width": ""
|
1336 |
+
}
|
1337 |
+
},
|
1338 |
+
"5307864c2b1143f4b44f3f172611113e": {
|
1339 |
+
"model_module": "@jupyter-widgets/controls",
|
1340 |
+
"model_module_version": "1.5.0",
|
1341 |
+
"model_name": "HTMLModel",
|
1342 |
+
"state": {
|
1343 |
+
"_dom_classes": [],
|
1344 |
+
"_model_module": "@jupyter-widgets/controls",
|
1345 |
+
"_model_module_version": "1.5.0",
|
1346 |
+
"_model_name": "HTMLModel",
|
1347 |
+
"_view_count": null,
|
1348 |
+
"_view_module": "@jupyter-widgets/controls",
|
1349 |
+
"_view_module_version": "1.5.0",
|
1350 |
+
"_view_name": "HTMLView",
|
1351 |
+
"description": "",
|
1352 |
+
"description_tooltip": null,
|
1353 |
+
"layout": "IPY_MODEL_8361dc2e0a834da6a0ad87f7b0cb4e1b",
|
1354 |
+
"placeholder": "",
|
1355 |
+
"style": "IPY_MODEL_56f1d9d56dd44c8aa923d09a59cb0ebc",
|
1356 |
+
"value": "Running tokenizer on dataset: 98%"
|
1357 |
+
}
|
1358 |
+
},
|
1359 |
+
"56f1d9d56dd44c8aa923d09a59cb0ebc": {
|
1360 |
+
"model_module": "@jupyter-widgets/controls",
|
1361 |
+
"model_module_version": "1.5.0",
|
1362 |
+
"model_name": "DescriptionStyleModel",
|
1363 |
+
"state": {
|
1364 |
+
"_model_module": "@jupyter-widgets/controls",
|
1365 |
+
"_model_module_version": "1.5.0",
|
1366 |
+
"_model_name": "DescriptionStyleModel",
|
1367 |
+
"_view_count": null,
|
1368 |
+
"_view_module": "@jupyter-widgets/base",
|
1369 |
+
"_view_module_version": "1.2.0",
|
1370 |
+
"_view_name": "StyleView",
|
1371 |
+
"description_width": ""
|
1372 |
+
}
|
1373 |
+
},
|
1374 |
+
"5b1bdaf16cbc473081e4237f839167b9": {
|
1375 |
+
"model_module": "@jupyter-widgets/base",
|
1376 |
+
"model_module_version": "1.2.0",
|
1377 |
+
"model_name": "LayoutModel",
|
1378 |
+
"state": {
|
1379 |
+
"_model_module": "@jupyter-widgets/base",
|
1380 |
+
"_model_module_version": "1.2.0",
|
1381 |
+
"_model_name": "LayoutModel",
|
1382 |
+
"_view_count": null,
|
1383 |
+
"_view_module": "@jupyter-widgets/base",
|
1384 |
+
"_view_module_version": "1.2.0",
|
1385 |
+
"_view_name": "LayoutView",
|
1386 |
+
"align_content": null,
|
1387 |
+
"align_items": null,
|
1388 |
+
"align_self": null,
|
1389 |
+
"border": null,
|
1390 |
+
"bottom": null,
|
1391 |
+
"display": null,
|
1392 |
+
"flex": null,
|
1393 |
+
"flex_flow": null,
|
1394 |
+
"grid_area": null,
|
1395 |
+
"grid_auto_columns": null,
|
1396 |
+
"grid_auto_flow": null,
|
1397 |
+
"grid_auto_rows": null,
|
1398 |
+
"grid_column": null,
|
1399 |
+
"grid_gap": null,
|
1400 |
+
"grid_row": null,
|
1401 |
+
"grid_template_areas": null,
|
1402 |
+
"grid_template_columns": null,
|
1403 |
+
"grid_template_rows": null,
|
1404 |
+
"height": null,
|
1405 |
+
"justify_content": null,
|
1406 |
+
"justify_items": null,
|
1407 |
+
"left": null,
|
1408 |
+
"margin": null,
|
1409 |
+
"max_height": null,
|
1410 |
+
"max_width": null,
|
1411 |
+
"min_height": null,
|
1412 |
+
"min_width": null,
|
1413 |
+
"object_fit": null,
|
1414 |
+
"object_position": null,
|
1415 |
+
"order": null,
|
1416 |
+
"overflow": null,
|
1417 |
+
"overflow_x": null,
|
1418 |
+
"overflow_y": null,
|
1419 |
+
"padding": null,
|
1420 |
+
"right": null,
|
1421 |
+
"top": null,
|
1422 |
+
"visibility": null,
|
1423 |
+
"width": null
|
1424 |
+
}
|
1425 |
+
},
|
1426 |
+
"5e5aa58adb0f48579871df33845e30b1": {
|
1427 |
+
"model_module": "@jupyter-widgets/base",
|
1428 |
+
"model_module_version": "1.2.0",
|
1429 |
+
"model_name": "LayoutModel",
|
1430 |
+
"state": {
|
1431 |
+
"_model_module": "@jupyter-widgets/base",
|
1432 |
+
"_model_module_version": "1.2.0",
|
1433 |
+
"_model_name": "LayoutModel",
|
1434 |
+
"_view_count": null,
|
1435 |
+
"_view_module": "@jupyter-widgets/base",
|
1436 |
+
"_view_module_version": "1.2.0",
|
1437 |
+
"_view_name": "LayoutView",
|
1438 |
+
"align_content": null,
|
1439 |
+
"align_items": null,
|
1440 |
+
"align_self": null,
|
1441 |
+
"border": null,
|
1442 |
+
"bottom": null,
|
1443 |
+
"display": null,
|
1444 |
+
"flex": null,
|
1445 |
+
"flex_flow": null,
|
1446 |
+
"grid_area": null,
|
1447 |
+
"grid_auto_columns": null,
|
1448 |
+
"grid_auto_flow": null,
|
1449 |
+
"grid_auto_rows": null,
|
1450 |
+
"grid_column": null,
|
1451 |
+
"grid_gap": null,
|
1452 |
+
"grid_row": null,
|
1453 |
+
"grid_template_areas": null,
|
1454 |
+
"grid_template_columns": null,
|
1455 |
+
"grid_template_rows": null,
|
1456 |
+
"height": null,
|
1457 |
+
"justify_content": null,
|
1458 |
+
"justify_items": null,
|
1459 |
+
"left": null,
|
1460 |
+
"margin": null,
|
1461 |
+
"max_height": null,
|
1462 |
+
"max_width": null,
|
1463 |
+
"min_height": null,
|
1464 |
+
"min_width": null,
|
1465 |
+
"object_fit": null,
|
1466 |
+
"object_position": null,
|
1467 |
+
"order": null,
|
1468 |
+
"overflow": null,
|
1469 |
+
"overflow_x": null,
|
1470 |
+
"overflow_y": null,
|
1471 |
+
"padding": null,
|
1472 |
+
"right": null,
|
1473 |
+
"top": null,
|
1474 |
+
"visibility": null,
|
1475 |
+
"width": null
|
1476 |
+
}
|
1477 |
+
},
|
1478 |
+
"661e1b29c59a4295b594edfa4f50ff87": {
|
1479 |
+
"model_module": "@jupyter-widgets/controls",
|
1480 |
+
"model_module_version": "1.5.0",
|
1481 |
+
"model_name": "HTMLModel",
|
1482 |
+
"state": {
|
1483 |
+
"_dom_classes": [],
|
1484 |
+
"_model_module": "@jupyter-widgets/controls",
|
1485 |
+
"_model_module_version": "1.5.0",
|
1486 |
+
"_model_name": "HTMLModel",
|
1487 |
+
"_view_count": null,
|
1488 |
+
"_view_module": "@jupyter-widgets/controls",
|
1489 |
+
"_view_module_version": "1.5.0",
|
1490 |
+
"_view_name": "HTMLView",
|
1491 |
+
"description": "",
|
1492 |
+
"description_tooltip": null,
|
1493 |
+
"layout": "IPY_MODEL_b138f91be7f94008806eaf0a6988bc3f",
|
1494 |
+
"placeholder": "",
|
1495 |
+
"style": "IPY_MODEL_da14180f51ab44b48470cb9ea74d3864",
|
1496 |
+
"value": " 1/1 [00:00<00:00, 67.12it/s]"
|
1497 |
+
}
|
1498 |
+
},
|
1499 |
+
"664c02903cb248fb9339805bccfd6c1d": {
|
1500 |
+
"model_module": "@jupyter-widgets/base",
|
1501 |
+
"model_module_version": "1.2.0",
|
1502 |
+
"model_name": "LayoutModel",
|
1503 |
+
"state": {
|
1504 |
+
"_model_module": "@jupyter-widgets/base",
|
1505 |
+
"_model_module_version": "1.2.0",
|
1506 |
+
"_model_name": "LayoutModel",
|
1507 |
+
"_view_count": null,
|
1508 |
+
"_view_module": "@jupyter-widgets/base",
|
1509 |
+
"_view_module_version": "1.2.0",
|
1510 |
+
"_view_name": "LayoutView",
|
1511 |
+
"align_content": null,
|
1512 |
+
"align_items": null,
|
1513 |
+
"align_self": null,
|
1514 |
+
"border": null,
|
1515 |
+
"bottom": null,
|
1516 |
+
"display": null,
|
1517 |
+
"flex": null,
|
1518 |
+
"flex_flow": null,
|
1519 |
+
"grid_area": null,
|
1520 |
+
"grid_auto_columns": null,
|
1521 |
+
"grid_auto_flow": null,
|
1522 |
+
"grid_auto_rows": null,
|
1523 |
+
"grid_column": null,
|
1524 |
+
"grid_gap": null,
|
1525 |
+
"grid_row": null,
|
1526 |
+
"grid_template_areas": null,
|
1527 |
+
"grid_template_columns": null,
|
1528 |
+
"grid_template_rows": null,
|
1529 |
+
"height": null,
|
1530 |
+
"justify_content": null,
|
1531 |
+
"justify_items": null,
|
1532 |
+
"left": null,
|
1533 |
+
"margin": null,
|
1534 |
+
"max_height": null,
|
1535 |
+
"max_width": null,
|
1536 |
+
"min_height": null,
|
1537 |
+
"min_width": null,
|
1538 |
+
"object_fit": null,
|
1539 |
+
"object_position": null,
|
1540 |
+
"order": null,
|
1541 |
+
"overflow": null,
|
1542 |
+
"overflow_x": null,
|
1543 |
+
"overflow_y": null,
|
1544 |
+
"padding": null,
|
1545 |
+
"right": null,
|
1546 |
+
"top": null,
|
1547 |
+
"visibility": null,
|
1548 |
+
"width": null
|
1549 |
+
}
|
1550 |
+
},
|
1551 |
+
"6a567e0a1a5447519c5df10e777520cf": {
|
1552 |
+
"model_module": "@jupyter-widgets/controls",
|
1553 |
+
"model_module_version": "1.5.0",
|
1554 |
+
"model_name": "DescriptionStyleModel",
|
1555 |
+
"state": {
|
1556 |
+
"_model_module": "@jupyter-widgets/controls",
|
1557 |
+
"_model_module_version": "1.5.0",
|
1558 |
+
"_model_name": "DescriptionStyleModel",
|
1559 |
+
"_view_count": null,
|
1560 |
+
"_view_module": "@jupyter-widgets/base",
|
1561 |
+
"_view_module_version": "1.2.0",
|
1562 |
+
"_view_name": "StyleView",
|
1563 |
+
"description_width": ""
|
1564 |
+
}
|
1565 |
+
},
|
1566 |
+
"6f9453484ea94587a64d70f1b3a1f6e4": {
|
1567 |
+
"model_module": "@jupyter-widgets/base",
|
1568 |
+
"model_module_version": "1.2.0",
|
1569 |
+
"model_name": "LayoutModel",
|
1570 |
+
"state": {
|
1571 |
+
"_model_module": "@jupyter-widgets/base",
|
1572 |
+
"_model_module_version": "1.2.0",
|
1573 |
+
"_model_name": "LayoutModel",
|
1574 |
+
"_view_count": null,
|
1575 |
+
"_view_module": "@jupyter-widgets/base",
|
1576 |
+
"_view_module_version": "1.2.0",
|
1577 |
+
"_view_name": "LayoutView",
|
1578 |
+
"align_content": null,
|
1579 |
+
"align_items": null,
|
1580 |
+
"align_self": null,
|
1581 |
+
"border": null,
|
1582 |
+
"bottom": null,
|
1583 |
+
"display": null,
|
1584 |
+
"flex": null,
|
1585 |
+
"flex_flow": null,
|
1586 |
+
"grid_area": null,
|
1587 |
+
"grid_auto_columns": null,
|
1588 |
+
"grid_auto_flow": null,
|
1589 |
+
"grid_auto_rows": null,
|
1590 |
+
"grid_column": null,
|
1591 |
+
"grid_gap": null,
|
1592 |
+
"grid_row": null,
|
1593 |
+
"grid_template_areas": null,
|
1594 |
+
"grid_template_columns": null,
|
1595 |
+
"grid_template_rows": null,
|
1596 |
+
"height": null,
|
1597 |
+
"justify_content": null,
|
1598 |
+
"justify_items": null,
|
1599 |
+
"left": null,
|
1600 |
+
"margin": null,
|
1601 |
+
"max_height": null,
|
1602 |
+
"max_width": null,
|
1603 |
+
"min_height": null,
|
1604 |
+
"min_width": null,
|
1605 |
+
"object_fit": null,
|
1606 |
+
"object_position": null,
|
1607 |
+
"order": null,
|
1608 |
+
"overflow": null,
|
1609 |
+
"overflow_x": null,
|
1610 |
+
"overflow_y": null,
|
1611 |
+
"padding": null,
|
1612 |
+
"right": null,
|
1613 |
+
"top": null,
|
1614 |
+
"visibility": null,
|
1615 |
+
"width": null
|
1616 |
+
}
|
1617 |
+
},
|
1618 |
+
"71bcdb1e02144c9587879d8d815b91d4": {
|
1619 |
+
"model_module": "@jupyter-widgets/controls",
|
1620 |
+
"model_module_version": "1.5.0",
|
1621 |
+
"model_name": "DescriptionStyleModel",
|
1622 |
+
"state": {
|
1623 |
+
"_model_module": "@jupyter-widgets/controls",
|
1624 |
+
"_model_module_version": "1.5.0",
|
1625 |
+
"_model_name": "DescriptionStyleModel",
|
1626 |
+
"_view_count": null,
|
1627 |
+
"_view_module": "@jupyter-widgets/base",
|
1628 |
+
"_view_module_version": "1.2.0",
|
1629 |
+
"_view_name": "StyleView",
|
1630 |
+
"description_width": ""
|
1631 |
+
}
|
1632 |
+
},
|
1633 |
+
"72383136663448d89cf3b82b87cbb392": {
|
1634 |
+
"model_module": "@jupyter-widgets/controls",
|
1635 |
+
"model_module_version": "1.5.0",
|
1636 |
+
"model_name": "DescriptionStyleModel",
|
1637 |
+
"state": {
|
1638 |
+
"_model_module": "@jupyter-widgets/controls",
|
1639 |
+
"_model_module_version": "1.5.0",
|
1640 |
+
"_model_name": "DescriptionStyleModel",
|
1641 |
+
"_view_count": null,
|
1642 |
+
"_view_module": "@jupyter-widgets/base",
|
1643 |
+
"_view_module_version": "1.2.0",
|
1644 |
+
"_view_name": "StyleView",
|
1645 |
+
"description_width": ""
|
1646 |
+
}
|
1647 |
+
},
|
1648 |
+
"749aaa39135841f98b344ffb840df3d4": {
|
1649 |
+
"model_module": "@jupyter-widgets/controls",
|
1650 |
+
"model_module_version": "1.5.0",
|
1651 |
+
"model_name": "ProgressStyleModel",
|
1652 |
+
"state": {
|
1653 |
+
"_model_module": "@jupyter-widgets/controls",
|
1654 |
+
"_model_module_version": "1.5.0",
|
1655 |
+
"_model_name": "ProgressStyleModel",
|
1656 |
+
"_view_count": null,
|
1657 |
+
"_view_module": "@jupyter-widgets/base",
|
1658 |
+
"_view_module_version": "1.2.0",
|
1659 |
+
"_view_name": "StyleView",
|
1660 |
+
"bar_color": null,
|
1661 |
+
"description_width": ""
|
1662 |
+
}
|
1663 |
+
},
|
1664 |
+
"79d0ede7a5b24756aa6d34fda8c29159": {
|
1665 |
+
"model_module": "@jupyter-widgets/controls",
|
1666 |
+
"model_module_version": "1.5.0",
|
1667 |
+
"model_name": "FloatProgressModel",
|
1668 |
+
"state": {
|
1669 |
+
"_dom_classes": [],
|
1670 |
+
"_model_module": "@jupyter-widgets/controls",
|
1671 |
+
"_model_module_version": "1.5.0",
|
1672 |
+
"_model_name": "FloatProgressModel",
|
1673 |
+
"_view_count": null,
|
1674 |
+
"_view_module": "@jupyter-widgets/controls",
|
1675 |
+
"_view_module_version": "1.5.0",
|
1676 |
+
"_view_name": "ProgressView",
|
1677 |
+
"bar_style": "",
|
1678 |
+
"description": "",
|
1679 |
+
"description_tooltip": null,
|
1680 |
+
"layout": "IPY_MODEL_ca509bd409624c998e555c9a779b8aae",
|
1681 |
+
"max": 2037,
|
1682 |
+
"min": 0,
|
1683 |
+
"orientation": "horizontal",
|
1684 |
+
"style": "IPY_MODEL_9c890fc422954347b86d3bde7a421caf",
|
1685 |
+
"value": 2037
|
1686 |
+
}
|
1687 |
+
},
|
1688 |
+
"7aeca19b84904906a04c12659f84ff9e": {
|
1689 |
+
"model_module": "@jupyter-widgets/base",
|
1690 |
+
"model_module_version": "1.2.0",
|
1691 |
+
"model_name": "LayoutModel",
|
1692 |
+
"state": {
|
1693 |
+
"_model_module": "@jupyter-widgets/base",
|
1694 |
+
"_model_module_version": "1.2.0",
|
1695 |
+
"_model_name": "LayoutModel",
|
1696 |
+
"_view_count": null,
|
1697 |
+
"_view_module": "@jupyter-widgets/base",
|
1698 |
+
"_view_module_version": "1.2.0",
|
1699 |
+
"_view_name": "LayoutView",
|
1700 |
+
"align_content": null,
|
1701 |
+
"align_items": null,
|
1702 |
+
"align_self": null,
|
1703 |
+
"border": null,
|
1704 |
+
"bottom": null,
|
1705 |
+
"display": null,
|
1706 |
+
"flex": null,
|
1707 |
+
"flex_flow": null,
|
1708 |
+
"grid_area": null,
|
1709 |
+
"grid_auto_columns": null,
|
1710 |
+
"grid_auto_flow": null,
|
1711 |
+
"grid_auto_rows": null,
|
1712 |
+
"grid_column": null,
|
1713 |
+
"grid_gap": null,
|
1714 |
+
"grid_row": null,
|
1715 |
+
"grid_template_areas": null,
|
1716 |
+
"grid_template_columns": null,
|
1717 |
+
"grid_template_rows": null,
|
1718 |
+
"height": null,
|
1719 |
+
"justify_content": null,
|
1720 |
+
"justify_items": null,
|
1721 |
+
"left": null,
|
1722 |
+
"margin": null,
|
1723 |
+
"max_height": null,
|
1724 |
+
"max_width": null,
|
1725 |
+
"min_height": null,
|
1726 |
+
"min_width": null,
|
1727 |
+
"object_fit": null,
|
1728 |
+
"object_position": null,
|
1729 |
+
"order": null,
|
1730 |
+
"overflow": null,
|
1731 |
+
"overflow_x": null,
|
1732 |
+
"overflow_y": null,
|
1733 |
+
"padding": null,
|
1734 |
+
"right": null,
|
1735 |
+
"top": null,
|
1736 |
+
"visibility": null,
|
1737 |
+
"width": null
|
1738 |
+
}
|
1739 |
+
},
|
1740 |
+
"82195b807b664a9585a76e0e50fe7609": {
|
1741 |
+
"model_module": "@jupyter-widgets/controls",
|
1742 |
+
"model_module_version": "1.5.0",
|
1743 |
+
"model_name": "ProgressStyleModel",
|
1744 |
+
"state": {
|
1745 |
+
"_model_module": "@jupyter-widgets/controls",
|
1746 |
+
"_model_module_version": "1.5.0",
|
1747 |
+
"_model_name": "ProgressStyleModel",
|
1748 |
+
"_view_count": null,
|
1749 |
+
"_view_module": "@jupyter-widgets/base",
|
1750 |
+
"_view_module_version": "1.2.0",
|
1751 |
+
"_view_name": "StyleView",
|
1752 |
+
"bar_color": null,
|
1753 |
+
"description_width": ""
|
1754 |
+
}
|
1755 |
+
},
|
1756 |
+
"8361dc2e0a834da6a0ad87f7b0cb4e1b": {
|
1757 |
+
"model_module": "@jupyter-widgets/base",
|
1758 |
+
"model_module_version": "1.2.0",
|
1759 |
+
"model_name": "LayoutModel",
|
1760 |
+
"state": {
|
1761 |
+
"_model_module": "@jupyter-widgets/base",
|
1762 |
+
"_model_module_version": "1.2.0",
|
1763 |
+
"_model_name": "LayoutModel",
|
1764 |
+
"_view_count": null,
|
1765 |
+
"_view_module": "@jupyter-widgets/base",
|
1766 |
+
"_view_module_version": "1.2.0",
|
1767 |
+
"_view_name": "LayoutView",
|
1768 |
+
"align_content": null,
|
1769 |
+
"align_items": null,
|
1770 |
+
"align_self": null,
|
1771 |
+
"border": null,
|
1772 |
+
"bottom": null,
|
1773 |
+
"display": null,
|
1774 |
+
"flex": null,
|
1775 |
+
"flex_flow": null,
|
1776 |
+
"grid_area": null,
|
1777 |
+
"grid_auto_columns": null,
|
1778 |
+
"grid_auto_flow": null,
|
1779 |
+
"grid_auto_rows": null,
|
1780 |
+
"grid_column": null,
|
1781 |
+
"grid_gap": null,
|
1782 |
+
"grid_row": null,
|
1783 |
+
"grid_template_areas": null,
|
1784 |
+
"grid_template_columns": null,
|
1785 |
+
"grid_template_rows": null,
|
1786 |
+
"height": null,
|
1787 |
+
"justify_content": null,
|
1788 |
+
"justify_items": null,
|
1789 |
+
"left": null,
|
1790 |
+
"margin": null,
|
1791 |
+
"max_height": null,
|
1792 |
+
"max_width": null,
|
1793 |
+
"min_height": null,
|
1794 |
+
"min_width": null,
|
1795 |
+
"object_fit": null,
|
1796 |
+
"object_position": null,
|
1797 |
+
"order": null,
|
1798 |
+
"overflow": null,
|
1799 |
+
"overflow_x": null,
|
1800 |
+
"overflow_y": null,
|
1801 |
+
"padding": null,
|
1802 |
+
"right": null,
|
1803 |
+
"top": null,
|
1804 |
+
"visibility": null,
|
1805 |
+
"width": null
|
1806 |
+
}
|
1807 |
+
},
|
1808 |
+
"8621932be14f42858d841e2ac1b173e7": {
|
1809 |
+
"model_module": "@jupyter-widgets/base",
|
1810 |
+
"model_module_version": "1.2.0",
|
1811 |
+
"model_name": "LayoutModel",
|
1812 |
+
"state": {
|
1813 |
+
"_model_module": "@jupyter-widgets/base",
|
1814 |
+
"_model_module_version": "1.2.0",
|
1815 |
+
"_model_name": "LayoutModel",
|
1816 |
+
"_view_count": null,
|
1817 |
+
"_view_module": "@jupyter-widgets/base",
|
1818 |
+
"_view_module_version": "1.2.0",
|
1819 |
+
"_view_name": "LayoutView",
|
1820 |
+
"align_content": null,
|
1821 |
+
"align_items": null,
|
1822 |
+
"align_self": null,
|
1823 |
+
"border": null,
|
1824 |
+
"bottom": null,
|
1825 |
+
"display": null,
|
1826 |
+
"flex": null,
|
1827 |
+
"flex_flow": null,
|
1828 |
+
"grid_area": null,
|
1829 |
+
"grid_auto_columns": null,
|
1830 |
+
"grid_auto_flow": null,
|
1831 |
+
"grid_auto_rows": null,
|
1832 |
+
"grid_column": null,
|
1833 |
+
"grid_gap": null,
|
1834 |
+
"grid_row": null,
|
1835 |
+
"grid_template_areas": null,
|
1836 |
+
"grid_template_columns": null,
|
1837 |
+
"grid_template_rows": null,
|
1838 |
+
"height": null,
|
1839 |
+
"justify_content": null,
|
1840 |
+
"justify_items": null,
|
1841 |
+
"left": null,
|
1842 |
+
"margin": null,
|
1843 |
+
"max_height": null,
|
1844 |
+
"max_width": null,
|
1845 |
+
"min_height": null,
|
1846 |
+
"min_width": null,
|
1847 |
+
"object_fit": null,
|
1848 |
+
"object_position": null,
|
1849 |
+
"order": null,
|
1850 |
+
"overflow": null,
|
1851 |
+
"overflow_x": null,
|
1852 |
+
"overflow_y": null,
|
1853 |
+
"padding": null,
|
1854 |
+
"right": null,
|
1855 |
+
"top": null,
|
1856 |
+
"visibility": null,
|
1857 |
+
"width": null
|
1858 |
+
}
|
1859 |
+
},
|
1860 |
+
"86bf02b06ed740a88015c2b944205c1e": {
|
1861 |
+
"model_module": "@jupyter-widgets/base",
|
1862 |
+
"model_module_version": "1.2.0",
|
1863 |
+
"model_name": "LayoutModel",
|
1864 |
+
"state": {
|
1865 |
+
"_model_module": "@jupyter-widgets/base",
|
1866 |
+
"_model_module_version": "1.2.0",
|
1867 |
+
"_model_name": "LayoutModel",
|
1868 |
+
"_view_count": null,
|
1869 |
+
"_view_module": "@jupyter-widgets/base",
|
1870 |
+
"_view_module_version": "1.2.0",
|
1871 |
+
"_view_name": "LayoutView",
|
1872 |
+
"align_content": null,
|
1873 |
+
"align_items": null,
|
1874 |
+
"align_self": null,
|
1875 |
+
"border": null,
|
1876 |
+
"bottom": null,
|
1877 |
+
"display": null,
|
1878 |
+
"flex": null,
|
1879 |
+
"flex_flow": null,
|
1880 |
+
"grid_area": null,
|
1881 |
+
"grid_auto_columns": null,
|
1882 |
+
"grid_auto_flow": null,
|
1883 |
+
"grid_auto_rows": null,
|
1884 |
+
"grid_column": null,
|
1885 |
+
"grid_gap": null,
|
1886 |
+
"grid_row": null,
|
1887 |
+
"grid_template_areas": null,
|
1888 |
+
"grid_template_columns": null,
|
1889 |
+
"grid_template_rows": null,
|
1890 |
+
"height": null,
|
1891 |
+
"justify_content": null,
|
1892 |
+
"justify_items": null,
|
1893 |
+
"left": null,
|
1894 |
+
"margin": null,
|
1895 |
+
"max_height": null,
|
1896 |
+
"max_width": null,
|
1897 |
+
"min_height": null,
|
1898 |
+
"min_width": null,
|
1899 |
+
"object_fit": null,
|
1900 |
+
"object_position": null,
|
1901 |
+
"order": null,
|
1902 |
+
"overflow": null,
|
1903 |
+
"overflow_x": null,
|
1904 |
+
"overflow_y": null,
|
1905 |
+
"padding": null,
|
1906 |
+
"right": null,
|
1907 |
+
"top": null,
|
1908 |
+
"visibility": null,
|
1909 |
+
"width": null
|
1910 |
+
}
|
1911 |
+
},
|
1912 |
+
"8ba99043c350456d8623ce1d8c98f7a0": {
|
1913 |
+
"model_module": "@jupyter-widgets/controls",
|
1914 |
+
"model_module_version": "1.5.0",
|
1915 |
+
"model_name": "FloatProgressModel",
|
1916 |
+
"state": {
|
1917 |
+
"_dom_classes": [],
|
1918 |
+
"_model_module": "@jupyter-widgets/controls",
|
1919 |
+
"_model_module_version": "1.5.0",
|
1920 |
+
"_model_name": "FloatProgressModel",
|
1921 |
+
"_view_count": null,
|
1922 |
+
"_view_module": "@jupyter-widgets/controls",
|
1923 |
+
"_view_module_version": "1.5.0",
|
1924 |
+
"_view_name": "ProgressView",
|
1925 |
+
"bar_style": "",
|
1926 |
+
"description": "",
|
1927 |
+
"description_tooltip": null,
|
1928 |
+
"layout": "IPY_MODEL_664c02903cb248fb9339805bccfd6c1d",
|
1929 |
+
"max": 227,
|
1930 |
+
"min": 0,
|
1931 |
+
"orientation": "horizontal",
|
1932 |
+
"style": "IPY_MODEL_82195b807b664a9585a76e0e50fe7609",
|
1933 |
+
"value": 227
|
1934 |
+
}
|
1935 |
+
},
|
1936 |
+
"8bf37c12d5f74f7d8dbba423a9ee3ac3": {
|
1937 |
+
"model_module": "@jupyter-widgets/controls",
|
1938 |
+
"model_module_version": "1.5.0",
|
1939 |
+
"model_name": "HTMLModel",
|
1940 |
+
"state": {
|
1941 |
+
"_dom_classes": [],
|
1942 |
+
"_model_module": "@jupyter-widgets/controls",
|
1943 |
+
"_model_module_version": "1.5.0",
|
1944 |
+
"_model_name": "HTMLModel",
|
1945 |
+
"_view_count": null,
|
1946 |
+
"_view_module": "@jupyter-widgets/controls",
|
1947 |
+
"_view_module_version": "1.5.0",
|
1948 |
+
"_view_name": "HTMLView",
|
1949 |
+
"description": "",
|
1950 |
+
"description_tooltip": null,
|
1951 |
+
"layout": "IPY_MODEL_8621932be14f42858d841e2ac1b173e7",
|
1952 |
+
"placeholder": "",
|
1953 |
+
"style": "IPY_MODEL_71bcdb1e02144c9587879d8d815b91d4",
|
1954 |
+
"value": " 0/227 [00:00<?, ? examples/s]"
|
1955 |
+
}
|
1956 |
+
},
|
1957 |
+
"94174da0d6554be087d4527bea5b511a": {
|
1958 |
+
"model_module": "@jupyter-widgets/base",
|
1959 |
+
"model_module_version": "1.2.0",
|
1960 |
+
"model_name": "LayoutModel",
|
1961 |
+
"state": {
|
1962 |
+
"_model_module": "@jupyter-widgets/base",
|
1963 |
+
"_model_module_version": "1.2.0",
|
1964 |
+
"_model_name": "LayoutModel",
|
1965 |
+
"_view_count": null,
|
1966 |
+
"_view_module": "@jupyter-widgets/base",
|
1967 |
+
"_view_module_version": "1.2.0",
|
1968 |
+
"_view_name": "LayoutView",
|
1969 |
+
"align_content": null,
|
1970 |
+
"align_items": null,
|
1971 |
+
"align_self": null,
|
1972 |
+
"border": null,
|
1973 |
+
"bottom": null,
|
1974 |
+
"display": null,
|
1975 |
+
"flex": null,
|
1976 |
+
"flex_flow": null,
|
1977 |
+
"grid_area": null,
|
1978 |
+
"grid_auto_columns": null,
|
1979 |
+
"grid_auto_flow": null,
|
1980 |
+
"grid_auto_rows": null,
|
1981 |
+
"grid_column": null,
|
1982 |
+
"grid_gap": null,
|
1983 |
+
"grid_row": null,
|
1984 |
+
"grid_template_areas": null,
|
1985 |
+
"grid_template_columns": null,
|
1986 |
+
"grid_template_rows": null,
|
1987 |
+
"height": null,
|
1988 |
+
"justify_content": null,
|
1989 |
+
"justify_items": null,
|
1990 |
+
"left": null,
|
1991 |
+
"margin": null,
|
1992 |
+
"max_height": null,
|
1993 |
+
"max_width": null,
|
1994 |
+
"min_height": null,
|
1995 |
+
"min_width": null,
|
1996 |
+
"object_fit": null,
|
1997 |
+
"object_position": null,
|
1998 |
+
"order": null,
|
1999 |
+
"overflow": null,
|
2000 |
+
"overflow_x": null,
|
2001 |
+
"overflow_y": null,
|
2002 |
+
"padding": null,
|
2003 |
+
"right": null,
|
2004 |
+
"top": null,
|
2005 |
+
"visibility": "hidden",
|
2006 |
+
"width": null
|
2007 |
+
}
|
2008 |
+
},
|
2009 |
+
"9c890fc422954347b86d3bde7a421caf": {
|
2010 |
+
"model_module": "@jupyter-widgets/controls",
|
2011 |
+
"model_module_version": "1.5.0",
|
2012 |
+
"model_name": "ProgressStyleModel",
|
2013 |
+
"state": {
|
2014 |
+
"_model_module": "@jupyter-widgets/controls",
|
2015 |
+
"_model_module_version": "1.5.0",
|
2016 |
+
"_model_name": "ProgressStyleModel",
|
2017 |
+
"_view_count": null,
|
2018 |
+
"_view_module": "@jupyter-widgets/base",
|
2019 |
+
"_view_module_version": "1.2.0",
|
2020 |
+
"_view_name": "StyleView",
|
2021 |
+
"bar_color": null,
|
2022 |
+
"description_width": ""
|
2023 |
+
}
|
2024 |
+
},
|
2025 |
+
"9e12d97af6124a5a8c6627708b300c1e": {
|
2026 |
+
"model_module": "@jupyter-widgets/controls",
|
2027 |
+
"model_module_version": "1.5.0",
|
2028 |
+
"model_name": "HBoxModel",
|
2029 |
+
"state": {
|
2030 |
+
"_dom_classes": [],
|
2031 |
+
"_model_module": "@jupyter-widgets/controls",
|
2032 |
+
"_model_module_version": "1.5.0",
|
2033 |
+
"_model_name": "HBoxModel",
|
2034 |
+
"_view_count": null,
|
2035 |
+
"_view_module": "@jupyter-widgets/controls",
|
2036 |
+
"_view_module_version": "1.5.0",
|
2037 |
+
"_view_name": "HBoxView",
|
2038 |
+
"box_style": "",
|
2039 |
+
"children": [
|
2040 |
+
"IPY_MODEL_faa18df899c14e9cac6721253e6c9128",
|
2041 |
+
"IPY_MODEL_79d0ede7a5b24756aa6d34fda8c29159",
|
2042 |
+
"IPY_MODEL_3b175b452f4347558aa3c4501cc90030"
|
2043 |
+
],
|
2044 |
+
"layout": "IPY_MODEL_fc4637a1b37e4e90874c71aa4271ac74"
|
2045 |
+
}
|
2046 |
+
},
|
2047 |
+
"a5a126b229064812bf3dcb228118be50": {
|
2048 |
+
"model_module": "@jupyter-widgets/controls",
|
2049 |
+
"model_module_version": "1.5.0",
|
2050 |
+
"model_name": "FloatProgressModel",
|
2051 |
+
"state": {
|
2052 |
+
"_dom_classes": [],
|
2053 |
+
"_model_module": "@jupyter-widgets/controls",
|
2054 |
+
"_model_module_version": "1.5.0",
|
2055 |
+
"_model_name": "FloatProgressModel",
|
2056 |
+
"_view_count": null,
|
2057 |
+
"_view_module": "@jupyter-widgets/controls",
|
2058 |
+
"_view_module_version": "1.5.0",
|
2059 |
+
"_view_name": "ProgressView",
|
2060 |
+
"bar_style": "success",
|
2061 |
+
"description": "",
|
2062 |
+
"description_tooltip": null,
|
2063 |
+
"layout": "IPY_MODEL_7aeca19b84904906a04c12659f84ff9e",
|
2064 |
+
"max": 1,
|
2065 |
+
"min": 0,
|
2066 |
+
"orientation": "horizontal",
|
2067 |
+
"style": "IPY_MODEL_dd4b895874ce46ceb1ad0d9bc973f98f",
|
2068 |
+
"value": 1
|
2069 |
+
}
|
2070 |
+
},
|
2071 |
+
"a91916e02e9c424e881e45b3aa978574": {
|
2072 |
+
"model_module": "@jupyter-widgets/controls",
|
2073 |
+
"model_module_version": "1.5.0",
|
2074 |
+
"model_name": "DescriptionStyleModel",
|
2075 |
+
"state": {
|
2076 |
+
"_model_module": "@jupyter-widgets/controls",
|
2077 |
+
"_model_module_version": "1.5.0",
|
2078 |
+
"_model_name": "DescriptionStyleModel",
|
2079 |
+
"_view_count": null,
|
2080 |
+
"_view_module": "@jupyter-widgets/base",
|
2081 |
+
"_view_module_version": "1.2.0",
|
2082 |
+
"_view_name": "StyleView",
|
2083 |
+
"description_width": ""
|
2084 |
+
}
|
2085 |
+
},
|
2086 |
+
"aae78f9bd53348bda45967a38736cb78": {
|
2087 |
+
"model_module": "@jupyter-widgets/controls",
|
2088 |
+
"model_module_version": "1.5.0",
|
2089 |
+
"model_name": "HTMLModel",
|
2090 |
+
"state": {
|
2091 |
+
"_dom_classes": [],
|
2092 |
+
"_model_module": "@jupyter-widgets/controls",
|
2093 |
+
"_model_module_version": "1.5.0",
|
2094 |
+
"_model_name": "HTMLModel",
|
2095 |
+
"_view_count": null,
|
2096 |
+
"_view_module": "@jupyter-widgets/controls",
|
2097 |
+
"_view_module_version": "1.5.0",
|
2098 |
+
"_view_name": "HTMLView",
|
2099 |
+
"description": "",
|
2100 |
+
"description_tooltip": null,
|
2101 |
+
"layout": "IPY_MODEL_5e5aa58adb0f48579871df33845e30b1",
|
2102 |
+
"placeholder": "",
|
2103 |
+
"style": "IPY_MODEL_c25b49b7adaa48a0a3a306aa1e0661b4",
|
2104 |
+
"value": " 2000/2037 [00:00<00:00, 3864.28 examples/s]"
|
2105 |
+
}
|
2106 |
+
},
|
2107 |
+
"aef6a6be67f749908060d8038b6d3804": {
|
2108 |
+
"model_module": "@jupyter-widgets/controls",
|
2109 |
+
"model_module_version": "1.5.0",
|
2110 |
+
"model_name": "DescriptionStyleModel",
|
2111 |
+
"state": {
|
2112 |
+
"_model_module": "@jupyter-widgets/controls",
|
2113 |
+
"_model_module_version": "1.5.0",
|
2114 |
+
"_model_name": "DescriptionStyleModel",
|
2115 |
+
"_view_count": null,
|
2116 |
+
"_view_module": "@jupyter-widgets/base",
|
2117 |
+
"_view_module_version": "1.2.0",
|
2118 |
+
"_view_name": "StyleView",
|
2119 |
+
"description_width": ""
|
2120 |
+
}
|
2121 |
+
},
|
2122 |
+
"b138f91be7f94008806eaf0a6988bc3f": {
|
2123 |
+
"model_module": "@jupyter-widgets/base",
|
2124 |
+
"model_module_version": "1.2.0",
|
2125 |
+
"model_name": "LayoutModel",
|
2126 |
+
"state": {
|
2127 |
+
"_model_module": "@jupyter-widgets/base",
|
2128 |
+
"_model_module_version": "1.2.0",
|
2129 |
+
"_model_name": "LayoutModel",
|
2130 |
+
"_view_count": null,
|
2131 |
+
"_view_module": "@jupyter-widgets/base",
|
2132 |
+
"_view_module_version": "1.2.0",
|
2133 |
+
"_view_name": "LayoutView",
|
2134 |
+
"align_content": null,
|
2135 |
+
"align_items": null,
|
2136 |
+
"align_self": null,
|
2137 |
+
"border": null,
|
2138 |
+
"bottom": null,
|
2139 |
+
"display": null,
|
2140 |
+
"flex": null,
|
2141 |
+
"flex_flow": null,
|
2142 |
+
"grid_area": null,
|
2143 |
+
"grid_auto_columns": null,
|
2144 |
+
"grid_auto_flow": null,
|
2145 |
+
"grid_auto_rows": null,
|
2146 |
+
"grid_column": null,
|
2147 |
+
"grid_gap": null,
|
2148 |
+
"grid_row": null,
|
2149 |
+
"grid_template_areas": null,
|
2150 |
+
"grid_template_columns": null,
|
2151 |
+
"grid_template_rows": null,
|
2152 |
+
"height": null,
|
2153 |
+
"justify_content": null,
|
2154 |
+
"justify_items": null,
|
2155 |
+
"left": null,
|
2156 |
+
"margin": null,
|
2157 |
+
"max_height": null,
|
2158 |
+
"max_width": null,
|
2159 |
+
"min_height": null,
|
2160 |
+
"min_width": null,
|
2161 |
+
"object_fit": null,
|
2162 |
+
"object_position": null,
|
2163 |
+
"order": null,
|
2164 |
+
"overflow": null,
|
2165 |
+
"overflow_x": null,
|
2166 |
+
"overflow_y": null,
|
2167 |
+
"padding": null,
|
2168 |
+
"right": null,
|
2169 |
+
"top": null,
|
2170 |
+
"visibility": null,
|
2171 |
+
"width": null
|
2172 |
+
}
|
2173 |
+
},
|
2174 |
+
"bbfb7533b5ca459194e171df56b79566": {
|
2175 |
+
"model_module": "@jupyter-widgets/controls",
|
2176 |
+
"model_module_version": "1.5.0",
|
2177 |
+
"model_name": "HBoxModel",
|
2178 |
+
"state": {
|
2179 |
+
"_dom_classes": [],
|
2180 |
+
"_model_module": "@jupyter-widgets/controls",
|
2181 |
+
"_model_module_version": "1.5.0",
|
2182 |
+
"_model_name": "HBoxModel",
|
2183 |
+
"_view_count": null,
|
2184 |
+
"_view_module": "@jupyter-widgets/controls",
|
2185 |
+
"_view_module_version": "1.5.0",
|
2186 |
+
"_view_name": "HBoxView",
|
2187 |
+
"box_style": "",
|
2188 |
+
"children": [
|
2189 |
+
"IPY_MODEL_c894e8237aa34c56bb250acab1466005",
|
2190 |
+
"IPY_MODEL_a5a126b229064812bf3dcb228118be50",
|
2191 |
+
"IPY_MODEL_661e1b29c59a4295b594edfa4f50ff87"
|
2192 |
+
],
|
2193 |
+
"layout": "IPY_MODEL_1bcba805972b484d8b6aa6542c81841c"
|
2194 |
+
}
|
2195 |
+
},
|
2196 |
+
"c25b49b7adaa48a0a3a306aa1e0661b4": {
|
2197 |
+
"model_module": "@jupyter-widgets/controls",
|
2198 |
+
"model_module_version": "1.5.0",
|
2199 |
+
"model_name": "DescriptionStyleModel",
|
2200 |
+
"state": {
|
2201 |
+
"_model_module": "@jupyter-widgets/controls",
|
2202 |
+
"_model_module_version": "1.5.0",
|
2203 |
+
"_model_name": "DescriptionStyleModel",
|
2204 |
+
"_view_count": null,
|
2205 |
+
"_view_module": "@jupyter-widgets/base",
|
2206 |
+
"_view_module_version": "1.2.0",
|
2207 |
+
"_view_name": "StyleView",
|
2208 |
+
"description_width": ""
|
2209 |
+
}
|
2210 |
+
},
|
2211 |
+
"c894e8237aa34c56bb250acab1466005": {
|
2212 |
+
"model_module": "@jupyter-widgets/controls",
|
2213 |
+
"model_module_version": "1.5.0",
|
2214 |
+
"model_name": "HTMLModel",
|
2215 |
+
"state": {
|
2216 |
+
"_dom_classes": [],
|
2217 |
+
"_model_module": "@jupyter-widgets/controls",
|
2218 |
+
"_model_module_version": "1.5.0",
|
2219 |
+
"_model_name": "HTMLModel",
|
2220 |
+
"_view_count": null,
|
2221 |
+
"_view_module": "@jupyter-widgets/controls",
|
2222 |
+
"_view_module_version": "1.5.0",
|
2223 |
+
"_view_name": "HTMLView",
|
2224 |
+
"description": "",
|
2225 |
+
"description_tooltip": null,
|
2226 |
+
"layout": "IPY_MODEL_e71f5c7f1d5d4f83b58c68d2fa310d9c",
|
2227 |
+
"placeholder": "",
|
2228 |
+
"style": "IPY_MODEL_6a567e0a1a5447519c5df10e777520cf",
|
2229 |
+
"value": "100%"
|
2230 |
+
}
|
2231 |
+
},
|
2232 |
+
"ca509bd409624c998e555c9a779b8aae": {
|
2233 |
+
"model_module": "@jupyter-widgets/base",
|
2234 |
+
"model_module_version": "1.2.0",
|
2235 |
+
"model_name": "LayoutModel",
|
2236 |
+
"state": {
|
2237 |
+
"_model_module": "@jupyter-widgets/base",
|
2238 |
+
"_model_module_version": "1.2.0",
|
2239 |
+
"_model_name": "LayoutModel",
|
2240 |
+
"_view_count": null,
|
2241 |
+
"_view_module": "@jupyter-widgets/base",
|
2242 |
+
"_view_module_version": "1.2.0",
|
2243 |
+
"_view_name": "LayoutView",
|
2244 |
+
"align_content": null,
|
2245 |
+
"align_items": null,
|
2246 |
+
"align_self": null,
|
2247 |
+
"border": null,
|
2248 |
+
"bottom": null,
|
2249 |
+
"display": null,
|
2250 |
+
"flex": null,
|
2251 |
+
"flex_flow": null,
|
2252 |
+
"grid_area": null,
|
2253 |
+
"grid_auto_columns": null,
|
2254 |
+
"grid_auto_flow": null,
|
2255 |
+
"grid_auto_rows": null,
|
2256 |
+
"grid_column": null,
|
2257 |
+
"grid_gap": null,
|
2258 |
+
"grid_row": null,
|
2259 |
+
"grid_template_areas": null,
|
2260 |
+
"grid_template_columns": null,
|
2261 |
+
"grid_template_rows": null,
|
2262 |
+
"height": null,
|
2263 |
+
"justify_content": null,
|
2264 |
+
"justify_items": null,
|
2265 |
+
"left": null,
|
2266 |
+
"margin": null,
|
2267 |
+
"max_height": null,
|
2268 |
+
"max_width": null,
|
2269 |
+
"min_height": null,
|
2270 |
+
"min_width": null,
|
2271 |
+
"object_fit": null,
|
2272 |
+
"object_position": null,
|
2273 |
+
"order": null,
|
2274 |
+
"overflow": null,
|
2275 |
+
"overflow_x": null,
|
2276 |
+
"overflow_y": null,
|
2277 |
+
"padding": null,
|
2278 |
+
"right": null,
|
2279 |
+
"top": null,
|
2280 |
+
"visibility": null,
|
2281 |
+
"width": null
|
2282 |
+
}
|
2283 |
+
},
|
2284 |
+
"d93bfb366db14c2fa77b038752f69b38": {
|
2285 |
+
"model_module": "@jupyter-widgets/base",
|
2286 |
+
"model_module_version": "1.2.0",
|
2287 |
+
"model_name": "LayoutModel",
|
2288 |
+
"state": {
|
2289 |
+
"_model_module": "@jupyter-widgets/base",
|
2290 |
+
"_model_module_version": "1.2.0",
|
2291 |
+
"_model_name": "LayoutModel",
|
2292 |
+
"_view_count": null,
|
2293 |
+
"_view_module": "@jupyter-widgets/base",
|
2294 |
+
"_view_module_version": "1.2.0",
|
2295 |
+
"_view_name": "LayoutView",
|
2296 |
+
"align_content": null,
|
2297 |
+
"align_items": null,
|
2298 |
+
"align_self": null,
|
2299 |
+
"border": null,
|
2300 |
+
"bottom": null,
|
2301 |
+
"display": null,
|
2302 |
+
"flex": null,
|
2303 |
+
"flex_flow": null,
|
2304 |
+
"grid_area": null,
|
2305 |
+
"grid_auto_columns": null,
|
2306 |
+
"grid_auto_flow": null,
|
2307 |
+
"grid_auto_rows": null,
|
2308 |
+
"grid_column": null,
|
2309 |
+
"grid_gap": null,
|
2310 |
+
"grid_row": null,
|
2311 |
+
"grid_template_areas": null,
|
2312 |
+
"grid_template_columns": null,
|
2313 |
+
"grid_template_rows": null,
|
2314 |
+
"height": null,
|
2315 |
+
"justify_content": null,
|
2316 |
+
"justify_items": null,
|
2317 |
+
"left": null,
|
2318 |
+
"margin": null,
|
2319 |
+
"max_height": null,
|
2320 |
+
"max_width": null,
|
2321 |
+
"min_height": null,
|
2322 |
+
"min_width": null,
|
2323 |
+
"object_fit": null,
|
2324 |
+
"object_position": null,
|
2325 |
+
"order": null,
|
2326 |
+
"overflow": null,
|
2327 |
+
"overflow_x": null,
|
2328 |
+
"overflow_y": null,
|
2329 |
+
"padding": null,
|
2330 |
+
"right": null,
|
2331 |
+
"top": null,
|
2332 |
+
"visibility": null,
|
2333 |
+
"width": null
|
2334 |
+
}
|
2335 |
+
},
|
2336 |
+
"d9d37b8b79f24dbf837327a250a5a346": {
|
2337 |
+
"model_module": "@jupyter-widgets/controls",
|
2338 |
+
"model_module_version": "1.5.0",
|
2339 |
+
"model_name": "HTMLModel",
|
2340 |
+
"state": {
|
2341 |
+
"_dom_classes": [],
|
2342 |
+
"_model_module": "@jupyter-widgets/controls",
|
2343 |
+
"_model_module_version": "1.5.0",
|
2344 |
+
"_model_name": "HTMLModel",
|
2345 |
+
"_view_count": null,
|
2346 |
+
"_view_module": "@jupyter-widgets/controls",
|
2347 |
+
"_view_module_version": "1.5.0",
|
2348 |
+
"_view_name": "HTMLView",
|
2349 |
+
"description": "",
|
2350 |
+
"description_tooltip": null,
|
2351 |
+
"layout": "IPY_MODEL_86bf02b06ed740a88015c2b944205c1e",
|
2352 |
+
"placeholder": "",
|
2353 |
+
"style": "IPY_MODEL_aef6a6be67f749908060d8038b6d3804",
|
2354 |
+
"value": "Running tokenizer on dataset: 0%"
|
2355 |
+
}
|
2356 |
+
},
|
2357 |
+
"da14180f51ab44b48470cb9ea74d3864": {
|
2358 |
+
"model_module": "@jupyter-widgets/controls",
|
2359 |
+
"model_module_version": "1.5.0",
|
2360 |
+
"model_name": "DescriptionStyleModel",
|
2361 |
+
"state": {
|
2362 |
+
"_model_module": "@jupyter-widgets/controls",
|
2363 |
+
"_model_module_version": "1.5.0",
|
2364 |
+
"_model_name": "DescriptionStyleModel",
|
2365 |
+
"_view_count": null,
|
2366 |
+
"_view_module": "@jupyter-widgets/base",
|
2367 |
+
"_view_module_version": "1.2.0",
|
2368 |
+
"_view_name": "StyleView",
|
2369 |
+
"description_width": ""
|
2370 |
+
}
|
2371 |
+
},
|
2372 |
+
"dc8ab16a1e6c4e6893c95ccd16568f9a": {
|
2373 |
+
"model_module": "@jupyter-widgets/base",
|
2374 |
+
"model_module_version": "1.2.0",
|
2375 |
+
"model_name": "LayoutModel",
|
2376 |
+
"state": {
|
2377 |
+
"_model_module": "@jupyter-widgets/base",
|
2378 |
+
"_model_module_version": "1.2.0",
|
2379 |
+
"_model_name": "LayoutModel",
|
2380 |
+
"_view_count": null,
|
2381 |
+
"_view_module": "@jupyter-widgets/base",
|
2382 |
+
"_view_module_version": "1.2.0",
|
2383 |
+
"_view_name": "LayoutView",
|
2384 |
+
"align_content": null,
|
2385 |
+
"align_items": null,
|
2386 |
+
"align_self": null,
|
2387 |
+
"border": null,
|
2388 |
+
"bottom": null,
|
2389 |
+
"display": null,
|
2390 |
+
"flex": null,
|
2391 |
+
"flex_flow": null,
|
2392 |
+
"grid_area": null,
|
2393 |
+
"grid_auto_columns": null,
|
2394 |
+
"grid_auto_flow": null,
|
2395 |
+
"grid_auto_rows": null,
|
2396 |
+
"grid_column": null,
|
2397 |
+
"grid_gap": null,
|
2398 |
+
"grid_row": null,
|
2399 |
+
"grid_template_areas": null,
|
2400 |
+
"grid_template_columns": null,
|
2401 |
+
"grid_template_rows": null,
|
2402 |
+
"height": null,
|
2403 |
+
"justify_content": null,
|
2404 |
+
"justify_items": null,
|
2405 |
+
"left": null,
|
2406 |
+
"margin": null,
|
2407 |
+
"max_height": null,
|
2408 |
+
"max_width": null,
|
2409 |
+
"min_height": null,
|
2410 |
+
"min_width": null,
|
2411 |
+
"object_fit": null,
|
2412 |
+
"object_position": null,
|
2413 |
+
"order": null,
|
2414 |
+
"overflow": null,
|
2415 |
+
"overflow_x": null,
|
2416 |
+
"overflow_y": null,
|
2417 |
+
"padding": null,
|
2418 |
+
"right": null,
|
2419 |
+
"top": null,
|
2420 |
+
"visibility": null,
|
2421 |
+
"width": null
|
2422 |
+
}
|
2423 |
+
},
|
2424 |
+
"dd4b895874ce46ceb1ad0d9bc973f98f": {
|
2425 |
+
"model_module": "@jupyter-widgets/controls",
|
2426 |
+
"model_module_version": "1.5.0",
|
2427 |
+
"model_name": "ProgressStyleModel",
|
2428 |
+
"state": {
|
2429 |
+
"_model_module": "@jupyter-widgets/controls",
|
2430 |
+
"_model_module_version": "1.5.0",
|
2431 |
+
"_model_name": "ProgressStyleModel",
|
2432 |
+
"_view_count": null,
|
2433 |
+
"_view_module": "@jupyter-widgets/base",
|
2434 |
+
"_view_module_version": "1.2.0",
|
2435 |
+
"_view_name": "StyleView",
|
2436 |
+
"bar_color": null,
|
2437 |
+
"description_width": ""
|
2438 |
+
}
|
2439 |
+
},
|
2440 |
+
"e1e80a68a9e7429397cafc96c3c11f80": {
|
2441 |
+
"model_module": "@jupyter-widgets/controls",
|
2442 |
+
"model_module_version": "1.5.0",
|
2443 |
+
"model_name": "HBoxModel",
|
2444 |
+
"state": {
|
2445 |
+
"_dom_classes": [],
|
2446 |
+
"_model_module": "@jupyter-widgets/controls",
|
2447 |
+
"_model_module_version": "1.5.0",
|
2448 |
+
"_model_name": "HBoxModel",
|
2449 |
+
"_view_count": null,
|
2450 |
+
"_view_module": "@jupyter-widgets/controls",
|
2451 |
+
"_view_module_version": "1.5.0",
|
2452 |
+
"_view_name": "HBoxView",
|
2453 |
+
"box_style": "",
|
2454 |
+
"children": [
|
2455 |
+
"IPY_MODEL_5307864c2b1143f4b44f3f172611113e",
|
2456 |
+
"IPY_MODEL_2e2b6c3f48974ea4aca9b7710a03379e",
|
2457 |
+
"IPY_MODEL_aae78f9bd53348bda45967a38736cb78"
|
2458 |
+
],
|
2459 |
+
"layout": "IPY_MODEL_34db17e0f28d40d6abafb8acd5dda379"
|
2460 |
+
}
|
2461 |
+
},
|
2462 |
+
"e71f5c7f1d5d4f83b58c68d2fa310d9c": {
|
2463 |
+
"model_module": "@jupyter-widgets/base",
|
2464 |
+
"model_module_version": "1.2.0",
|
2465 |
+
"model_name": "LayoutModel",
|
2466 |
+
"state": {
|
2467 |
+
"_model_module": "@jupyter-widgets/base",
|
2468 |
+
"_model_module_version": "1.2.0",
|
2469 |
+
"_model_name": "LayoutModel",
|
2470 |
+
"_view_count": null,
|
2471 |
+
"_view_module": "@jupyter-widgets/base",
|
2472 |
+
"_view_module_version": "1.2.0",
|
2473 |
+
"_view_name": "LayoutView",
|
2474 |
+
"align_content": null,
|
2475 |
+
"align_items": null,
|
2476 |
+
"align_self": null,
|
2477 |
+
"border": null,
|
2478 |
+
"bottom": null,
|
2479 |
+
"display": null,
|
2480 |
+
"flex": null,
|
2481 |
+
"flex_flow": null,
|
2482 |
+
"grid_area": null,
|
2483 |
+
"grid_auto_columns": null,
|
2484 |
+
"grid_auto_flow": null,
|
2485 |
+
"grid_auto_rows": null,
|
2486 |
+
"grid_column": null,
|
2487 |
+
"grid_gap": null,
|
2488 |
+
"grid_row": null,
|
2489 |
+
"grid_template_areas": null,
|
2490 |
+
"grid_template_columns": null,
|
2491 |
+
"grid_template_rows": null,
|
2492 |
+
"height": null,
|
2493 |
+
"justify_content": null,
|
2494 |
+
"justify_items": null,
|
2495 |
+
"left": null,
|
2496 |
+
"margin": null,
|
2497 |
+
"max_height": null,
|
2498 |
+
"max_width": null,
|
2499 |
+
"min_height": null,
|
2500 |
+
"min_width": null,
|
2501 |
+
"object_fit": null,
|
2502 |
+
"object_position": null,
|
2503 |
+
"order": null,
|
2504 |
+
"overflow": null,
|
2505 |
+
"overflow_x": null,
|
2506 |
+
"overflow_y": null,
|
2507 |
+
"padding": null,
|
2508 |
+
"right": null,
|
2509 |
+
"top": null,
|
2510 |
+
"visibility": null,
|
2511 |
+
"width": null
|
2512 |
+
}
|
2513 |
+
},
|
2514 |
+
"f60e9915d2a74ca7bc010d7684f5acf6": {
|
2515 |
+
"model_module": "@jupyter-widgets/controls",
|
2516 |
+
"model_module_version": "1.5.0",
|
2517 |
+
"model_name": "DescriptionStyleModel",
|
2518 |
+
"state": {
|
2519 |
+
"_model_module": "@jupyter-widgets/controls",
|
2520 |
+
"_model_module_version": "1.5.0",
|
2521 |
+
"_model_name": "DescriptionStyleModel",
|
2522 |
+
"_view_count": null,
|
2523 |
+
"_view_module": "@jupyter-widgets/base",
|
2524 |
+
"_view_module_version": "1.2.0",
|
2525 |
+
"_view_name": "StyleView",
|
2526 |
+
"description_width": ""
|
2527 |
+
}
|
2528 |
+
},
|
2529 |
+
"f760cd4758334ca9a43fd15612fd808b": {
|
2530 |
+
"model_module": "@jupyter-widgets/base",
|
2531 |
+
"model_module_version": "1.2.0",
|
2532 |
+
"model_name": "LayoutModel",
|
2533 |
+
"state": {
|
2534 |
+
"_model_module": "@jupyter-widgets/base",
|
2535 |
+
"_model_module_version": "1.2.0",
|
2536 |
+
"_model_name": "LayoutModel",
|
2537 |
+
"_view_count": null,
|
2538 |
+
"_view_module": "@jupyter-widgets/base",
|
2539 |
+
"_view_module_version": "1.2.0",
|
2540 |
+
"_view_name": "LayoutView",
|
2541 |
+
"align_content": null,
|
2542 |
+
"align_items": null,
|
2543 |
+
"align_self": null,
|
2544 |
+
"border": null,
|
2545 |
+
"bottom": null,
|
2546 |
+
"display": null,
|
2547 |
+
"flex": null,
|
2548 |
+
"flex_flow": null,
|
2549 |
+
"grid_area": null,
|
2550 |
+
"grid_auto_columns": null,
|
2551 |
+
"grid_auto_flow": null,
|
2552 |
+
"grid_auto_rows": null,
|
2553 |
+
"grid_column": null,
|
2554 |
+
"grid_gap": null,
|
2555 |
+
"grid_row": null,
|
2556 |
+
"grid_template_areas": null,
|
2557 |
+
"grid_template_columns": null,
|
2558 |
+
"grid_template_rows": null,
|
2559 |
+
"height": null,
|
2560 |
+
"justify_content": null,
|
2561 |
+
"justify_items": null,
|
2562 |
+
"left": null,
|
2563 |
+
"margin": null,
|
2564 |
+
"max_height": null,
|
2565 |
+
"max_width": null,
|
2566 |
+
"min_height": null,
|
2567 |
+
"min_width": null,
|
2568 |
+
"object_fit": null,
|
2569 |
+
"object_position": null,
|
2570 |
+
"order": null,
|
2571 |
+
"overflow": null,
|
2572 |
+
"overflow_x": null,
|
2573 |
+
"overflow_y": null,
|
2574 |
+
"padding": null,
|
2575 |
+
"right": null,
|
2576 |
+
"top": null,
|
2577 |
+
"visibility": null,
|
2578 |
+
"width": null
|
2579 |
+
}
|
2580 |
+
},
|
2581 |
+
"f9d86ad7fa734f3a857505a542256a3c": {
|
2582 |
+
"model_module": "@jupyter-widgets/base",
|
2583 |
+
"model_module_version": "1.2.0",
|
2584 |
+
"model_name": "LayoutModel",
|
2585 |
+
"state": {
|
2586 |
+
"_model_module": "@jupyter-widgets/base",
|
2587 |
+
"_model_module_version": "1.2.0",
|
2588 |
+
"_model_name": "LayoutModel",
|
2589 |
+
"_view_count": null,
|
2590 |
+
"_view_module": "@jupyter-widgets/base",
|
2591 |
+
"_view_module_version": "1.2.0",
|
2592 |
+
"_view_name": "LayoutView",
|
2593 |
+
"align_content": null,
|
2594 |
+
"align_items": null,
|
2595 |
+
"align_self": null,
|
2596 |
+
"border": null,
|
2597 |
+
"bottom": null,
|
2598 |
+
"display": null,
|
2599 |
+
"flex": null,
|
2600 |
+
"flex_flow": null,
|
2601 |
+
"grid_area": null,
|
2602 |
+
"grid_auto_columns": null,
|
2603 |
+
"grid_auto_flow": null,
|
2604 |
+
"grid_auto_rows": null,
|
2605 |
+
"grid_column": null,
|
2606 |
+
"grid_gap": null,
|
2607 |
+
"grid_row": null,
|
2608 |
+
"grid_template_areas": null,
|
2609 |
+
"grid_template_columns": null,
|
2610 |
+
"grid_template_rows": null,
|
2611 |
+
"height": null,
|
2612 |
+
"justify_content": null,
|
2613 |
+
"justify_items": null,
|
2614 |
+
"left": null,
|
2615 |
+
"margin": null,
|
2616 |
+
"max_height": null,
|
2617 |
+
"max_width": null,
|
2618 |
+
"min_height": null,
|
2619 |
+
"min_width": null,
|
2620 |
+
"object_fit": null,
|
2621 |
+
"object_position": null,
|
2622 |
+
"order": null,
|
2623 |
+
"overflow": null,
|
2624 |
+
"overflow_x": null,
|
2625 |
+
"overflow_y": null,
|
2626 |
+
"padding": null,
|
2627 |
+
"right": null,
|
2628 |
+
"top": null,
|
2629 |
+
"visibility": "hidden",
|
2630 |
+
"width": null
|
2631 |
+
}
|
2632 |
+
},
|
2633 |
+
"faa18df899c14e9cac6721253e6c9128": {
|
2634 |
+
"model_module": "@jupyter-widgets/controls",
|
2635 |
+
"model_module_version": "1.5.0",
|
2636 |
+
"model_name": "HTMLModel",
|
2637 |
+
"state": {
|
2638 |
+
"_dom_classes": [],
|
2639 |
+
"_model_module": "@jupyter-widgets/controls",
|
2640 |
+
"_model_module_version": "1.5.0",
|
2641 |
+
"_model_name": "HTMLModel",
|
2642 |
+
"_view_count": null,
|
2643 |
+
"_view_module": "@jupyter-widgets/controls",
|
2644 |
+
"_view_module_version": "1.5.0",
|
2645 |
+
"_view_name": "HTMLView",
|
2646 |
+
"description": "",
|
2647 |
+
"description_tooltip": null,
|
2648 |
+
"layout": "IPY_MODEL_1b8aada826a0451bb60c418b19178c8c",
|
2649 |
+
"placeholder": "",
|
2650 |
+
"style": "IPY_MODEL_a91916e02e9c424e881e45b3aa978574",
|
2651 |
+
"value": "Map: 0%"
|
2652 |
+
}
|
2653 |
+
},
|
2654 |
+
"fc4637a1b37e4e90874c71aa4271ac74": {
|
2655 |
+
"model_module": "@jupyter-widgets/base",
|
2656 |
+
"model_module_version": "1.2.0",
|
2657 |
+
"model_name": "LayoutModel",
|
2658 |
+
"state": {
|
2659 |
+
"_model_module": "@jupyter-widgets/base",
|
2660 |
+
"_model_module_version": "1.2.0",
|
2661 |
+
"_model_name": "LayoutModel",
|
2662 |
+
"_view_count": null,
|
2663 |
+
"_view_module": "@jupyter-widgets/base",
|
2664 |
+
"_view_module_version": "1.2.0",
|
2665 |
+
"_view_name": "LayoutView",
|
2666 |
+
"align_content": null,
|
2667 |
+
"align_items": null,
|
2668 |
+
"align_self": null,
|
2669 |
+
"border": null,
|
2670 |
+
"bottom": null,
|
2671 |
+
"display": null,
|
2672 |
+
"flex": null,
|
2673 |
+
"flex_flow": null,
|
2674 |
+
"grid_area": null,
|
2675 |
+
"grid_auto_columns": null,
|
2676 |
+
"grid_auto_flow": null,
|
2677 |
+
"grid_auto_rows": null,
|
2678 |
+
"grid_column": null,
|
2679 |
+
"grid_gap": null,
|
2680 |
+
"grid_row": null,
|
2681 |
+
"grid_template_areas": null,
|
2682 |
+
"grid_template_columns": null,
|
2683 |
+
"grid_template_rows": null,
|
2684 |
+
"height": null,
|
2685 |
+
"justify_content": null,
|
2686 |
+
"justify_items": null,
|
2687 |
+
"left": null,
|
2688 |
+
"margin": null,
|
2689 |
+
"max_height": null,
|
2690 |
+
"max_width": null,
|
2691 |
+
"min_height": null,
|
2692 |
+
"min_width": null,
|
2693 |
+
"object_fit": null,
|
2694 |
+
"object_position": null,
|
2695 |
+
"order": null,
|
2696 |
+
"overflow": null,
|
2697 |
+
"overflow_x": null,
|
2698 |
+
"overflow_y": null,
|
2699 |
+
"padding": null,
|
2700 |
+
"right": null,
|
2701 |
+
"top": null,
|
2702 |
+
"visibility": "hidden",
|
2703 |
+
"width": null
|
2704 |
+
}
|
2705 |
+
}
|
2706 |
+
}
|
2707 |
+
}
|
2708 |
+
},
|
2709 |
+
"nbformat": 4,
|
2710 |
+
"nbformat_minor": 5
|
2711 |
+
}
|
peft_lora_seq2seq.ipynb
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "5f93b7d1",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\n",
|
14 |
+
"===================================BUG REPORT===================================\n",
|
15 |
+
"Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
16 |
+
"For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link\n",
|
17 |
+
"================================================================================\n",
|
18 |
+
"CUDA SETUP: CUDA runtime path found: /home/sourab/miniconda3/envs/ml/lib/libcudart.so\n",
|
19 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 7.5\n",
|
20 |
+
"CUDA SETUP: Detected CUDA version 117\n",
|
21 |
+
"CUDA SETUP: Loading binary /home/sourab/miniconda3/envs/ml/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda117.so...\n"
|
22 |
+
]
|
23 |
+
}
|
24 |
+
],
|
25 |
+
"source": [
|
26 |
+
"from transformers import AutoModelForSeq2SeqLM\n",
|
27 |
+
"from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType\n",
|
28 |
+
"import torch\n",
|
29 |
+
"from datasets import load_dataset\n",
|
30 |
+
"import os\n",
|
31 |
+
"\n",
|
32 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
33 |
+
"from transformers import AutoTokenizer\n",
|
34 |
+
"from torch.utils.data import DataLoader\n",
|
35 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
36 |
+
"from tqdm import tqdm\n",
|
37 |
+
"from datasets import load_dataset\n",
|
38 |
+
"\n",
|
39 |
+
"device = \"cuda\"\n",
|
40 |
+
"model_name_or_path = \"bigscience/mt0-large\"\n",
|
41 |
+
"tokenizer_name_or_path = \"bigscience/mt0-large\"\n",
|
42 |
+
"\n",
|
43 |
+
"checkpoint_name = \"financial_sentiment_analysis_lora_v1.pt\"\n",
|
44 |
+
"text_column = \"sentence\"\n",
|
45 |
+
"label_column = \"text_label\"\n",
|
46 |
+
"max_length = 128\n",
|
47 |
+
"lr = 1e-3\n",
|
48 |
+
"num_epochs = 3\n",
|
49 |
+
"batch_size = 8"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"id": "8d0850ac",
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"# creating model\n",
|
60 |
+
"peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)\n",
|
61 |
+
"\n",
|
62 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)\n",
|
63 |
+
"model = get_peft_model(model, peft_config)\n",
|
64 |
+
"model.print_trainable_parameters()\n",
|
65 |
+
"model"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 3,
|
71 |
+
"id": "4ee2babf",
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [
|
74 |
+
{
|
75 |
+
"name": "stderr",
|
76 |
+
"output_type": "stream",
|
77 |
+
"text": [
|
78 |
+
"Found cached dataset financial_phrasebank (/home/sourab/.cache/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"data": {
|
83 |
+
"application/vnd.jupyter.widget-view+json": {
|
84 |
+
"model_id": "3403bf3d718042018b0531848cc30209",
|
85 |
+
"version_major": 2,
|
86 |
+
"version_minor": 0
|
87 |
+
},
|
88 |
+
"text/plain": [
|
89 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
"metadata": {},
|
93 |
+
"output_type": "display_data"
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"data": {
|
97 |
+
"application/vnd.jupyter.widget-view+json": {
|
98 |
+
"model_id": "d3d5c45e3776469f9560b6eaa9346f8f",
|
99 |
+
"version_major": 2,
|
100 |
+
"version_minor": 0
|
101 |
+
},
|
102 |
+
"text/plain": [
|
103 |
+
" 0%| | 0/3 [00:00<?, ?ba/s]"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "display_data"
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"data": {
|
111 |
+
"application/vnd.jupyter.widget-view+json": {
|
112 |
+
"model_id": "e9736f26e9aa450b8d65f95c0b9c81cc",
|
113 |
+
"version_major": 2,
|
114 |
+
"version_minor": 0
|
115 |
+
},
|
116 |
+
"text/plain": [
|
117 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
"metadata": {},
|
121 |
+
"output_type": "display_data"
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"data": {
|
125 |
+
"text/plain": [
|
126 |
+
"{'sentence': \"The 10,000-odd square metre plot that Stockmann has bought for the Nevsky Center shopping center is located on Nevsky Prospect , St Petersburg 's high street , next to the Vosstaniya Square underground station , in the immediate vicinity of Moscow Station .\",\n",
|
127 |
+
" 'label': 1,\n",
|
128 |
+
" 'text_label': 'neutral'}"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
"execution_count": 3,
|
132 |
+
"metadata": {},
|
133 |
+
"output_type": "execute_result"
|
134 |
+
}
|
135 |
+
],
|
136 |
+
"source": [
|
137 |
+
"# loading dataset\n",
|
138 |
+
"dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n",
|
139 |
+
"dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n",
|
140 |
+
"dataset[\"validation\"] = dataset[\"test\"]\n",
|
141 |
+
"del dataset[\"test\"]\n",
|
142 |
+
"\n",
|
143 |
+
"classes = dataset[\"train\"].features[\"label\"].names\n",
|
144 |
+
"dataset = dataset.map(\n",
|
145 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n",
|
146 |
+
" batched=True,\n",
|
147 |
+
" num_proc=1,\n",
|
148 |
+
")\n",
|
149 |
+
"\n",
|
150 |
+
"dataset[\"train\"][0]"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": 4,
|
156 |
+
"id": "adf9608c",
|
157 |
+
"metadata": {},
|
158 |
+
"outputs": [
|
159 |
+
{
|
160 |
+
"data": {
|
161 |
+
"application/vnd.jupyter.widget-view+json": {
|
162 |
+
"model_id": "c460989d4ab24e3f97d81ef040b1d1b4",
|
163 |
+
"version_major": 2,
|
164 |
+
"version_minor": 0
|
165 |
+
},
|
166 |
+
"text/plain": [
|
167 |
+
"Running tokenizer on dataset: 0%| | 0/3 [00:00<?, ?ba/s]"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
"metadata": {},
|
171 |
+
"output_type": "display_data"
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"data": {
|
175 |
+
"application/vnd.jupyter.widget-view+json": {
|
176 |
+
"model_id": "1acc389b08b94f8a87900b9fbdbccce4",
|
177 |
+
"version_major": 2,
|
178 |
+
"version_minor": 0
|
179 |
+
},
|
180 |
+
"text/plain": [
|
181 |
+
"Running tokenizer on dataset: 0%| | 0/1 [00:00<?, ?ba/s]"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
"metadata": {},
|
185 |
+
"output_type": "display_data"
|
186 |
+
}
|
187 |
+
],
|
188 |
+
"source": [
|
189 |
+
"# data preprocessing\n",
|
190 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
191 |
+
"\n",
|
192 |
+
"\n",
|
193 |
+
"def preprocess_function(examples):\n",
|
194 |
+
" inputs = examples[text_column]\n",
|
195 |
+
" targets = examples[label_column]\n",
|
196 |
+
" model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
197 |
+
" labels = tokenizer(targets, max_length=3, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
198 |
+
" labels = labels[\"input_ids\"]\n",
|
199 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
200 |
+
" model_inputs[\"labels\"] = labels\n",
|
201 |
+
" return model_inputs\n",
|
202 |
+
"\n",
|
203 |
+
"\n",
|
204 |
+
"processed_datasets = dataset.map(\n",
|
205 |
+
" preprocess_function,\n",
|
206 |
+
" batched=True,\n",
|
207 |
+
" num_proc=1,\n",
|
208 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
209 |
+
" load_from_cache_file=False,\n",
|
210 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
211 |
+
")\n",
|
212 |
+
"\n",
|
213 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
214 |
+
"eval_dataset = processed_datasets[\"validation\"]\n",
|
215 |
+
"\n",
|
216 |
+
"train_dataloader = DataLoader(\n",
|
217 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
218 |
+
")\n",
|
219 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": 5,
|
225 |
+
"id": "f733a3c6",
|
226 |
+
"metadata": {},
|
227 |
+
"outputs": [],
|
228 |
+
"source": [
|
229 |
+
"# optimizer and lr scheduler\n",
|
230 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
231 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
232 |
+
" optimizer=optimizer,\n",
|
233 |
+
" num_warmup_steps=0,\n",
|
234 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
235 |
+
")"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": 6,
|
241 |
+
"id": "6b3a4090",
|
242 |
+
"metadata": {},
|
243 |
+
"outputs": [
|
244 |
+
{
|
245 |
+
"name": "stderr",
|
246 |
+
"output_type": "stream",
|
247 |
+
"text": [
|
248 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [02:21<00:00, 1.81it/s]\n",
|
249 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:07<00:00, 4.13it/s]\n"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"name": "stdout",
|
254 |
+
"output_type": "stream",
|
255 |
+
"text": [
|
256 |
+
"epoch=0: train_ppl=tensor(14.6341, device='cuda:0') train_epoch_loss=tensor(2.6834, device='cuda:0') eval_ppl=tensor(1.0057, device='cuda:0') eval_epoch_loss=tensor(0.0057, device='cuda:0')\n"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"name": "stderr",
|
261 |
+
"output_type": "stream",
|
262 |
+
"text": [
|
263 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [02:00<00:00, 2.11it/s]\n",
|
264 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:05<00:00, 5.66it/s]\n"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"name": "stdout",
|
269 |
+
"output_type": "stream",
|
270 |
+
"text": [
|
271 |
+
"epoch=1: train_ppl=tensor(1.7576, device='cuda:0') train_epoch_loss=tensor(0.5640, device='cuda:0') eval_ppl=tensor(1.0052, device='cuda:0') eval_epoch_loss=tensor(0.0052, device='cuda:0')\n"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"name": "stderr",
|
276 |
+
"output_type": "stream",
|
277 |
+
"text": [
|
278 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [01:33<00:00, 2.74it/s]\n",
|
279 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:04<00:00, 6.23it/s]"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"name": "stdout",
|
284 |
+
"output_type": "stream",
|
285 |
+
"text": [
|
286 |
+
"epoch=2: train_ppl=tensor(1.3830, device='cuda:0') train_epoch_loss=tensor(0.3243, device='cuda:0') eval_ppl=tensor(1.0035, device='cuda:0') eval_epoch_loss=tensor(0.0035, device='cuda:0')\n"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"name": "stderr",
|
291 |
+
"output_type": "stream",
|
292 |
+
"text": [
|
293 |
+
"\n"
|
294 |
+
]
|
295 |
+
}
|
296 |
+
],
|
297 |
+
"source": [
|
298 |
+
"# training and evaluation\n",
|
299 |
+
"model = model.to(device)\n",
|
300 |
+
"\n",
|
301 |
+
"for epoch in range(num_epochs):\n",
|
302 |
+
" model.train()\n",
|
303 |
+
" total_loss = 0\n",
|
304 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
305 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
306 |
+
" outputs = model(**batch)\n",
|
307 |
+
" loss = outputs.loss\n",
|
308 |
+
" total_loss += loss.detach().float()\n",
|
309 |
+
" loss.backward()\n",
|
310 |
+
" optimizer.step()\n",
|
311 |
+
" lr_scheduler.step()\n",
|
312 |
+
" optimizer.zero_grad()\n",
|
313 |
+
"\n",
|
314 |
+
" model.eval()\n",
|
315 |
+
" eval_loss = 0\n",
|
316 |
+
" eval_preds = []\n",
|
317 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
318 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
319 |
+
" with torch.no_grad():\n",
|
320 |
+
" outputs = model(**batch)\n",
|
321 |
+
" loss = outputs.loss\n",
|
322 |
+
" eval_loss += loss.detach().float()\n",
|
323 |
+
" eval_preds.extend(\n",
|
324 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
325 |
+
" )\n",
|
326 |
+
"\n",
|
327 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
328 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
329 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
330 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
331 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"cell_type": "code",
|
336 |
+
"execution_count": 7,
|
337 |
+
"id": "6cafa67b",
|
338 |
+
"metadata": {},
|
339 |
+
"outputs": [
|
340 |
+
{
|
341 |
+
"name": "stdout",
|
342 |
+
"output_type": "stream",
|
343 |
+
"text": [
|
344 |
+
"accuracy=97.3568281938326 % on the evaluation dataset\n",
|
345 |
+
"eval_preds[:10]=['neutral', 'neutral', 'neutral', 'positive', 'neutral', 'positive', 'positive', 'neutral', 'neutral', 'neutral']\n",
|
346 |
+
"dataset['validation']['text_label'][:10]=['neutral', 'neutral', 'neutral', 'positive', 'neutral', 'positive', 'positive', 'neutral', 'neutral', 'neutral']\n"
|
347 |
+
]
|
348 |
+
}
|
349 |
+
],
|
350 |
+
"source": [
|
351 |
+
"# print accuracy\n",
|
352 |
+
"correct = 0\n",
|
353 |
+
"total = 0\n",
|
354 |
+
"for pred, true in zip(eval_preds, dataset[\"validation\"][\"text_label\"]):\n",
|
355 |
+
" if pred.strip() == true.strip():\n",
|
356 |
+
" correct += 1\n",
|
357 |
+
" total += 1\n",
|
358 |
+
"accuracy = correct / total * 100\n",
|
359 |
+
"print(f\"{accuracy=} % on the evaluation dataset\")\n",
|
360 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
361 |
+
"print(f\"{dataset['validation']['text_label'][:10]=}\")"
|
362 |
+
]
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"cell_type": "code",
|
366 |
+
"execution_count": 8,
|
367 |
+
"id": "a8de6005",
|
368 |
+
"metadata": {},
|
369 |
+
"outputs": [],
|
370 |
+
"source": [
|
371 |
+
"# saving model\n",
|
372 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
373 |
+
"model.save_pretrained(peft_model_id)"
|
374 |
+
]
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"cell_type": "code",
|
378 |
+
"execution_count": 9,
|
379 |
+
"id": "bd20cd4c",
|
380 |
+
"metadata": {},
|
381 |
+
"outputs": [
|
382 |
+
{
|
383 |
+
"name": "stdout",
|
384 |
+
"output_type": "stream",
|
385 |
+
"text": [
|
386 |
+
"9,2M\tbigscience/mt0-large_LORA_SEQ_2_SEQ_LM/adapter_model.bin\r\n"
|
387 |
+
]
|
388 |
+
}
|
389 |
+
],
|
390 |
+
"source": [
|
391 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
392 |
+
"!du -h $ckpt"
|
393 |
+
]
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"cell_type": "code",
|
397 |
+
"execution_count": 11,
|
398 |
+
"id": "76c2fc29",
|
399 |
+
"metadata": {},
|
400 |
+
"outputs": [],
|
401 |
+
"source": [
|
402 |
+
"from peft import PeftModel, PeftConfig\n",
|
403 |
+
"\n",
|
404 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
405 |
+
"\n",
|
406 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
407 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n",
|
408 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": 15,
|
414 |
+
"id": "37d712ce",
|
415 |
+
"metadata": {},
|
416 |
+
"outputs": [
|
417 |
+
{
|
418 |
+
"name": "stdout",
|
419 |
+
"output_type": "stream",
|
420 |
+
"text": [
|
421 |
+
"- Demand for fireplace products was lower than expected , especially in Germany .\n",
|
422 |
+
"{'input_ids': tensor([[ 259, 264, 259, 82903, 332, 1090, 10040, 10371, 639, 259,\n",
|
423 |
+
" 19540, 2421, 259, 25505, 259, 261, 259, 21230, 281, 17052,\n",
|
424 |
+
" 259, 260, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
425 |
+
"tensor([[ 0, 259, 32588, 1]])\n",
|
426 |
+
"['negative']\n"
|
427 |
+
]
|
428 |
+
}
|
429 |
+
],
|
430 |
+
"source": [
|
431 |
+
"model.eval()\n",
|
432 |
+
"i = 13\n",
|
433 |
+
"inputs = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\")\n",
|
434 |
+
"print(dataset[\"validation\"][text_column][i])\n",
|
435 |
+
"print(inputs)\n",
|
436 |
+
"\n",
|
437 |
+
"with torch.no_grad():\n",
|
438 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n",
|
439 |
+
" print(outputs)\n",
|
440 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
441 |
+
]
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"cell_type": "code",
|
445 |
+
"execution_count": null,
|
446 |
+
"id": "66c65ea4",
|
447 |
+
"metadata": {},
|
448 |
+
"outputs": [],
|
449 |
+
"source": []
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"cell_type": "code",
|
453 |
+
"execution_count": null,
|
454 |
+
"id": "65e71f78",
|
455 |
+
"metadata": {},
|
456 |
+
"outputs": [],
|
457 |
+
"source": []
|
458 |
+
}
|
459 |
+
],
|
460 |
+
"metadata": {
|
461 |
+
"kernelspec": {
|
462 |
+
"display_name": "Python 3 (ipykernel)",
|
463 |
+
"language": "python",
|
464 |
+
"name": "python3"
|
465 |
+
},
|
466 |
+
"language_info": {
|
467 |
+
"codemirror_mode": {
|
468 |
+
"name": "ipython",
|
469 |
+
"version": 3
|
470 |
+
},
|
471 |
+
"file_extension": ".py",
|
472 |
+
"mimetype": "text/x-python",
|
473 |
+
"name": "python",
|
474 |
+
"nbconvert_exporter": "python",
|
475 |
+
"pygments_lexer": "ipython3",
|
476 |
+
"version": "3.10.5"
|
477 |
+
},
|
478 |
+
"vscode": {
|
479 |
+
"interpreter": {
|
480 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
481 |
+
}
|
482 |
+
}
|
483 |
+
},
|
484 |
+
"nbformat": 4,
|
485 |
+
"nbformat_minor": 5
|
486 |
+
}
|
peft_lora_seq2seq_accelerate_big_model_inference.ipynb
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "71fbfca2",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from transformers import AutoModelForSeq2SeqLM\n",
|
11 |
+
"from peft import PeftModel, PeftConfig\n",
|
12 |
+
"import torch\n",
|
13 |
+
"from datasets import load_dataset\n",
|
14 |
+
"import os\n",
|
15 |
+
"from transformers import AutoTokenizer\n",
|
16 |
+
"from torch.utils.data import DataLoader\n",
|
17 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
18 |
+
"from tqdm import tqdm\n",
|
19 |
+
"from datasets import load_dataset\n",
|
20 |
+
"\n",
|
21 |
+
"dataset_name = \"twitter_complaints\"\n",
|
22 |
+
"text_column = \"Tweet text\"\n",
|
23 |
+
"label_column = \"text_label\"\n",
|
24 |
+
"batch_size = 8\n",
|
25 |
+
"\n",
|
26 |
+
"peft_model_id = \"smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM\"\n",
|
27 |
+
"config = PeftConfig.from_pretrained(peft_model_id)"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 2,
|
33 |
+
"id": "cc55820a",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"peft_model_id = \"smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM\"\n",
|
38 |
+
"max_memory = {0: \"6GIB\", 1: \"0GIB\", 2: \"0GIB\", 3: \"0GIB\", 4: \"0GIB\", \"cpu\": \"30GB\"}\n",
|
39 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
40 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, device_map=\"auto\", max_memory=max_memory)\n",
|
41 |
+
"model = PeftModel.from_pretrained(model, peft_model_id, device_map=\"auto\", max_memory=max_memory)"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": null,
|
47 |
+
"id": "e1a3648b",
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"from datasets import load_dataset\n",
|
52 |
+
"\n",
|
53 |
+
"dataset = load_dataset(\"ought/raft\", dataset_name)\n",
|
54 |
+
"\n",
|
55 |
+
"classes = [k.replace(\"_\", \" \") for k in dataset[\"train\"].features[\"Label\"].names]\n",
|
56 |
+
"print(classes)\n",
|
57 |
+
"dataset = dataset.map(\n",
|
58 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"Label\"]]},\n",
|
59 |
+
" batched=True,\n",
|
60 |
+
" num_proc=1,\n",
|
61 |
+
")\n",
|
62 |
+
"print(dataset)\n",
|
63 |
+
"dataset[\"train\"][0]"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": null,
|
69 |
+
"id": "fe12d4d3",
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
74 |
+
"target_max_length = max([len(tokenizer(class_label)[\"input_ids\"]) for class_label in classes])\n",
|
75 |
+
"\n",
|
76 |
+
"\n",
|
77 |
+
"def preprocess_function(examples):\n",
|
78 |
+
" inputs = examples[text_column]\n",
|
79 |
+
" targets = examples[label_column]\n",
|
80 |
+
" model_inputs = tokenizer(inputs, truncation=True)\n",
|
81 |
+
" labels = tokenizer(\n",
|
82 |
+
" targets, max_length=target_max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\"\n",
|
83 |
+
" )\n",
|
84 |
+
" labels = labels[\"input_ids\"]\n",
|
85 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
86 |
+
" model_inputs[\"labels\"] = labels\n",
|
87 |
+
" return model_inputs\n",
|
88 |
+
"\n",
|
89 |
+
"\n",
|
90 |
+
"processed_datasets = dataset.map(\n",
|
91 |
+
" preprocess_function,\n",
|
92 |
+
" batched=True,\n",
|
93 |
+
" num_proc=1,\n",
|
94 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
95 |
+
" load_from_cache_file=True,\n",
|
96 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
97 |
+
")\n",
|
98 |
+
"\n",
|
99 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
100 |
+
"eval_dataset = processed_datasets[\"train\"]\n",
|
101 |
+
"test_dataset = processed_datasets[\"test\"]\n",
|
102 |
+
"\n",
|
103 |
+
"\n",
|
104 |
+
"def collate_fn(examples):\n",
|
105 |
+
" return tokenizer.pad(examples, padding=\"longest\", return_tensors=\"pt\")\n",
|
106 |
+
"\n",
|
107 |
+
"\n",
|
108 |
+
"train_dataloader = DataLoader(\n",
|
109 |
+
" train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True\n",
|
110 |
+
")\n",
|
111 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True)\n",
|
112 |
+
"test_dataloader = DataLoader(test_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True)"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 5,
|
118 |
+
"id": "b33be5e6",
|
119 |
+
"metadata": {},
|
120 |
+
"outputs": [
|
121 |
+
{
|
122 |
+
"name": "stdout",
|
123 |
+
"output_type": "stream",
|
124 |
+
"text": [
|
125 |
+
"@NYTsupport i have complained a dozen times & yet my papers are still thrown FAR from my door. Why is this so hard to resolve?\n",
|
126 |
+
"{'input_ids': tensor([[25335, 1499, 3, 10, 3320, 12056, 382, 20390, 3, 23,\n",
|
127 |
+
" 43, 25932, 3, 9, 9611, 648, 3, 184, 4624, 117,\n",
|
128 |
+
" 780, 82, 5778, 33, 341, 3, 12618, 377, 4280, 45,\n",
|
129 |
+
" 82, 1365, 5, 1615, 19, 48, 78, 614, 12, 7785,\n",
|
130 |
+
" 58, 16229, 3, 10, 3, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
131 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
132 |
+
"tensor([[ 0, 10394, 1]], device='cuda:0')\n",
|
133 |
+
"['complaint']\n"
|
134 |
+
]
|
135 |
+
}
|
136 |
+
],
|
137 |
+
"source": [
|
138 |
+
"model.eval()\n",
|
139 |
+
"i = 15\n",
|
140 |
+
"inputs = tokenizer(f'{text_column} : {dataset[\"test\"][i][\"Tweet text\"]} Label : ', return_tensors=\"pt\")\n",
|
141 |
+
"print(dataset[\"test\"][i][\"Tweet text\"])\n",
|
142 |
+
"print(inputs)\n",
|
143 |
+
"\n",
|
144 |
+
"with torch.no_grad():\n",
|
145 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"].to(\"cuda\"), max_new_tokens=10)\n",
|
146 |
+
" print(outputs)\n",
|
147 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": 6,
|
153 |
+
"id": "b6d6cd5b",
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [
|
156 |
+
{
|
157 |
+
"name": "stderr",
|
158 |
+
"output_type": "stream",
|
159 |
+
"text": [
|
160 |
+
" 0%| | 0/7 [00:00<?, ?it/s]You're using a T5TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n",
|
161 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:10<00:00, 1.48s/it]\n"
|
162 |
+
]
|
163 |
+
}
|
164 |
+
],
|
165 |
+
"source": [
|
166 |
+
"model.eval()\n",
|
167 |
+
"eval_preds = []\n",
|
168 |
+
"for _, batch in enumerate(tqdm(eval_dataloader)):\n",
|
169 |
+
" batch = {k: v.to(\"cuda\") for k, v in batch.items() if k != \"labels\"}\n",
|
170 |
+
" with torch.no_grad():\n",
|
171 |
+
" outputs = model.generate(**batch, max_new_tokens=10)\n",
|
172 |
+
" preds = outputs.detach().cpu().numpy()\n",
|
173 |
+
" eval_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True))"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": 7,
|
179 |
+
"id": "61264abe",
|
180 |
+
"metadata": {},
|
181 |
+
"outputs": [
|
182 |
+
{
|
183 |
+
"name": "stdout",
|
184 |
+
"output_type": "stream",
|
185 |
+
"text": [
|
186 |
+
"accuracy=100.0\n",
|
187 |
+
"eval_preds[:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']\n",
|
188 |
+
"dataset['train'][label_column][:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']\n"
|
189 |
+
]
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"source": [
|
193 |
+
"correct = 0\n",
|
194 |
+
"total = 0\n",
|
195 |
+
"for pred, true in zip(eval_preds, dataset[\"train\"][label_column]):\n",
|
196 |
+
" if pred.strip() == true.strip():\n",
|
197 |
+
" correct += 1\n",
|
198 |
+
" total += 1\n",
|
199 |
+
"accuracy = correct / total * 100\n",
|
200 |
+
"print(f\"{accuracy=}\")\n",
|
201 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
202 |
+
"print(f\"{dataset['train'][label_column][:10]=}\")"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": null,
|
208 |
+
"id": "a70802a3",
|
209 |
+
"metadata": {},
|
210 |
+
"outputs": [],
|
211 |
+
"source": [
|
212 |
+
"model.eval()\n",
|
213 |
+
"test_preds = []\n",
|
214 |
+
"\n",
|
215 |
+
"for _, batch in enumerate(tqdm(test_dataloader)):\n",
|
216 |
+
" batch = {k: v for k, v in batch.items() if k != \"labels\"}\n",
|
217 |
+
" with torch.no_grad():\n",
|
218 |
+
" outputs = model.generate(**batch, max_new_tokens=10)\n",
|
219 |
+
" preds = outputs.detach().cpu().numpy()\n",
|
220 |
+
" test_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True))\n",
|
221 |
+
" if len(test_preds) > 100:\n",
|
222 |
+
" break\n",
|
223 |
+
"test_preds"
|
224 |
+
]
|
225 |
+
}
|
226 |
+
],
|
227 |
+
"metadata": {
|
228 |
+
"kernelspec": {
|
229 |
+
"display_name": "Python 3 (ipykernel)",
|
230 |
+
"language": "python",
|
231 |
+
"name": "python3"
|
232 |
+
},
|
233 |
+
"language_info": {
|
234 |
+
"codemirror_mode": {
|
235 |
+
"name": "ipython",
|
236 |
+
"version": 3
|
237 |
+
},
|
238 |
+
"file_extension": ".py",
|
239 |
+
"mimetype": "text/x-python",
|
240 |
+
"name": "python",
|
241 |
+
"nbconvert_exporter": "python",
|
242 |
+
"pygments_lexer": "ipython3",
|
243 |
+
"version": "3.10.5 (v3.10.5:f377153967, Jun 6 2022, 12:36:10) [Clang 13.0.0 (clang-1300.0.29.30)]"
|
244 |
+
},
|
245 |
+
"vscode": {
|
246 |
+
"interpreter": {
|
247 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
248 |
+
}
|
249 |
+
}
|
250 |
+
},
|
251 |
+
"nbformat": 4,
|
252 |
+
"nbformat_minor": 5
|
253 |
+
}
|
peft_prefix_tuning_seq2seq.ipynb
ADDED
@@ -0,0 +1,516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "5f93b7d1",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\n",
|
14 |
+
"===================================BUG REPORT===================================\n",
|
15 |
+
"Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
16 |
+
"For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link\n",
|
17 |
+
"================================================================================\n",
|
18 |
+
"CUDA SETUP: CUDA runtime path found: /home/sourab/miniconda3/envs/ml/lib/libcudart.so\n",
|
19 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 7.5\n",
|
20 |
+
"CUDA SETUP: Detected CUDA version 117\n",
|
21 |
+
"CUDA SETUP: Loading binary /home/sourab/miniconda3/envs/ml/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda117.so...\n"
|
22 |
+
]
|
23 |
+
}
|
24 |
+
],
|
25 |
+
"source": [
|
26 |
+
"from transformers import AutoModelForSeq2SeqLM\n",
|
27 |
+
"from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, PrefixTuningConfig, TaskType\n",
|
28 |
+
"import torch\n",
|
29 |
+
"from datasets import load_dataset\n",
|
30 |
+
"import os\n",
|
31 |
+
"\n",
|
32 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
33 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"3\"\n",
|
34 |
+
"from transformers import AutoTokenizer\n",
|
35 |
+
"from torch.utils.data import DataLoader\n",
|
36 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
37 |
+
"from tqdm import tqdm\n",
|
38 |
+
"from datasets import load_dataset\n",
|
39 |
+
"\n",
|
40 |
+
"device = \"cuda\"\n",
|
41 |
+
"model_name_or_path = \"t5-large\"\n",
|
42 |
+
"tokenizer_name_or_path = \"t5-large\"\n",
|
43 |
+
"\n",
|
44 |
+
"checkpoint_name = \"financial_sentiment_analysis_prefix_tuning_v1.pt\"\n",
|
45 |
+
"text_column = \"sentence\"\n",
|
46 |
+
"label_column = \"text_label\"\n",
|
47 |
+
"max_length = 128\n",
|
48 |
+
"lr = 1e-2\n",
|
49 |
+
"num_epochs = 5\n",
|
50 |
+
"batch_size = 8"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"id": "8d0850ac",
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"# creating model\n",
|
61 |
+
"peft_config = PrefixTuningConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, num_virtual_tokens=20)\n",
|
62 |
+
"\n",
|
63 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)\n",
|
64 |
+
"model = get_peft_model(model, peft_config)\n",
|
65 |
+
"model.print_trainable_parameters()\n",
|
66 |
+
"model"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 3,
|
72 |
+
"id": "4ee2babf",
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [
|
75 |
+
{
|
76 |
+
"name": "stderr",
|
77 |
+
"output_type": "stream",
|
78 |
+
"text": [
|
79 |
+
"Found cached dataset financial_phrasebank (/home/sourab/.cache/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"data": {
|
84 |
+
"application/vnd.jupyter.widget-view+json": {
|
85 |
+
"model_id": "ec4be98991b84181bfa75f8846422b8b",
|
86 |
+
"version_major": 2,
|
87 |
+
"version_minor": 0
|
88 |
+
},
|
89 |
+
"text/plain": [
|
90 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
"metadata": {},
|
94 |
+
"output_type": "display_data"
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"data": {
|
98 |
+
"application/vnd.jupyter.widget-view+json": {
|
99 |
+
"model_id": "82a6bd694c4f4751a23c370ab51f01a4",
|
100 |
+
"version_major": 2,
|
101 |
+
"version_minor": 0
|
102 |
+
},
|
103 |
+
"text/plain": [
|
104 |
+
" 0%| | 0/3 [00:00<?, ?ba/s]"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
"metadata": {},
|
108 |
+
"output_type": "display_data"
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"data": {
|
112 |
+
"application/vnd.jupyter.widget-view+json": {
|
113 |
+
"model_id": "3844878631534468a1495e435563e4b0",
|
114 |
+
"version_major": 2,
|
115 |
+
"version_minor": 0
|
116 |
+
},
|
117 |
+
"text/plain": [
|
118 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
"metadata": {},
|
122 |
+
"output_type": "display_data"
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"data": {
|
126 |
+
"text/plain": [
|
127 |
+
"{'sentence': 'Finnish elevators and escalators maker KONE Corporation said on Tuesday ( 18 March ) that it has received a major order from Sir Robert McAlpine to supply all elevators and escalators for the Watermark Place project in the City of London .',\n",
|
128 |
+
" 'label': 2,\n",
|
129 |
+
" 'text_label': 'positive'}"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
"execution_count": 3,
|
133 |
+
"metadata": {},
|
134 |
+
"output_type": "execute_result"
|
135 |
+
}
|
136 |
+
],
|
137 |
+
"source": [
|
138 |
+
"# loading dataset\n",
|
139 |
+
"dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n",
|
140 |
+
"dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n",
|
141 |
+
"dataset[\"validation\"] = dataset[\"test\"]\n",
|
142 |
+
"del dataset[\"test\"]\n",
|
143 |
+
"\n",
|
144 |
+
"classes = dataset[\"train\"].features[\"label\"].names\n",
|
145 |
+
"dataset = dataset.map(\n",
|
146 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n",
|
147 |
+
" batched=True,\n",
|
148 |
+
" num_proc=1,\n",
|
149 |
+
")\n",
|
150 |
+
"\n",
|
151 |
+
"dataset[\"train\"][0]"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"execution_count": 4,
|
157 |
+
"id": "adf9608c",
|
158 |
+
"metadata": {},
|
159 |
+
"outputs": [
|
160 |
+
{
|
161 |
+
"name": "stderr",
|
162 |
+
"output_type": "stream",
|
163 |
+
"text": [
|
164 |
+
"/home/sourab/transformers/src/transformers/models/t5/tokenization_t5_fast.py:155: FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will be corrected in Transformers v5.\n",
|
165 |
+
"For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.\n",
|
166 |
+
"- Be aware that you SHOULD NOT rely on t5-large automatically truncating your input to 512 when padding/encoding.\n",
|
167 |
+
"- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.\n",
|
168 |
+
"- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.\n",
|
169 |
+
" warnings.warn(\n"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"data": {
|
174 |
+
"application/vnd.jupyter.widget-view+json": {
|
175 |
+
"model_id": "4af8c12efb5643659573347509079f3a",
|
176 |
+
"version_major": 2,
|
177 |
+
"version_minor": 0
|
178 |
+
},
|
179 |
+
"text/plain": [
|
180 |
+
"Running tokenizer on dataset: 0%| | 0/3 [00:00<?, ?ba/s]"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
"metadata": {},
|
184 |
+
"output_type": "display_data"
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"data": {
|
188 |
+
"application/vnd.jupyter.widget-view+json": {
|
189 |
+
"model_id": "86033b6257384584afd034075af808cb",
|
190 |
+
"version_major": 2,
|
191 |
+
"version_minor": 0
|
192 |
+
},
|
193 |
+
"text/plain": [
|
194 |
+
"Running tokenizer on dataset: 0%| | 0/1 [00:00<?, ?ba/s]"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
"metadata": {},
|
198 |
+
"output_type": "display_data"
|
199 |
+
}
|
200 |
+
],
|
201 |
+
"source": [
|
202 |
+
"# data preprocessing\n",
|
203 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
204 |
+
"\n",
|
205 |
+
"\n",
|
206 |
+
"def preprocess_function(examples):\n",
|
207 |
+
" inputs = examples[text_column]\n",
|
208 |
+
" targets = examples[label_column]\n",
|
209 |
+
" model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
210 |
+
" labels = tokenizer(targets, max_length=2, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
211 |
+
" labels = labels[\"input_ids\"]\n",
|
212 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
213 |
+
" model_inputs[\"labels\"] = labels\n",
|
214 |
+
" return model_inputs\n",
|
215 |
+
"\n",
|
216 |
+
"\n",
|
217 |
+
"processed_datasets = dataset.map(\n",
|
218 |
+
" preprocess_function,\n",
|
219 |
+
" batched=True,\n",
|
220 |
+
" num_proc=1,\n",
|
221 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
222 |
+
" load_from_cache_file=False,\n",
|
223 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
224 |
+
")\n",
|
225 |
+
"\n",
|
226 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
227 |
+
"eval_dataset = processed_datasets[\"validation\"]\n",
|
228 |
+
"\n",
|
229 |
+
"train_dataloader = DataLoader(\n",
|
230 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
231 |
+
")\n",
|
232 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": 5,
|
238 |
+
"id": "f733a3c6",
|
239 |
+
"metadata": {},
|
240 |
+
"outputs": [],
|
241 |
+
"source": [
|
242 |
+
"# optimizer and lr scheduler\n",
|
243 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
244 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
245 |
+
" optimizer=optimizer,\n",
|
246 |
+
" num_warmup_steps=0,\n",
|
247 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
248 |
+
")"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"cell_type": "code",
|
253 |
+
"execution_count": 6,
|
254 |
+
"id": "6b3a4090",
|
255 |
+
"metadata": {},
|
256 |
+
"outputs": [
|
257 |
+
{
|
258 |
+
"name": "stderr",
|
259 |
+
"output_type": "stream",
|
260 |
+
"text": [
|
261 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:49<00:00, 5.15it/s]\n",
|
262 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:03<00:00, 7.56it/s]\n"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"name": "stdout",
|
267 |
+
"output_type": "stream",
|
268 |
+
"text": [
|
269 |
+
"epoch=0: train_ppl=tensor(2760654.5000, device='cuda:0') train_epoch_loss=tensor(14.8310, device='cuda:0') eval_ppl=tensor(1.0124, device='cuda:0') eval_epoch_loss=tensor(0.0124, device='cuda:0')\n"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"name": "stderr",
|
274 |
+
"output_type": "stream",
|
275 |
+
"text": [
|
276 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:40<00:00, 6.22it/s]\n",
|
277 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:05<00:00, 5.05it/s]\n"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"name": "stdout",
|
282 |
+
"output_type": "stream",
|
283 |
+
"text": [
|
284 |
+
"epoch=1: train_ppl=tensor(2.7329, device='cuda:0') train_epoch_loss=tensor(1.0054, device='cuda:0') eval_ppl=tensor(1.0081, device='cuda:0') eval_epoch_loss=tensor(0.0080, device='cuda:0')\n"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"name": "stderr",
|
289 |
+
"output_type": "stream",
|
290 |
+
"text": [
|
291 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:58<00:00, 4.36it/s]\n",
|
292 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:05<00:00, 5.05it/s]\n"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"name": "stdout",
|
297 |
+
"output_type": "stream",
|
298 |
+
"text": [
|
299 |
+
"epoch=2: train_ppl=tensor(2.1698, device='cuda:0') train_epoch_loss=tensor(0.7747, device='cuda:0') eval_ppl=tensor(1.0057, device='cuda:0') eval_epoch_loss=tensor(0.0057, device='cuda:0')\n"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"name": "stderr",
|
304 |
+
"output_type": "stream",
|
305 |
+
"text": [
|
306 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:58<00:00, 4.35it/s]\n",
|
307 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:05<00:00, 5.06it/s]\n"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"name": "stdout",
|
312 |
+
"output_type": "stream",
|
313 |
+
"text": [
|
314 |
+
"epoch=3: train_ppl=tensor(2.0724, device='cuda:0') train_epoch_loss=tensor(0.7287, device='cuda:0') eval_ppl=tensor(1.0051, device='cuda:0') eval_epoch_loss=tensor(0.0051, device='cuda:0')\n"
|
315 |
+
]
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"name": "stderr",
|
319 |
+
"output_type": "stream",
|
320 |
+
"text": [
|
321 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [01:02<00:00, 4.10it/s]\n",
|
322 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:06<00:00, 4.74it/s]\n"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"name": "stdout",
|
327 |
+
"output_type": "stream",
|
328 |
+
"text": [
|
329 |
+
"epoch=4: train_ppl=tensor(1.7598, device='cuda:0') train_epoch_loss=tensor(0.5652, device='cuda:0') eval_ppl=tensor(1.0047, device='cuda:0') eval_epoch_loss=tensor(0.0047, device='cuda:0')\n"
|
330 |
+
]
|
331 |
+
}
|
332 |
+
],
|
333 |
+
"source": [
|
334 |
+
"# training and evaluation\n",
|
335 |
+
"model = model.to(device)\n",
|
336 |
+
"\n",
|
337 |
+
"for epoch in range(num_epochs):\n",
|
338 |
+
" model.train()\n",
|
339 |
+
" total_loss = 0\n",
|
340 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
341 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
342 |
+
" outputs = model(**batch)\n",
|
343 |
+
" loss = outputs.loss\n",
|
344 |
+
" total_loss += loss.detach().float()\n",
|
345 |
+
" loss.backward()\n",
|
346 |
+
" optimizer.step()\n",
|
347 |
+
" lr_scheduler.step()\n",
|
348 |
+
" optimizer.zero_grad()\n",
|
349 |
+
"\n",
|
350 |
+
" model.eval()\n",
|
351 |
+
" eval_loss = 0\n",
|
352 |
+
" eval_preds = []\n",
|
353 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
354 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
355 |
+
" with torch.no_grad():\n",
|
356 |
+
" outputs = model(**batch)\n",
|
357 |
+
" loss = outputs.loss\n",
|
358 |
+
" eval_loss += loss.detach().float()\n",
|
359 |
+
" eval_preds.extend(\n",
|
360 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
361 |
+
" )\n",
|
362 |
+
"\n",
|
363 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
364 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
365 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
366 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
367 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
368 |
+
]
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"cell_type": "code",
|
372 |
+
"execution_count": 7,
|
373 |
+
"id": "6cafa67b",
|
374 |
+
"metadata": {},
|
375 |
+
"outputs": [
|
376 |
+
{
|
377 |
+
"name": "stdout",
|
378 |
+
"output_type": "stream",
|
379 |
+
"text": [
|
380 |
+
"accuracy=96.91629955947137 % on the evaluation dataset\n",
|
381 |
+
"eval_preds[:10]=['negative', 'positive', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral']\n",
|
382 |
+
"dataset['validation']['text_label'][:10]=['negative', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral']\n"
|
383 |
+
]
|
384 |
+
}
|
385 |
+
],
|
386 |
+
"source": [
|
387 |
+
"# print accuracy\n",
|
388 |
+
"correct = 0\n",
|
389 |
+
"total = 0\n",
|
390 |
+
"for pred, true in zip(eval_preds, dataset[\"validation\"][\"text_label\"]):\n",
|
391 |
+
" if pred.strip() == true.strip():\n",
|
392 |
+
" correct += 1\n",
|
393 |
+
" total += 1\n",
|
394 |
+
"accuracy = correct / total * 100\n",
|
395 |
+
"print(f\"{accuracy=} % on the evaluation dataset\")\n",
|
396 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
397 |
+
"print(f\"{dataset['validation']['text_label'][:10]=}\")"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"cell_type": "code",
|
402 |
+
"execution_count": 8,
|
403 |
+
"id": "a8de6005",
|
404 |
+
"metadata": {},
|
405 |
+
"outputs": [],
|
406 |
+
"source": [
|
407 |
+
"# saving model\n",
|
408 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
409 |
+
"model.save_pretrained(peft_model_id)"
|
410 |
+
]
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"cell_type": "code",
|
414 |
+
"execution_count": 9,
|
415 |
+
"id": "bd20cd4c",
|
416 |
+
"metadata": {},
|
417 |
+
"outputs": [
|
418 |
+
{
|
419 |
+
"name": "stdout",
|
420 |
+
"output_type": "stream",
|
421 |
+
"text": [
|
422 |
+
"3,8M\tt5-large_PREFIX_TUNING_SEQ_2_SEQ_LM/adapter_model.bin\r\n"
|
423 |
+
]
|
424 |
+
}
|
425 |
+
],
|
426 |
+
"source": [
|
427 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
428 |
+
"!du -h $ckpt"
|
429 |
+
]
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"cell_type": "code",
|
433 |
+
"execution_count": 11,
|
434 |
+
"id": "76c2fc29",
|
435 |
+
"metadata": {},
|
436 |
+
"outputs": [],
|
437 |
+
"source": [
|
438 |
+
"from peft import PeftModel, PeftConfig\n",
|
439 |
+
"\n",
|
440 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
441 |
+
"\n",
|
442 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
443 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n",
|
444 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"cell_type": "code",
|
449 |
+
"execution_count": 27,
|
450 |
+
"id": "d997f1cc",
|
451 |
+
"metadata": {},
|
452 |
+
"outputs": [
|
453 |
+
{
|
454 |
+
"name": "stdout",
|
455 |
+
"output_type": "stream",
|
456 |
+
"text": [
|
457 |
+
"Acando AB ( ACANB SS ) fell 8.9 percent to 13.35 kronor , the lowest close since Dec. 11 .\n",
|
458 |
+
"{'input_ids': tensor([[ 4292, 232, 32, 3, 5359, 41, 3, 22029, 14972, 3,\n",
|
459 |
+
" 4256, 3, 61, 4728, 4848, 1298, 1093, 12, 8808, 2469,\n",
|
460 |
+
" 3, 22318, 29, 127, 3, 6, 8, 7402, 885, 437,\n",
|
461 |
+
" 4451, 5, 850, 3, 5, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
462 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
463 |
+
"tensor([[ 0, 2841, 1]])\n",
|
464 |
+
"['negative']\n"
|
465 |
+
]
|
466 |
+
}
|
467 |
+
],
|
468 |
+
"source": [
|
469 |
+
"model.eval()\n",
|
470 |
+
"i = 107\n",
|
471 |
+
"inputs = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\")\n",
|
472 |
+
"print(dataset[\"validation\"][text_column][i])\n",
|
473 |
+
"print(inputs)\n",
|
474 |
+
"\n",
|
475 |
+
"with torch.no_grad():\n",
|
476 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n",
|
477 |
+
" print(outputs)\n",
|
478 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
479 |
+
]
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"cell_type": "code",
|
483 |
+
"execution_count": null,
|
484 |
+
"id": "fb746c1e",
|
485 |
+
"metadata": {},
|
486 |
+
"outputs": [],
|
487 |
+
"source": []
|
488 |
+
}
|
489 |
+
],
|
490 |
+
"metadata": {
|
491 |
+
"kernelspec": {
|
492 |
+
"display_name": "Python 3 (ipykernel)",
|
493 |
+
"language": "python",
|
494 |
+
"name": "python3"
|
495 |
+
},
|
496 |
+
"language_info": {
|
497 |
+
"codemirror_mode": {
|
498 |
+
"name": "ipython",
|
499 |
+
"version": 3
|
500 |
+
},
|
501 |
+
"file_extension": ".py",
|
502 |
+
"mimetype": "text/x-python",
|
503 |
+
"name": "python",
|
504 |
+
"nbconvert_exporter": "python",
|
505 |
+
"pygments_lexer": "ipython3",
|
506 |
+
"version": "3.10.5"
|
507 |
+
},
|
508 |
+
"vscode": {
|
509 |
+
"interpreter": {
|
510 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
511 |
+
}
|
512 |
+
}
|
513 |
+
},
|
514 |
+
"nbformat": 4,
|
515 |
+
"nbformat_minor": 5
|
516 |
+
}
|
peft_prompt_tuning_seq2seq.ipynb
ADDED
@@ -0,0 +1,804 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "5f93b7d1",
|
7 |
+
"metadata": {
|
8 |
+
"ExecuteTime": {
|
9 |
+
"end_time": "2023-05-30T08:37:58.711225Z",
|
10 |
+
"start_time": "2023-05-30T08:37:56.881307Z"
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"outputs": [
|
14 |
+
{
|
15 |
+
"name": "stdout",
|
16 |
+
"output_type": "stream",
|
17 |
+
"text": [
|
18 |
+
"\n",
|
19 |
+
"===================================BUG REPORT===================================\n",
|
20 |
+
"Welcome to bitsandbytes. For bug reports, please run\n",
|
21 |
+
"\n",
|
22 |
+
"python -m bitsandbytes\n",
|
23 |
+
"\n",
|
24 |
+
" and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
25 |
+
"================================================================================\n",
|
26 |
+
"bin /udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/libbitsandbytes_cuda117.so\n",
|
27 |
+
"CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching in backup paths...\n",
|
28 |
+
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so.11.0\n",
|
29 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 8.0\n",
|
30 |
+
"CUDA SETUP: Detected CUDA version 117\n",
|
31 |
+
"CUDA SETUP: Loading binary /udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/libbitsandbytes_cuda117.so...\n"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"name": "stderr",
|
36 |
+
"output_type": "stream",
|
37 |
+
"text": [
|
38 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: /udir/tschilla/anaconda3 did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths...\n",
|
39 |
+
" warn(msg)\n",
|
40 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('Europe/Paris')}\n",
|
41 |
+
" warn(msg)\n",
|
42 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/udir/tschilla/.cache/dotnet_bundle_extract')}\n",
|
43 |
+
" warn(msg)\n",
|
44 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('5002'), PosixPath('http'), PosixPath('//127.0.0.1')}\n",
|
45 |
+
" warn(msg)\n",
|
46 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('() { ( alias;\\n eval ${which_declare} ) | /usr/bin/which --tty-only --read-alias --read-functions --show-tilde --show-dot $@\\n}')}\n",
|
47 |
+
" warn(msg)\n",
|
48 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('module'), PosixPath('//matplotlib_inline.backend_inline')}\n",
|
49 |
+
" warn(msg)\n",
|
50 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: Found duplicate ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] files: {PosixPath('/usr/local/cuda/lib64/libcudart.so.11.0'), PosixPath('/usr/local/cuda/lib64/libcudart.so')}.. We'll flip a coin and try one of these, in order to fail forward.\n",
|
51 |
+
"Either way, this might cause trouble in the future:\n",
|
52 |
+
"If you get `CUDA error: invalid device function` errors, the above might be the cause and the solution is to make sure only one ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] in the paths that we search based on your env.\n",
|
53 |
+
" warn(msg)\n"
|
54 |
+
]
|
55 |
+
}
|
56 |
+
],
|
57 |
+
"source": [
|
58 |
+
"import os\n",
|
59 |
+
"\n",
|
60 |
+
"import torch\n",
|
61 |
+
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, default_data_collator, get_linear_schedule_with_warmup\n",
|
62 |
+
"from peft import get_peft_model, PromptTuningConfig, TaskType, PromptTuningInit\n",
|
63 |
+
"from torch.utils.data import DataLoader\n",
|
64 |
+
"from tqdm import tqdm\n",
|
65 |
+
"from datasets import load_dataset\n",
|
66 |
+
"\n",
|
67 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
68 |
+
"\n",
|
69 |
+
"device = \"cuda\"\n",
|
70 |
+
"model_name_or_path = \"t5-large\"\n",
|
71 |
+
"tokenizer_name_or_path = \"t5-large\"\n",
|
72 |
+
"\n",
|
73 |
+
"checkpoint_name = \"financial_sentiment_analysis_prompt_tuning_v1.pt\"\n",
|
74 |
+
"text_column = \"sentence\"\n",
|
75 |
+
"label_column = \"text_label\"\n",
|
76 |
+
"max_length = 128\n",
|
77 |
+
"lr = 1\n",
|
78 |
+
"num_epochs = 5\n",
|
79 |
+
"batch_size = 8"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": 2,
|
85 |
+
"id": "8d0850ac",
|
86 |
+
"metadata": {
|
87 |
+
"ExecuteTime": {
|
88 |
+
"end_time": "2023-05-30T08:38:12.413984Z",
|
89 |
+
"start_time": "2023-05-30T08:38:04.601042Z"
|
90 |
+
}
|
91 |
+
},
|
92 |
+
"outputs": [
|
93 |
+
{
|
94 |
+
"name": "stdout",
|
95 |
+
"output_type": "stream",
|
96 |
+
"text": [
|
97 |
+
"trainable params: 40960 || all params: 737709056 || trainable%: 0.005552324411210698\n"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"name": "stderr",
|
102 |
+
"output_type": "stream",
|
103 |
+
"text": [
|
104 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/models/t5/tokenization_t5_fast.py:155: FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will be corrected in Transformers v5.\n",
|
105 |
+
"For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.\n",
|
106 |
+
"- Be aware that you SHOULD NOT rely on t5-large automatically truncating your input to 512 when padding/encoding.\n",
|
107 |
+
"- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.\n",
|
108 |
+
"- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.\n",
|
109 |
+
" warnings.warn(\n"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"data": {
|
114 |
+
"text/plain": [
|
115 |
+
"PeftModelForSeq2SeqLM(\n",
|
116 |
+
" (base_model): T5ForConditionalGeneration(\n",
|
117 |
+
" (shared): Embedding(32128, 1024)\n",
|
118 |
+
" (encoder): T5Stack(\n",
|
119 |
+
" (embed_tokens): Embedding(32128, 1024)\n",
|
120 |
+
" (block): ModuleList(\n",
|
121 |
+
" (0): T5Block(\n",
|
122 |
+
" (layer): ModuleList(\n",
|
123 |
+
" (0): T5LayerSelfAttention(\n",
|
124 |
+
" (SelfAttention): T5Attention(\n",
|
125 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
126 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
127 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
128 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
129 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
130 |
+
" )\n",
|
131 |
+
" (layer_norm): T5LayerNorm()\n",
|
132 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
133 |
+
" )\n",
|
134 |
+
" (1): T5LayerFF(\n",
|
135 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
136 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
137 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
138 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
139 |
+
" (act): ReLU()\n",
|
140 |
+
" )\n",
|
141 |
+
" (layer_norm): T5LayerNorm()\n",
|
142 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
143 |
+
" )\n",
|
144 |
+
" )\n",
|
145 |
+
" )\n",
|
146 |
+
" (1-23): 23 x T5Block(\n",
|
147 |
+
" (layer): ModuleList(\n",
|
148 |
+
" (0): T5LayerSelfAttention(\n",
|
149 |
+
" (SelfAttention): T5Attention(\n",
|
150 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
151 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
152 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
153 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
154 |
+
" )\n",
|
155 |
+
" (layer_norm): T5LayerNorm()\n",
|
156 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
157 |
+
" )\n",
|
158 |
+
" (1): T5LayerFF(\n",
|
159 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
160 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
161 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
162 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
163 |
+
" (act): ReLU()\n",
|
164 |
+
" )\n",
|
165 |
+
" (layer_norm): T5LayerNorm()\n",
|
166 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
167 |
+
" )\n",
|
168 |
+
" )\n",
|
169 |
+
" )\n",
|
170 |
+
" )\n",
|
171 |
+
" (final_layer_norm): T5LayerNorm()\n",
|
172 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
173 |
+
" )\n",
|
174 |
+
" (decoder): T5Stack(\n",
|
175 |
+
" (embed_tokens): Embedding(32128, 1024)\n",
|
176 |
+
" (block): ModuleList(\n",
|
177 |
+
" (0): T5Block(\n",
|
178 |
+
" (layer): ModuleList(\n",
|
179 |
+
" (0): T5LayerSelfAttention(\n",
|
180 |
+
" (SelfAttention): T5Attention(\n",
|
181 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
182 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
183 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
184 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
185 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
186 |
+
" )\n",
|
187 |
+
" (layer_norm): T5LayerNorm()\n",
|
188 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
189 |
+
" )\n",
|
190 |
+
" (1): T5LayerCrossAttention(\n",
|
191 |
+
" (EncDecAttention): T5Attention(\n",
|
192 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
193 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
194 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
195 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
196 |
+
" )\n",
|
197 |
+
" (layer_norm): T5LayerNorm()\n",
|
198 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
199 |
+
" )\n",
|
200 |
+
" (2): T5LayerFF(\n",
|
201 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
202 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
203 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
204 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
205 |
+
" (act): ReLU()\n",
|
206 |
+
" )\n",
|
207 |
+
" (layer_norm): T5LayerNorm()\n",
|
208 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
209 |
+
" )\n",
|
210 |
+
" )\n",
|
211 |
+
" )\n",
|
212 |
+
" (1-23): 23 x T5Block(\n",
|
213 |
+
" (layer): ModuleList(\n",
|
214 |
+
" (0): T5LayerSelfAttention(\n",
|
215 |
+
" (SelfAttention): T5Attention(\n",
|
216 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
217 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
218 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
219 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
220 |
+
" )\n",
|
221 |
+
" (layer_norm): T5LayerNorm()\n",
|
222 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
223 |
+
" )\n",
|
224 |
+
" (1): T5LayerCrossAttention(\n",
|
225 |
+
" (EncDecAttention): T5Attention(\n",
|
226 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
227 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
228 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
229 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
230 |
+
" )\n",
|
231 |
+
" (layer_norm): T5LayerNorm()\n",
|
232 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
233 |
+
" )\n",
|
234 |
+
" (2): T5LayerFF(\n",
|
235 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
236 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
237 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
238 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
239 |
+
" (act): ReLU()\n",
|
240 |
+
" )\n",
|
241 |
+
" (layer_norm): T5LayerNorm()\n",
|
242 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
243 |
+
" )\n",
|
244 |
+
" )\n",
|
245 |
+
" )\n",
|
246 |
+
" )\n",
|
247 |
+
" (final_layer_norm): T5LayerNorm()\n",
|
248 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
249 |
+
" )\n",
|
250 |
+
" (lm_head): Linear(in_features=1024, out_features=32128, bias=False)\n",
|
251 |
+
" )\n",
|
252 |
+
" (prompt_encoder): ModuleDict(\n",
|
253 |
+
" (default): PromptEmbedding(\n",
|
254 |
+
" (embedding): Embedding(40, 1024)\n",
|
255 |
+
" )\n",
|
256 |
+
" )\n",
|
257 |
+
" (word_embeddings): Embedding(32128, 1024)\n",
|
258 |
+
")"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"execution_count": 2,
|
262 |
+
"metadata": {},
|
263 |
+
"output_type": "execute_result"
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"source": [
|
267 |
+
"# creating model\n",
|
268 |
+
"peft_config = PromptTuningConfig(\n",
|
269 |
+
" task_type=TaskType.SEQ_2_SEQ_LM,\n",
|
270 |
+
" prompt_tuning_init=PromptTuningInit.TEXT,\n",
|
271 |
+
" num_virtual_tokens=20,\n",
|
272 |
+
" prompt_tuning_init_text=\"What is the sentiment of this article?\\n\",\n",
|
273 |
+
" inference_mode=False,\n",
|
274 |
+
" tokenizer_name_or_path=model_name_or_path,\n",
|
275 |
+
")\n",
|
276 |
+
"\n",
|
277 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)\n",
|
278 |
+
"model = get_peft_model(model, peft_config)\n",
|
279 |
+
"model.print_trainable_parameters()\n",
|
280 |
+
"model"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": 3,
|
286 |
+
"id": "4ee2babf",
|
287 |
+
"metadata": {
|
288 |
+
"ExecuteTime": {
|
289 |
+
"end_time": "2023-05-30T08:38:18.759143Z",
|
290 |
+
"start_time": "2023-05-30T08:38:17.881621Z"
|
291 |
+
}
|
292 |
+
},
|
293 |
+
"outputs": [
|
294 |
+
{
|
295 |
+
"name": "stderr",
|
296 |
+
"output_type": "stream",
|
297 |
+
"text": [
|
298 |
+
"Found cached dataset financial_phrasebank (/data/proxem/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"data": {
|
303 |
+
"application/vnd.jupyter.widget-view+json": {
|
304 |
+
"model_id": "fb63f50cb7cb4f5aae10648ba74d6c4e",
|
305 |
+
"version_major": 2,
|
306 |
+
"version_minor": 0
|
307 |
+
},
|
308 |
+
"text/plain": [
|
309 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
310 |
+
]
|
311 |
+
},
|
312 |
+
"metadata": {},
|
313 |
+
"output_type": "display_data"
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"data": {
|
317 |
+
"application/vnd.jupyter.widget-view+json": {
|
318 |
+
"model_id": "",
|
319 |
+
"version_major": 2,
|
320 |
+
"version_minor": 0
|
321 |
+
},
|
322 |
+
"text/plain": [
|
323 |
+
"Map: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
"metadata": {},
|
327 |
+
"output_type": "display_data"
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"data": {
|
331 |
+
"application/vnd.jupyter.widget-view+json": {
|
332 |
+
"model_id": "",
|
333 |
+
"version_major": 2,
|
334 |
+
"version_minor": 0
|
335 |
+
},
|
336 |
+
"text/plain": [
|
337 |
+
"Map: 0%| | 0/227 [00:00<?, ? examples/s]"
|
338 |
+
]
|
339 |
+
},
|
340 |
+
"metadata": {},
|
341 |
+
"output_type": "display_data"
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"data": {
|
345 |
+
"text/plain": [
|
346 |
+
"{'sentence': '`` Lining stone sales were also good in the early autumn , and order books are strong to the end of the year .',\n",
|
347 |
+
" 'label': 2,\n",
|
348 |
+
" 'text_label': 'positive'}"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
"execution_count": 3,
|
352 |
+
"metadata": {},
|
353 |
+
"output_type": "execute_result"
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"source": [
|
357 |
+
"# loading dataset\n",
|
358 |
+
"dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n",
|
359 |
+
"dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n",
|
360 |
+
"dataset[\"validation\"] = dataset[\"test\"]\n",
|
361 |
+
"del dataset[\"test\"]\n",
|
362 |
+
"\n",
|
363 |
+
"classes = dataset[\"train\"].features[\"label\"].names\n",
|
364 |
+
"dataset = dataset.map(\n",
|
365 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n",
|
366 |
+
" batched=True,\n",
|
367 |
+
" num_proc=1,\n",
|
368 |
+
")\n",
|
369 |
+
"\n",
|
370 |
+
"dataset[\"train\"][0]"
|
371 |
+
]
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"cell_type": "code",
|
375 |
+
"execution_count": 4,
|
376 |
+
"id": "adf9608c",
|
377 |
+
"metadata": {
|
378 |
+
"ExecuteTime": {
|
379 |
+
"end_time": "2023-05-30T08:38:21.132266Z",
|
380 |
+
"start_time": "2023-05-30T08:38:20.340722Z"
|
381 |
+
}
|
382 |
+
},
|
383 |
+
"outputs": [
|
384 |
+
{
|
385 |
+
"data": {
|
386 |
+
"application/vnd.jupyter.widget-view+json": {
|
387 |
+
"model_id": "",
|
388 |
+
"version_major": 2,
|
389 |
+
"version_minor": 0
|
390 |
+
},
|
391 |
+
"text/plain": [
|
392 |
+
"Running tokenizer on dataset: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
393 |
+
]
|
394 |
+
},
|
395 |
+
"metadata": {},
|
396 |
+
"output_type": "display_data"
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"data": {
|
400 |
+
"application/vnd.jupyter.widget-view+json": {
|
401 |
+
"model_id": "",
|
402 |
+
"version_major": 2,
|
403 |
+
"version_minor": 0
|
404 |
+
},
|
405 |
+
"text/plain": [
|
406 |
+
"Running tokenizer on dataset: 0%| | 0/227 [00:00<?, ? examples/s]"
|
407 |
+
]
|
408 |
+
},
|
409 |
+
"metadata": {},
|
410 |
+
"output_type": "display_data"
|
411 |
+
}
|
412 |
+
],
|
413 |
+
"source": [
|
414 |
+
"# data preprocessing\n",
|
415 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
416 |
+
"target_max_length = max([len(tokenizer(class_label)[\"input_ids\"]) for class_label in classes])\n",
|
417 |
+
"\n",
|
418 |
+
"\n",
|
419 |
+
"def preprocess_function(examples):\n",
|
420 |
+
" inputs = examples[text_column]\n",
|
421 |
+
" targets = examples[label_column]\n",
|
422 |
+
" model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
423 |
+
" labels = tokenizer(\n",
|
424 |
+
" targets, max_length=target_max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\"\n",
|
425 |
+
" )\n",
|
426 |
+
" labels = labels[\"input_ids\"]\n",
|
427 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
428 |
+
" model_inputs[\"labels\"] = labels\n",
|
429 |
+
" return model_inputs\n",
|
430 |
+
"\n",
|
431 |
+
"\n",
|
432 |
+
"processed_datasets = dataset.map(\n",
|
433 |
+
" preprocess_function,\n",
|
434 |
+
" batched=True,\n",
|
435 |
+
" num_proc=1,\n",
|
436 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
437 |
+
" load_from_cache_file=False,\n",
|
438 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
439 |
+
")\n",
|
440 |
+
"\n",
|
441 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
442 |
+
"eval_dataset = processed_datasets[\"validation\"]\n",
|
443 |
+
"\n",
|
444 |
+
"train_dataloader = DataLoader(\n",
|
445 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
446 |
+
")\n",
|
447 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"cell_type": "code",
|
452 |
+
"execution_count": 5,
|
453 |
+
"id": "f733a3c6",
|
454 |
+
"metadata": {
|
455 |
+
"ExecuteTime": {
|
456 |
+
"end_time": "2023-05-30T08:38:22.907922Z",
|
457 |
+
"start_time": "2023-05-30T08:38:22.901057Z"
|
458 |
+
}
|
459 |
+
},
|
460 |
+
"outputs": [],
|
461 |
+
"source": [
|
462 |
+
"# optimizer and lr scheduler\n",
|
463 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
464 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
465 |
+
" optimizer=optimizer,\n",
|
466 |
+
" num_warmup_steps=0,\n",
|
467 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
468 |
+
")"
|
469 |
+
]
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"cell_type": "code",
|
473 |
+
"execution_count": 7,
|
474 |
+
"id": "6b3a4090",
|
475 |
+
"metadata": {
|
476 |
+
"ExecuteTime": {
|
477 |
+
"end_time": "2023-05-30T08:42:29.409070Z",
|
478 |
+
"start_time": "2023-05-30T08:38:50.102263Z"
|
479 |
+
}
|
480 |
+
},
|
481 |
+
"outputs": [
|
482 |
+
{
|
483 |
+
"name": "stderr",
|
484 |
+
"output_type": "stream",
|
485 |
+
"text": [
|
486 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:42<00:00, 6.05it/s]\n",
|
487 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:02<00:00, 14.40it/s]\n"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"name": "stdout",
|
492 |
+
"output_type": "stream",
|
493 |
+
"text": [
|
494 |
+
"epoch=0: train_ppl=tensor(8.0846, device='cuda:0') train_epoch_loss=tensor(2.0900, device='cuda:0') eval_ppl=tensor(1.3542, device='cuda:0') eval_epoch_loss=tensor(0.3032, device='cuda:0')\n"
|
495 |
+
]
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"name": "stderr",
|
499 |
+
"output_type": "stream",
|
500 |
+
"text": [
|
501 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:41<00:00, 6.15it/s]\n",
|
502 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:02<00:00, 14.42it/s]\n"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"name": "stdout",
|
507 |
+
"output_type": "stream",
|
508 |
+
"text": [
|
509 |
+
"epoch=1: train_ppl=tensor(1.5088, device='cuda:0') train_epoch_loss=tensor(0.4113, device='cuda:0') eval_ppl=tensor(1.2692, device='cuda:0') eval_epoch_loss=tensor(0.2384, device='cuda:0')\n"
|
510 |
+
]
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"name": "stderr",
|
514 |
+
"output_type": "stream",
|
515 |
+
"text": [
|
516 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:41<00:00, 6.18it/s]\n",
|
517 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:02<00:00, 14.45it/s]\n"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"name": "stdout",
|
522 |
+
"output_type": "stream",
|
523 |
+
"text": [
|
524 |
+
"epoch=2: train_ppl=tensor(1.5322, device='cuda:0') train_epoch_loss=tensor(0.4267, device='cuda:0') eval_ppl=tensor(1.2065, device='cuda:0') eval_epoch_loss=tensor(0.1877, device='cuda:0')\n"
|
525 |
+
]
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"name": "stderr",
|
529 |
+
"output_type": "stream",
|
530 |
+
"text": [
|
531 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:41<00:00, 6.17it/s]\n",
|
532 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:02<00:00, 14.38it/s]\n"
|
533 |
+
]
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"name": "stdout",
|
537 |
+
"output_type": "stream",
|
538 |
+
"text": [
|
539 |
+
"epoch=3: train_ppl=tensor(1.4475, device='cuda:0') train_epoch_loss=tensor(0.3699, device='cuda:0') eval_ppl=tensor(1.2346, device='cuda:0') eval_epoch_loss=tensor(0.2107, device='cuda:0')\n"
|
540 |
+
]
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"name": "stderr",
|
544 |
+
"output_type": "stream",
|
545 |
+
"text": [
|
546 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:42<00:00, 5.94it/s]\n",
|
547 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:02<00:00, 14.42it/s]"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"name": "stdout",
|
552 |
+
"output_type": "stream",
|
553 |
+
"text": [
|
554 |
+
"epoch=4: train_ppl=tensor(1.3428, device='cuda:0') train_epoch_loss=tensor(0.2948, device='cuda:0') eval_ppl=tensor(1.2041, device='cuda:0') eval_epoch_loss=tensor(0.1857, device='cuda:0')\n"
|
555 |
+
]
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"name": "stderr",
|
559 |
+
"output_type": "stream",
|
560 |
+
"text": [
|
561 |
+
"\n"
|
562 |
+
]
|
563 |
+
}
|
564 |
+
],
|
565 |
+
"source": [
|
566 |
+
"# training and evaluation\n",
|
567 |
+
"model = model.to(device)\n",
|
568 |
+
"\n",
|
569 |
+
"for epoch in range(num_epochs):\n",
|
570 |
+
" model.train()\n",
|
571 |
+
" total_loss = 0\n",
|
572 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
573 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
574 |
+
" outputs = model(**batch)\n",
|
575 |
+
" loss = outputs.loss\n",
|
576 |
+
" total_loss += loss.detach().float()\n",
|
577 |
+
" loss.backward()\n",
|
578 |
+
" optimizer.step()\n",
|
579 |
+
" lr_scheduler.step()\n",
|
580 |
+
" optimizer.zero_grad()\n",
|
581 |
+
"\n",
|
582 |
+
" model.eval()\n",
|
583 |
+
" eval_loss = 0\n",
|
584 |
+
" eval_preds = []\n",
|
585 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
586 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
587 |
+
" with torch.no_grad():\n",
|
588 |
+
" outputs = model(**batch)\n",
|
589 |
+
" loss = outputs.loss\n",
|
590 |
+
" eval_loss += loss.detach().float()\n",
|
591 |
+
" eval_preds.extend(\n",
|
592 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
593 |
+
" )\n",
|
594 |
+
"\n",
|
595 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
596 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
597 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
598 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
599 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
600 |
+
]
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"cell_type": "code",
|
604 |
+
"execution_count": 8,
|
605 |
+
"id": "6cafa67b",
|
606 |
+
"metadata": {
|
607 |
+
"ExecuteTime": {
|
608 |
+
"end_time": "2023-05-30T08:42:42.844671Z",
|
609 |
+
"start_time": "2023-05-30T08:42:42.840447Z"
|
610 |
+
}
|
611 |
+
},
|
612 |
+
"outputs": [
|
613 |
+
{
|
614 |
+
"name": "stdout",
|
615 |
+
"output_type": "stream",
|
616 |
+
"text": [
|
617 |
+
"accuracy=85.46255506607929 % on the evaluation dataset\n",
|
618 |
+
"eval_preds[:10]=['neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'positive', 'neutral', 'negative', 'neutral', 'positive']\n",
|
619 |
+
"dataset['validation']['text_label'][:10]=['neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'positive', 'neutral', 'negative', 'positive', 'neutral']\n"
|
620 |
+
]
|
621 |
+
}
|
622 |
+
],
|
623 |
+
"source": [
|
624 |
+
"# print accuracy\n",
|
625 |
+
"correct = 0\n",
|
626 |
+
"total = 0\n",
|
627 |
+
"for pred, true in zip(eval_preds, dataset[\"validation\"][\"text_label\"]):\n",
|
628 |
+
" if pred.strip() == true.strip():\n",
|
629 |
+
" correct += 1\n",
|
630 |
+
" total += 1\n",
|
631 |
+
"accuracy = correct / total * 100\n",
|
632 |
+
"print(f\"{accuracy=} % on the evaluation dataset\")\n",
|
633 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
634 |
+
"print(f\"{dataset['validation']['text_label'][:10]=}\")"
|
635 |
+
]
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"cell_type": "code",
|
639 |
+
"execution_count": 9,
|
640 |
+
"id": "a8de6005",
|
641 |
+
"metadata": {
|
642 |
+
"ExecuteTime": {
|
643 |
+
"end_time": "2023-05-30T08:42:45.752765Z",
|
644 |
+
"start_time": "2023-05-30T08:42:45.742397Z"
|
645 |
+
}
|
646 |
+
},
|
647 |
+
"outputs": [],
|
648 |
+
"source": [
|
649 |
+
"# saving model\n",
|
650 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
651 |
+
"model.save_pretrained(peft_model_id)"
|
652 |
+
]
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"cell_type": "code",
|
656 |
+
"execution_count": 10,
|
657 |
+
"id": "bd20cd4c",
|
658 |
+
"metadata": {
|
659 |
+
"ExecuteTime": {
|
660 |
+
"end_time": "2023-05-30T08:42:47.660873Z",
|
661 |
+
"start_time": "2023-05-30T08:42:47.488293Z"
|
662 |
+
}
|
663 |
+
},
|
664 |
+
"outputs": [
|
665 |
+
{
|
666 |
+
"name": "stdout",
|
667 |
+
"output_type": "stream",
|
668 |
+
"text": [
|
669 |
+
"164K\tt5-large_PROMPT_TUNING_SEQ_2_SEQ_LM/adapter_model.bin\r\n"
|
670 |
+
]
|
671 |
+
}
|
672 |
+
],
|
673 |
+
"source": [
|
674 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
675 |
+
"!du -h $ckpt"
|
676 |
+
]
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"cell_type": "code",
|
680 |
+
"execution_count": 11,
|
681 |
+
"id": "76c2fc29",
|
682 |
+
"metadata": {
|
683 |
+
"ExecuteTime": {
|
684 |
+
"end_time": "2023-05-30T08:42:56.721990Z",
|
685 |
+
"start_time": "2023-05-30T08:42:49.060700Z"
|
686 |
+
}
|
687 |
+
},
|
688 |
+
"outputs": [],
|
689 |
+
"source": [
|
690 |
+
"from peft import PeftModel, PeftConfig\n",
|
691 |
+
"\n",
|
692 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
693 |
+
"\n",
|
694 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
695 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n",
|
696 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"cell_type": "code",
|
701 |
+
"execution_count": 12,
|
702 |
+
"id": "d997f1cc",
|
703 |
+
"metadata": {
|
704 |
+
"ExecuteTime": {
|
705 |
+
"end_time": "2023-05-30T08:42:59.600916Z",
|
706 |
+
"start_time": "2023-05-30T08:42:58.961468Z"
|
707 |
+
}
|
708 |
+
},
|
709 |
+
"outputs": [
|
710 |
+
{
|
711 |
+
"name": "stdout",
|
712 |
+
"output_type": "stream",
|
713 |
+
"text": [
|
714 |
+
"Danske Bank is Denmark 's largest bank with 3.5 million customers .\n",
|
715 |
+
"tensor([[ 3039, 1050, 1925, 19, 18001, 3, 31, 7, 2015, 2137,\n",
|
716 |
+
" 28, 3, 9285, 770, 722, 3, 5, 1]])\n",
|
717 |
+
"tensor([[ 0, 7163, 1]])\n",
|
718 |
+
"['neutral']\n"
|
719 |
+
]
|
720 |
+
}
|
721 |
+
],
|
722 |
+
"source": [
|
723 |
+
"model.eval()\n",
|
724 |
+
"i = 107\n",
|
725 |
+
"input_ids = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\").input_ids\n",
|
726 |
+
"print(dataset[\"validation\"][text_column][i])\n",
|
727 |
+
"print(input_ids)\n",
|
728 |
+
"\n",
|
729 |
+
"with torch.no_grad():\n",
|
730 |
+
" outputs = model.generate(input_ids=input_ids, max_new_tokens=10)\n",
|
731 |
+
" print(outputs)\n",
|
732 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
733 |
+
]
|
734 |
+
}
|
735 |
+
],
|
736 |
+
"metadata": {
|
737 |
+
"kernelspec": {
|
738 |
+
"display_name": "peft",
|
739 |
+
"language": "python",
|
740 |
+
"name": "peft"
|
741 |
+
},
|
742 |
+
"language_info": {
|
743 |
+
"codemirror_mode": {
|
744 |
+
"name": "ipython",
|
745 |
+
"version": 3
|
746 |
+
},
|
747 |
+
"file_extension": ".py",
|
748 |
+
"mimetype": "text/x-python",
|
749 |
+
"name": "python",
|
750 |
+
"nbconvert_exporter": "python",
|
751 |
+
"pygments_lexer": "ipython3",
|
752 |
+
"version": "3.9.16"
|
753 |
+
},
|
754 |
+
"toc": {
|
755 |
+
"base_numbering": 1,
|
756 |
+
"nav_menu": {},
|
757 |
+
"number_sections": true,
|
758 |
+
"sideBar": true,
|
759 |
+
"skip_h1_title": false,
|
760 |
+
"title_cell": "Table of Contents",
|
761 |
+
"title_sidebar": "Contents",
|
762 |
+
"toc_cell": false,
|
763 |
+
"toc_position": {},
|
764 |
+
"toc_section_display": true,
|
765 |
+
"toc_window_display": false
|
766 |
+
},
|
767 |
+
"varInspector": {
|
768 |
+
"cols": {
|
769 |
+
"lenName": 16,
|
770 |
+
"lenType": 16,
|
771 |
+
"lenVar": 40
|
772 |
+
},
|
773 |
+
"kernels_config": {
|
774 |
+
"python": {
|
775 |
+
"delete_cmd_postfix": "",
|
776 |
+
"delete_cmd_prefix": "del ",
|
777 |
+
"library": "var_list.py",
|
778 |
+
"varRefreshCmd": "print(var_dic_list())"
|
779 |
+
},
|
780 |
+
"r": {
|
781 |
+
"delete_cmd_postfix": ") ",
|
782 |
+
"delete_cmd_prefix": "rm(",
|
783 |
+
"library": "var_list.r",
|
784 |
+
"varRefreshCmd": "cat(var_dic_list()) "
|
785 |
+
}
|
786 |
+
},
|
787 |
+
"types_to_exclude": [
|
788 |
+
"module",
|
789 |
+
"function",
|
790 |
+
"builtin_function_or_method",
|
791 |
+
"instance",
|
792 |
+
"_Feature"
|
793 |
+
],
|
794 |
+
"window_display": false
|
795 |
+
},
|
796 |
+
"vscode": {
|
797 |
+
"interpreter": {
|
798 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
799 |
+
}
|
800 |
+
}
|
801 |
+
},
|
802 |
+
"nbformat": 4,
|
803 |
+
"nbformat_minor": 5
|
804 |
+
}
|
peft_prompt_tuning_seq2seq_with_generate.ipynb
ADDED
@@ -0,0 +1,757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "5f93b7d1",
|
7 |
+
"metadata": {
|
8 |
+
"ExecuteTime": {
|
9 |
+
"end_time": "2023-05-30T09:49:56.334329Z",
|
10 |
+
"start_time": "2023-05-30T09:49:54.494916Z"
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"outputs": [
|
14 |
+
{
|
15 |
+
"ename": "KeyboardInterrupt",
|
16 |
+
"evalue": "",
|
17 |
+
"output_type": "error",
|
18 |
+
"traceback": [
|
19 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
20 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
21 |
+
"Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtransformers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer, GenerationConfig\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mpeft\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n",
|
22 |
+
"File \u001b[0;32m<frozen importlib._bootstrap>:1055\u001b[0m, in \u001b[0;36m_handle_fromlist\u001b[0;34m(module, fromlist, import_, recursive)\u001b[0m\n",
|
23 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/utils/import_utils.py:1076\u001b[0m, in \u001b[0;36m_LazyModule.__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 1074\u001b[0m value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_module(name)\n\u001b[1;32m 1075\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_class_to_module\u001b[38;5;241m.\u001b[39mkeys():\n\u001b[0;32m-> 1076\u001b[0m module \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_module\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_class_to_module\u001b[49m\u001b[43m[\u001b[49m\u001b[43mname\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1077\u001b[0m value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(module, name)\n\u001b[1;32m 1078\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
|
24 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/utils/import_utils.py:1086\u001b[0m, in \u001b[0;36m_LazyModule._get_module\u001b[0;34m(self, module_name)\u001b[0m\n\u001b[1;32m 1084\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_get_module\u001b[39m(\u001b[38;5;28mself\u001b[39m, module_name: \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m 1085\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1086\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mimportlib\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mimport_module\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mmodule_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;18;43m__name__\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1087\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 1088\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 1089\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed to import \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmodule_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m because of the following error (look up to see its\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1090\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m traceback):\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00me\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1091\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n",
|
25 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/importlib/__init__.py:127\u001b[0m, in \u001b[0;36mimport_module\u001b[0;34m(name, package)\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n\u001b[1;32m 126\u001b[0m level \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[0;32m--> 127\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_bootstrap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_gcd_import\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m[\u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpackage\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m)\u001b[49m\n",
|
26 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/training_args_seq2seq.py:21\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtyping\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Optional, Union\n\u001b[1;32m 20\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mgeneration\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mconfiguration_utils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m GenerationConfig\n\u001b[0;32m---> 21\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtraining_args\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m TrainingArguments\n\u001b[1;32m 22\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m add_start_docstrings\n\u001b[1;32m 25\u001b[0m logger \u001b[38;5;241m=\u001b[39m logging\u001b[38;5;241m.\u001b[39mgetLogger(\u001b[38;5;18m__name__\u001b[39m)\n",
|
27 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/training_args.py:29\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtyping\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Any, Dict, List, Optional, Union\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mpackaging\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m version\n\u001b[0;32m---> 29\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdebug_utils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DebugOption\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtrainer_utils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 31\u001b[0m EvaluationStrategy,\n\u001b[1;32m 32\u001b[0m FSDPOption,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 36\u001b[0m ShardedDDPOption,\n\u001b[1;32m 37\u001b[0m )\n\u001b[1;32m 38\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 39\u001b[0m ExplicitEnum,\n\u001b[1;32m 40\u001b[0m cached_property,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 53\u001b[0m requires_backends,\n\u001b[1;32m 54\u001b[0m )\n",
|
28 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/debug_utils.py:21\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ExplicitEnum, is_torch_available, logging\n\u001b[1;32m 20\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_torch_available():\n\u001b[0;32m---> 21\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n\u001b[1;32m 24\u001b[0m logger \u001b[38;5;241m=\u001b[39m logging\u001b[38;5;241m.\u001b[39mget_logger(\u001b[38;5;18m__name__\u001b[39m)\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mclass\u001b[39;00m \u001b[38;5;21;01mDebugUnderflowOverflow\u001b[39;00m:\n",
|
29 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/__init__.py:1465\u001b[0m\n\u001b[1;32m 1463\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m library\n\u001b[1;32m 1464\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m TYPE_CHECKING:\n\u001b[0;32m-> 1465\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m _meta_registrations\n\u001b[1;32m 1467\u001b[0m \u001b[38;5;66;03m# Enable CUDA Sanitizer\u001b[39;00m\n\u001b[1;32m 1468\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mTORCH_CUDA_SANITIZER\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;129;01min\u001b[39;00m os\u001b[38;5;241m.\u001b[39menviron:\n",
|
30 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_meta_registrations.py:7\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims_common\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mutils\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Tensor\n\u001b[0;32m----> 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_decomp\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m _add_op_to_registry, global_decomposition_table, meta_table\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_ops\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m OpOverload\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m _elementwise_meta, ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND\n",
|
31 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_decomp/__init__.py:169\u001b[0m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m decompositions\n\u001b[1;32m 168\u001b[0m \u001b[38;5;66;03m# populate the table\u001b[39;00m\n\u001b[0;32m--> 169\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_decomp\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdecompositions\u001b[39;00m\n\u001b[1;32m 170\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_refs\u001b[39;00m\n\u001b[1;32m 172\u001b[0m \u001b[38;5;66;03m# This list was copied from torch/_inductor/decomposition.py\u001b[39;00m\n\u001b[1;32m 173\u001b[0m \u001b[38;5;66;03m# excluding decompositions that results in prim ops\u001b[39;00m\n\u001b[1;32m 174\u001b[0m \u001b[38;5;66;03m# Resulting opset of decomposition is core aten ops\u001b[39;00m\n",
|
32 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_decomp/decompositions.py:10\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtyping\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Callable, cast, Iterable, List, Optional, Tuple, Union\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n\u001b[0;32m---> 10\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mprims\u001b[39;00m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims_common\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mutils\u001b[39;00m\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mnn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctional\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mF\u001b[39;00m\n",
|
33 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_prims/__init__.py:33\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims_common\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 18\u001b[0m check,\n\u001b[1;32m 19\u001b[0m Dim,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 30\u001b[0m type_to_dtype,\n\u001b[1;32m 31\u001b[0m )\n\u001b[1;32m 32\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims_common\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mwrappers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m backwards_not_supported\n\u001b[0;32m---> 33\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_subclasses\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfake_tensor\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m FakeTensor, FakeTensorMode\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01moverrides\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m handle_torch_function, has_torch_function\n\u001b[1;32m 35\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_pytree\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m tree_flatten, tree_map, tree_unflatten\n",
|
34 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_subclasses/__init__.py:3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_subclasses\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfake_tensor\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 4\u001b[0m DynamicOutputShapeException,\n\u001b[1;32m 5\u001b[0m FakeTensor,\n\u001b[1;32m 6\u001b[0m FakeTensorMode,\n\u001b[1;32m 7\u001b[0m UnsupportedFakeTensorException,\n\u001b[1;32m 8\u001b[0m )\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_subclasses\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfake_utils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m CrossRefFakeMode\n\u001b[1;32m 12\u001b[0m __all__ \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 13\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFakeTensor\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 14\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFakeTensorMode\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCrossRefFakeMode\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 18\u001b[0m ]\n",
|
35 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py:13\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mweakref\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ReferenceType\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n\u001b[0;32m---> 13\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_guards\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Source\n\u001b[1;32m 14\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_ops\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m OpOverload\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims_common\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 16\u001b[0m elementwise_dtypes,\n\u001b[1;32m 17\u001b[0m ELEMENTWISE_TYPE_PROMOTION_KIND,\n\u001b[1;32m 18\u001b[0m is_float_dtype,\n\u001b[1;32m 19\u001b[0m is_integer_dtype,\n\u001b[1;32m 20\u001b[0m )\n",
|
36 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_guards.py:14\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;66;03m# TODO(voz): Stolen pattern, not sure why this is the case,\u001b[39;00m\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m# but mypy complains.\u001b[39;00m\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 14\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m \u001b[38;5;66;03m# type: ignore[import]\u001b[39;00m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m:\n\u001b[1;32m 16\u001b[0m log\u001b[38;5;241m.\u001b[39mwarning(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo sympy found\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
37 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/__init__.py:74\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlogic\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (to_cnf, to_dnf, to_nnf, And, Or, Not, Xor, Nand, Nor,\n\u001b[1;32m 68\u001b[0m Implies, Equivalent, ITE, POSform, SOPform, simplify_logic, bool_map,\n\u001b[1;32m 69\u001b[0m true, false, satisfiable)\n\u001b[1;32m 71\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01massumptions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (AppliedPredicate, Predicate, AssumptionsContext,\n\u001b[1;32m 72\u001b[0m assuming, Q, ask, register_handler, remove_handler, refine)\n\u001b[0;32m---> 74\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (Poly, PurePoly, poly_from_expr, parallel_poly_from_expr,\n\u001b[1;32m 75\u001b[0m degree, total_degree, degree_list, LC, LM, LT, pdiv, prem, pquo,\n\u001b[1;32m 76\u001b[0m pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert,\n\u001b[1;32m 77\u001b[0m subresultants, resultant, discriminant, cofactors, gcd_list, gcd,\n\u001b[1;32m 78\u001b[0m lcm_list, lcm, terms_gcd, trunc, monic, content, primitive, compose,\n\u001b[1;32m 79\u001b[0m decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf,\n\u001b[1;32m 80\u001b[0m factor_list, factor, intervals, refine_root, count_roots, real_roots,\n\u001b[1;32m 81\u001b[0m nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner,\n\u001b[1;32m 82\u001b[0m is_zero_dimensional, GroebnerBasis, poly, symmetrize, horner,\n\u001b[1;32m 83\u001b[0m interpolate, rational_interpolate, viete, together,\n\u001b[1;32m 84\u001b[0m BasePolynomialError, ExactQuotientFailed, PolynomialDivisionFailed,\n\u001b[1;32m 85\u001b[0m OperationNotSupported, HeuristicGCDFailed, HomomorphismFailed,\n\u001b[1;32m 86\u001b[0m IsomorphismFailed, ExtraneousFactors, EvaluationFailed,\n\u001b[1;32m 87\u001b[0m RefinementFailed, CoercionFailed, NotInvertible, NotReversible,\n\u001b[1;32m 88\u001b[0m NotAlgebraic, DomainError, PolynomialError, UnificationFailed,\n\u001b[1;32m 89\u001b[0m GeneratorsError, GeneratorsNeeded, ComputationFailed,\n\u001b[1;32m 90\u001b[0m UnivariatePolynomialError, MultivariatePolynomialError,\n\u001b[1;32m 91\u001b[0m PolificationFailed, OptionError, FlagError, minpoly,\n\u001b[1;32m 92\u001b[0m minimal_polynomial, primitive_element, field_isomorphism,\n\u001b[1;32m 93\u001b[0m to_number_field, isolate, round_two, prime_decomp, prime_valuation,\n\u001b[1;32m 94\u001b[0m galois_group, itermonomials, Monomial, lex, grlex,\n\u001b[1;32m 95\u001b[0m grevlex, ilex, igrlex, igrevlex, CRootOf, rootof, RootOf,\n\u001b[1;32m 96\u001b[0m ComplexRootOf, RootSum, roots, Domain, FiniteField, IntegerRing,\n\u001b[1;32m 97\u001b[0m RationalField, RealField, ComplexField, PythonFiniteField,\n\u001b[1;32m 98\u001b[0m GMPYFiniteField, PythonIntegerRing, GMPYIntegerRing, PythonRational,\n\u001b[1;32m 99\u001b[0m GMPYRationalField, AlgebraicField, PolynomialRing, FractionField,\n\u001b[1;32m 100\u001b[0m ExpressionDomain, FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python,\n\u001b[1;32m 101\u001b[0m QQ_gmpy, GF, FF, ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX, EXRAW,\n\u001b[1;32m 102\u001b[0m construct_domain, swinnerton_dyer_poly, cyclotomic_poly,\n\u001b[1;32m 103\u001b[0m symmetric_poly, random_poly, interpolating_poly, jacobi_poly,\n\u001b[1;32m 104\u001b[0m chebyshevt_poly, chebyshevu_poly, hermite_poly, hermite_prob_poly,\n\u001b[1;32m 105\u001b[0m legendre_poly, laguerre_poly, apart, apart_list, assemble_partfrac_list,\n\u001b[1;32m 106\u001b[0m Options, ring, xring, vring, sring, field, xfield, vfield, sfield)\n\u001b[1;32m 108\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mseries\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (Order, O, limit, Limit, gruntz, series, approximants,\n\u001b[1;32m 109\u001b[0m residue, EmptySequence, SeqPer, SeqFormula, sequence, SeqAdd, SeqMul,\n\u001b[1;32m 110\u001b[0m fourier_series, fps, difference_delta, limit_seq)\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (factorial, factorial2, rf, ff, binomial,\n\u001b[1;32m 113\u001b[0m RisingFactorial, FallingFactorial, subfactorial, carmichael,\n\u001b[1;32m 114\u001b[0m fibonacci, lucas, motzkin, tribonacci, harmonic, bernoulli, bell, euler,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 133\u001b[0m Znm, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, beta, mathieus,\n\u001b[1;32m 134\u001b[0m mathieuc, mathieusprime, mathieucprime, riemann_xi, betainc, betainc_regularized)\n",
|
38 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/polys/__init__.py:78\u001b[0m\n\u001b[1;32m 3\u001b[0m __all__ \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 4\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPoly\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPurePoly\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpoly_from_expr\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mparallel_poly_from_expr\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdegree\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 5\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtotal_degree\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdegree_list\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mLC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mLM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mLT\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpdiv\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mprem\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpquo\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfield\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mxfield\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvfield\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msfield\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 66\u001b[0m ]\n\u001b[1;32m 68\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolytools\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (Poly, PurePoly, poly_from_expr,\n\u001b[1;32m 69\u001b[0m parallel_poly_from_expr, degree, total_degree, degree_list, LC, LM,\n\u001b[1;32m 70\u001b[0m LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 75\u001b[0m count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly,\n\u001b[1;32m 76\u001b[0m cancel, reduced, groebner, is_zero_dimensional, GroebnerBasis, poly)\n\u001b[0;32m---> 78\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolyfuncs\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (symmetrize, horner, interpolate,\n\u001b[1;32m 79\u001b[0m rational_interpolate, viete)\n\u001b[1;32m 81\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrationaltools\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m together\n\u001b[1;32m 83\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolyerrors\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (BasePolynomialError, ExactQuotientFailed,\n\u001b[1;32m 84\u001b[0m PolynomialDivisionFailed, OperationNotSupported, HeuristicGCDFailed,\n\u001b[1;32m 85\u001b[0m HomomorphismFailed, IsomorphismFailed, ExtraneousFactors,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 90\u001b[0m MultivariatePolynomialError, PolificationFailed, OptionError,\n\u001b[1;32m 91\u001b[0m FlagError)\n",
|
39 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/polys/polyfuncs.py:10\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolyoptions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m allowed_flags, build_options\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolytools\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m poly_from_expr, Poly\n\u001b[0;32m---> 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mspecialpolys\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 11\u001b[0m symmetric_poly, interpolating_poly)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrings\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m sring\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutilities\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m numbered_symbols, take, public\n",
|
40 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/polys/specialpolys.py:298\u001b[0m\n\u001b[1;32m 294\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h\n\u001b[1;32m 296\u001b[0m \u001b[38;5;66;03m# A few useful polynomials from Wang's paper ('78).\u001b[39;00m\n\u001b[0;32m--> 298\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrings\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ring\n\u001b[1;32m 300\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_f_0\u001b[39m():\n\u001b[1;32m 301\u001b[0m R, x, y, z \u001b[38;5;241m=\u001b[39m ring(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mx,y,z\u001b[39m\u001b[38;5;124m\"\u001b[39m, ZZ)\n",
|
41 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/polys/rings.py:30\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolyoptions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (Domain \u001b[38;5;28;01mas\u001b[39;00m DomainOpt,\n\u001b[1;32m 27\u001b[0m Order \u001b[38;5;28;01mas\u001b[39;00m OrderOpt, build_options)\n\u001b[1;32m 28\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolyutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (expr_from_dict, _dict_reorder,\n\u001b[1;32m 29\u001b[0m _parallel_dict_from_expr)\n\u001b[0;32m---> 30\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprinting\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdefaults\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DefaultPrinting\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutilities\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m public, subsets\n\u001b[1;32m 32\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutilities\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01miterables\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m is_sequence\n",
|
42 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/printing/__init__.py:5\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;124;03m\"\"\"Printing subsystem\"\"\"\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpretty\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m pager_print, pretty, pretty_print, pprint, pprint_use_unicode, pprint_try_use_unicode\n\u001b[0;32m----> 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlatex\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m latex, print_latex, multiline_latex\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmathml\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m mathml, print_mathml\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpython\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m python, print_python\n",
|
43 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/printing/latex.py:18\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcore\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msympify\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m SympifyError\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlogic\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mboolalg\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m true, BooleanTrue, BooleanFalse\n\u001b[0;32m---> 18\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtensor\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01marray\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m NDimArray\n\u001b[1;32m 20\u001b[0m \u001b[38;5;66;03m# sympy.printing imports\u001b[39;00m\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprinting\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprecedence\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m precedence_traditional\n",
|
44 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/tensor/__init__.py:4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;124;03m\"\"\"A module to manipulate symbolic objects with indices including tensors\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \n\u001b[1;32m 3\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mindexed\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m IndexedBase, Idx, Indexed\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mindex_methods\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_contraction_structure, get_indices\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m shape\n",
|
45 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/tensor/indexed.py:114\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcore\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlogic\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m fuzzy_bool, fuzzy_not\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcore\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msympify\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m _sympify\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mspecial\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtensor_functions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m KroneckerDelta\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmultipledispatch\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m dispatch\n\u001b[1;32m 116\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutilities\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01miterables\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m is_sequence, NotIterable\n",
|
46 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/functions/__init__.py:21\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01melementary\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtrigonometric\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (sin, cos, tan,\n\u001b[1;32m 18\u001b[0m sec, csc, cot, sinc, asin, acos, atan, asec, acsc, acot, atan2)\n\u001b[1;32m 19\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01melementary\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexponential\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (exp_polar, exp, log,\n\u001b[1;32m 20\u001b[0m LambertW)\n\u001b[0;32m---> 21\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01melementary\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mhyperbolic\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (sinh, cosh, tanh, coth,\n\u001b[1;32m 22\u001b[0m sech, csch, asinh, acosh, atanh, acoth, asech, acsch)\n\u001b[1;32m 23\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01melementary\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mintegers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m floor, ceiling, frac\n\u001b[1;32m 24\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01melementary\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpiecewise\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (Piecewise, piecewise_fold,\n\u001b[1;32m 25\u001b[0m piecewise_exclusive)\n",
|
47 |
+
"File \u001b[0;32m<frozen importlib._bootstrap>:1007\u001b[0m, in \u001b[0;36m_find_and_load\u001b[0;34m(name, import_)\u001b[0m\n",
|
48 |
+
"File \u001b[0;32m<frozen importlib._bootstrap>:986\u001b[0m, in \u001b[0;36m_find_and_load_unlocked\u001b[0;34m(name, import_)\u001b[0m\n",
|
49 |
+
"File \u001b[0;32m<frozen importlib._bootstrap>:680\u001b[0m, in \u001b[0;36m_load_unlocked\u001b[0;34m(spec)\u001b[0m\n",
|
50 |
+
"File \u001b[0;32m<frozen importlib._bootstrap_external>:846\u001b[0m, in \u001b[0;36mexec_module\u001b[0;34m(self, module)\u001b[0m\n",
|
51 |
+
"File \u001b[0;32m<frozen importlib._bootstrap_external>:978\u001b[0m, in \u001b[0;36mget_code\u001b[0;34m(self, fullname)\u001b[0m\n",
|
52 |
+
"File \u001b[0;32m<frozen importlib._bootstrap_external>:647\u001b[0m, in \u001b[0;36m_compile_bytecode\u001b[0;34m(data, name, bytecode_path, source_path)\u001b[0m\n",
|
53 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
54 |
+
]
|
55 |
+
}
|
56 |
+
],
|
57 |
+
"source": [
|
58 |
+
"import os\n",
|
59 |
+
"\n",
|
60 |
+
"import torch\n",
|
61 |
+
"from transformers import (\n",
|
62 |
+
" AutoTokenizer,\n",
|
63 |
+
" default_data_collator,\n",
|
64 |
+
" AutoModelForSeq2SeqLM,\n",
|
65 |
+
" Seq2SeqTrainingArguments,\n",
|
66 |
+
" Seq2SeqTrainer,\n",
|
67 |
+
" GenerationConfig,\n",
|
68 |
+
")\n",
|
69 |
+
"from peft import get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType\n",
|
70 |
+
"from datasets import load_dataset\n",
|
71 |
+
"\n",
|
72 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"\n",
|
73 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
74 |
+
"\n",
|
75 |
+
"device = \"cuda\"\n",
|
76 |
+
"model_name_or_path = \"t5-large\"\n",
|
77 |
+
"tokenizer_name_or_path = \"t5-large\"\n",
|
78 |
+
"\n",
|
79 |
+
"checkpoint_name = \"financial_sentiment_analysis_prefix_tuning_v1.pt\"\n",
|
80 |
+
"text_column = \"sentence\"\n",
|
81 |
+
"label_column = \"text_label\"\n",
|
82 |
+
"max_length = 8\n",
|
83 |
+
"lr = 1e0\n",
|
84 |
+
"num_epochs = 5\n",
|
85 |
+
"batch_size = 8"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 2,
|
91 |
+
"id": "8d0850ac",
|
92 |
+
"metadata": {
|
93 |
+
"ExecuteTime": {
|
94 |
+
"end_time": "2023-05-30T09:50:04.808527Z",
|
95 |
+
"start_time": "2023-05-30T09:49:56.953075Z"
|
96 |
+
}
|
97 |
+
},
|
98 |
+
"outputs": [
|
99 |
+
{
|
100 |
+
"name": "stdout",
|
101 |
+
"output_type": "stream",
|
102 |
+
"text": [
|
103 |
+
"trainable params: 40960 || all params: 737709056 || trainable%: 0.005552324411210698\n"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"data": {
|
108 |
+
"text/plain": [
|
109 |
+
"PeftModelForSeq2SeqLM(\n",
|
110 |
+
" (base_model): T5ForConditionalGeneration(\n",
|
111 |
+
" (shared): Embedding(32128, 1024)\n",
|
112 |
+
" (encoder): T5Stack(\n",
|
113 |
+
" (embed_tokens): Embedding(32128, 1024)\n",
|
114 |
+
" (block): ModuleList(\n",
|
115 |
+
" (0): T5Block(\n",
|
116 |
+
" (layer): ModuleList(\n",
|
117 |
+
" (0): T5LayerSelfAttention(\n",
|
118 |
+
" (SelfAttention): T5Attention(\n",
|
119 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
120 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
121 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
122 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
123 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
124 |
+
" )\n",
|
125 |
+
" (layer_norm): T5LayerNorm()\n",
|
126 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
127 |
+
" )\n",
|
128 |
+
" (1): T5LayerFF(\n",
|
129 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
130 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
131 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
132 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
133 |
+
" (act): ReLU()\n",
|
134 |
+
" )\n",
|
135 |
+
" (layer_norm): T5LayerNorm()\n",
|
136 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
137 |
+
" )\n",
|
138 |
+
" )\n",
|
139 |
+
" )\n",
|
140 |
+
" (1-23): 23 x T5Block(\n",
|
141 |
+
" (layer): ModuleList(\n",
|
142 |
+
" (0): T5LayerSelfAttention(\n",
|
143 |
+
" (SelfAttention): T5Attention(\n",
|
144 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
145 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
146 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
147 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
148 |
+
" )\n",
|
149 |
+
" (layer_norm): T5LayerNorm()\n",
|
150 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
151 |
+
" )\n",
|
152 |
+
" (1): T5LayerFF(\n",
|
153 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
154 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
155 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
156 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
157 |
+
" (act): ReLU()\n",
|
158 |
+
" )\n",
|
159 |
+
" (layer_norm): T5LayerNorm()\n",
|
160 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
161 |
+
" )\n",
|
162 |
+
" )\n",
|
163 |
+
" )\n",
|
164 |
+
" )\n",
|
165 |
+
" (final_layer_norm): T5LayerNorm()\n",
|
166 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
167 |
+
" )\n",
|
168 |
+
" (decoder): T5Stack(\n",
|
169 |
+
" (embed_tokens): Embedding(32128, 1024)\n",
|
170 |
+
" (block): ModuleList(\n",
|
171 |
+
" (0): T5Block(\n",
|
172 |
+
" (layer): ModuleList(\n",
|
173 |
+
" (0): T5LayerSelfAttention(\n",
|
174 |
+
" (SelfAttention): T5Attention(\n",
|
175 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
176 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
177 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
178 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
179 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
180 |
+
" )\n",
|
181 |
+
" (layer_norm): T5LayerNorm()\n",
|
182 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
183 |
+
" )\n",
|
184 |
+
" (1): T5LayerCrossAttention(\n",
|
185 |
+
" (EncDecAttention): T5Attention(\n",
|
186 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
187 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
188 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
189 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
190 |
+
" )\n",
|
191 |
+
" (layer_norm): T5LayerNorm()\n",
|
192 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
193 |
+
" )\n",
|
194 |
+
" (2): T5LayerFF(\n",
|
195 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
196 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
197 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
198 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
199 |
+
" (act): ReLU()\n",
|
200 |
+
" )\n",
|
201 |
+
" (layer_norm): T5LayerNorm()\n",
|
202 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
203 |
+
" )\n",
|
204 |
+
" )\n",
|
205 |
+
" )\n",
|
206 |
+
" (1-23): 23 x T5Block(\n",
|
207 |
+
" (layer): ModuleList(\n",
|
208 |
+
" (0): T5LayerSelfAttention(\n",
|
209 |
+
" (SelfAttention): T5Attention(\n",
|
210 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
211 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
212 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
213 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
214 |
+
" )\n",
|
215 |
+
" (layer_norm): T5LayerNorm()\n",
|
216 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
217 |
+
" )\n",
|
218 |
+
" (1): T5LayerCrossAttention(\n",
|
219 |
+
" (EncDecAttention): T5Attention(\n",
|
220 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
221 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
222 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
223 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
224 |
+
" )\n",
|
225 |
+
" (layer_norm): T5LayerNorm()\n",
|
226 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
227 |
+
" )\n",
|
228 |
+
" (2): T5LayerFF(\n",
|
229 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
230 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
231 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
232 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
233 |
+
" (act): ReLU()\n",
|
234 |
+
" )\n",
|
235 |
+
" (layer_norm): T5LayerNorm()\n",
|
236 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
237 |
+
" )\n",
|
238 |
+
" )\n",
|
239 |
+
" )\n",
|
240 |
+
" )\n",
|
241 |
+
" (final_layer_norm): T5LayerNorm()\n",
|
242 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
243 |
+
" )\n",
|
244 |
+
" (lm_head): Linear(in_features=1024, out_features=32128, bias=False)\n",
|
245 |
+
" )\n",
|
246 |
+
" (prompt_encoder): ModuleDict(\n",
|
247 |
+
" (default): PromptEmbedding(\n",
|
248 |
+
" (embedding): Embedding(40, 1024)\n",
|
249 |
+
" )\n",
|
250 |
+
" )\n",
|
251 |
+
" (word_embeddings): Embedding(32128, 1024)\n",
|
252 |
+
")"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
"execution_count": 2,
|
256 |
+
"metadata": {},
|
257 |
+
"output_type": "execute_result"
|
258 |
+
}
|
259 |
+
],
|
260 |
+
"source": [
|
261 |
+
"# creating model\n",
|
262 |
+
"peft_config = peft_config = PromptTuningConfig(\n",
|
263 |
+
" task_type=TaskType.SEQ_2_SEQ_LM,\n",
|
264 |
+
" prompt_tuning_init=PromptTuningInit.TEXT,\n",
|
265 |
+
" num_virtual_tokens=20,\n",
|
266 |
+
" prompt_tuning_init_text=\"What is the sentiment of this article?\\n\",\n",
|
267 |
+
" inference_mode=False,\n",
|
268 |
+
" tokenizer_name_or_path=model_name_or_path,\n",
|
269 |
+
")\n",
|
270 |
+
"\n",
|
271 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)\n",
|
272 |
+
"model = get_peft_model(model, peft_config)\n",
|
273 |
+
"model.print_trainable_parameters()\n",
|
274 |
+
"model"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "code",
|
279 |
+
"execution_count": 3,
|
280 |
+
"id": "4ee2babf",
|
281 |
+
"metadata": {
|
282 |
+
"ExecuteTime": {
|
283 |
+
"end_time": "2023-05-30T09:50:09.224782Z",
|
284 |
+
"start_time": "2023-05-30T09:50:08.172611Z"
|
285 |
+
}
|
286 |
+
},
|
287 |
+
"outputs": [
|
288 |
+
{
|
289 |
+
"name": "stderr",
|
290 |
+
"output_type": "stream",
|
291 |
+
"text": [
|
292 |
+
"Found cached dataset financial_phrasebank (/data/proxem/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"data": {
|
297 |
+
"application/vnd.jupyter.widget-view+json": {
|
298 |
+
"model_id": "d3a799c64a2c43258dc6166c90e2e49f",
|
299 |
+
"version_major": 2,
|
300 |
+
"version_minor": 0
|
301 |
+
},
|
302 |
+
"text/plain": [
|
303 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
304 |
+
]
|
305 |
+
},
|
306 |
+
"metadata": {},
|
307 |
+
"output_type": "display_data"
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"data": {
|
311 |
+
"application/vnd.jupyter.widget-view+json": {
|
312 |
+
"model_id": "",
|
313 |
+
"version_major": 2,
|
314 |
+
"version_minor": 0
|
315 |
+
},
|
316 |
+
"text/plain": [
|
317 |
+
"Map: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
"metadata": {},
|
321 |
+
"output_type": "display_data"
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"data": {
|
325 |
+
"application/vnd.jupyter.widget-view+json": {
|
326 |
+
"model_id": "",
|
327 |
+
"version_major": 2,
|
328 |
+
"version_minor": 0
|
329 |
+
},
|
330 |
+
"text/plain": [
|
331 |
+
"Map: 0%| | 0/227 [00:00<?, ? examples/s]"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
"metadata": {},
|
335 |
+
"output_type": "display_data"
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"data": {
|
339 |
+
"text/plain": [
|
340 |
+
"{'sentence': 'The price of the 10,000 kroon par value bonds was 9663,51 kroons in the primary issue .',\n",
|
341 |
+
" 'label': 1,\n",
|
342 |
+
" 'text_label': 'neutral'}"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
"execution_count": 3,
|
346 |
+
"metadata": {},
|
347 |
+
"output_type": "execute_result"
|
348 |
+
}
|
349 |
+
],
|
350 |
+
"source": [
|
351 |
+
"# loading dataset\n",
|
352 |
+
"dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n",
|
353 |
+
"dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n",
|
354 |
+
"dataset[\"validation\"] = dataset[\"test\"]\n",
|
355 |
+
"del dataset[\"test\"]\n",
|
356 |
+
"\n",
|
357 |
+
"classes = dataset[\"train\"].features[\"label\"].names\n",
|
358 |
+
"dataset = dataset.map(\n",
|
359 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n",
|
360 |
+
" batched=True,\n",
|
361 |
+
" num_proc=1,\n",
|
362 |
+
")\n",
|
363 |
+
"\n",
|
364 |
+
"dataset[\"train\"][0]"
|
365 |
+
]
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"cell_type": "code",
|
369 |
+
"execution_count": 4,
|
370 |
+
"id": "adf9608c",
|
371 |
+
"metadata": {
|
372 |
+
"ExecuteTime": {
|
373 |
+
"end_time": "2023-05-30T09:50:12.176663Z",
|
374 |
+
"start_time": "2023-05-30T09:50:11.421273Z"
|
375 |
+
}
|
376 |
+
},
|
377 |
+
"outputs": [
|
378 |
+
{
|
379 |
+
"name": "stderr",
|
380 |
+
"output_type": "stream",
|
381 |
+
"text": [
|
382 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/models/t5/tokenization_t5_fast.py:155: FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will be corrected in Transformers v5.\n",
|
383 |
+
"For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.\n",
|
384 |
+
"- Be aware that you SHOULD NOT rely on t5-large automatically truncating your input to 512 when padding/encoding.\n",
|
385 |
+
"- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.\n",
|
386 |
+
"- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.\n",
|
387 |
+
" warnings.warn(\n"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"data": {
|
392 |
+
"application/vnd.jupyter.widget-view+json": {
|
393 |
+
"model_id": "",
|
394 |
+
"version_major": 2,
|
395 |
+
"version_minor": 0
|
396 |
+
},
|
397 |
+
"text/plain": [
|
398 |
+
"Running tokenizer on dataset: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
399 |
+
]
|
400 |
+
},
|
401 |
+
"metadata": {},
|
402 |
+
"output_type": "display_data"
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"data": {
|
406 |
+
"application/vnd.jupyter.widget-view+json": {
|
407 |
+
"model_id": "",
|
408 |
+
"version_major": 2,
|
409 |
+
"version_minor": 0
|
410 |
+
},
|
411 |
+
"text/plain": [
|
412 |
+
"Running tokenizer on dataset: 0%| | 0/227 [00:00<?, ? examples/s]"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
"metadata": {},
|
416 |
+
"output_type": "display_data"
|
417 |
+
}
|
418 |
+
],
|
419 |
+
"source": [
|
420 |
+
"# data preprocessing\n",
|
421 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
422 |
+
"\n",
|
423 |
+
"\n",
|
424 |
+
"def preprocess_function(examples):\n",
|
425 |
+
" inputs = examples[text_column]\n",
|
426 |
+
" targets = examples[label_column]\n",
|
427 |
+
" model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
428 |
+
" labels = tokenizer(targets, max_length=2, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
429 |
+
" labels = labels[\"input_ids\"]\n",
|
430 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
431 |
+
" model_inputs[\"labels\"] = labels\n",
|
432 |
+
" return model_inputs\n",
|
433 |
+
"\n",
|
434 |
+
"\n",
|
435 |
+
"processed_datasets = dataset.map(\n",
|
436 |
+
" preprocess_function,\n",
|
437 |
+
" batched=True,\n",
|
438 |
+
" num_proc=1,\n",
|
439 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
440 |
+
" load_from_cache_file=False,\n",
|
441 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
442 |
+
")\n",
|
443 |
+
"\n",
|
444 |
+
"train_dataset = processed_datasets[\"train\"].shuffle()\n",
|
445 |
+
"eval_dataset = processed_datasets[\"validation\"]"
|
446 |
+
]
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"cell_type": "code",
|
450 |
+
"execution_count": 5,
|
451 |
+
"id": "6b3a4090",
|
452 |
+
"metadata": {
|
453 |
+
"ExecuteTime": {
|
454 |
+
"end_time": "2023-05-30T09:53:10.336984Z",
|
455 |
+
"start_time": "2023-05-30T09:50:14.780995Z"
|
456 |
+
}
|
457 |
+
},
|
458 |
+
"outputs": [
|
459 |
+
{
|
460 |
+
"name": "stderr",
|
461 |
+
"output_type": "stream",
|
462 |
+
"text": [
|
463 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/optimization.py:407: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
464 |
+
" warnings.warn(\n"
|
465 |
+
]
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"data": {
|
469 |
+
"text/html": [
|
470 |
+
"\n",
|
471 |
+
" <div>\n",
|
472 |
+
" \n",
|
473 |
+
" <progress value='1275' max='1275' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
474 |
+
" [1275/1275 02:52, Epoch 5/5]\n",
|
475 |
+
" </div>\n",
|
476 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
477 |
+
" <thead>\n",
|
478 |
+
" <tr style=\"text-align: left;\">\n",
|
479 |
+
" <th>Epoch</th>\n",
|
480 |
+
" <th>Training Loss</th>\n",
|
481 |
+
" <th>Validation Loss</th>\n",
|
482 |
+
" <th>Accuracy</th>\n",
|
483 |
+
" </tr>\n",
|
484 |
+
" </thead>\n",
|
485 |
+
" <tbody>\n",
|
486 |
+
" <tr>\n",
|
487 |
+
" <td>1</td>\n",
|
488 |
+
" <td>4.784800</td>\n",
|
489 |
+
" <td>0.576933</td>\n",
|
490 |
+
" <td>0.559471</td>\n",
|
491 |
+
" </tr>\n",
|
492 |
+
" <tr>\n",
|
493 |
+
" <td>2</td>\n",
|
494 |
+
" <td>0.648200</td>\n",
|
495 |
+
" <td>0.437575</td>\n",
|
496 |
+
" <td>0.577093</td>\n",
|
497 |
+
" </tr>\n",
|
498 |
+
" <tr>\n",
|
499 |
+
" <td>3</td>\n",
|
500 |
+
" <td>0.536200</td>\n",
|
501 |
+
" <td>0.397857</td>\n",
|
502 |
+
" <td>0.625551</td>\n",
|
503 |
+
" </tr>\n",
|
504 |
+
" <tr>\n",
|
505 |
+
" <td>4</td>\n",
|
506 |
+
" <td>0.472200</td>\n",
|
507 |
+
" <td>0.373160</td>\n",
|
508 |
+
" <td>0.643172</td>\n",
|
509 |
+
" </tr>\n",
|
510 |
+
" <tr>\n",
|
511 |
+
" <td>5</td>\n",
|
512 |
+
" <td>0.452500</td>\n",
|
513 |
+
" <td>0.370234</td>\n",
|
514 |
+
" <td>0.656388</td>\n",
|
515 |
+
" </tr>\n",
|
516 |
+
" </tbody>\n",
|
517 |
+
"</table><p>"
|
518 |
+
],
|
519 |
+
"text/plain": [
|
520 |
+
"<IPython.core.display.HTML object>"
|
521 |
+
]
|
522 |
+
},
|
523 |
+
"metadata": {},
|
524 |
+
"output_type": "display_data"
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"data": {
|
528 |
+
"text/plain": [
|
529 |
+
"TrainOutput(global_step=1275, training_loss=1.3787811279296875, metrics={'train_runtime': 173.3699, 'train_samples_per_second': 58.747, 'train_steps_per_second': 7.354, 'total_flos': 344546979840000.0, 'train_loss': 1.3787811279296875, 'epoch': 5.0})"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
"execution_count": 5,
|
533 |
+
"metadata": {},
|
534 |
+
"output_type": "execute_result"
|
535 |
+
}
|
536 |
+
],
|
537 |
+
"source": [
|
538 |
+
"# training and evaluation\n",
|
539 |
+
"\n",
|
540 |
+
"\n",
|
541 |
+
"def compute_metrics(eval_preds):\n",
|
542 |
+
" preds, labels = eval_preds\n",
|
543 |
+
" preds = tokenizer.batch_decode(preds, skip_special_tokens=True)\n",
|
544 |
+
" labels = tokenizer.batch_decode(labels, skip_special_tokens=True)\n",
|
545 |
+
"\n",
|
546 |
+
" correct = 0\n",
|
547 |
+
" total = 0\n",
|
548 |
+
" for pred, true in zip(preds, labels):\n",
|
549 |
+
" if pred.strip() == true.strip():\n",
|
550 |
+
" correct += 1\n",
|
551 |
+
" total += 1\n",
|
552 |
+
" accuracy = correct / total\n",
|
553 |
+
" return {\"accuracy\": accuracy}\n",
|
554 |
+
"\n",
|
555 |
+
"\n",
|
556 |
+
"training_args = Seq2SeqTrainingArguments(\n",
|
557 |
+
" \"out\",\n",
|
558 |
+
" per_device_train_batch_size=batch_size,\n",
|
559 |
+
" learning_rate=lr,\n",
|
560 |
+
" num_train_epochs=num_epochs,\n",
|
561 |
+
" evaluation_strategy=\"epoch\",\n",
|
562 |
+
" logging_strategy=\"epoch\",\n",
|
563 |
+
" save_strategy=\"no\",\n",
|
564 |
+
" report_to=[],\n",
|
565 |
+
" predict_with_generate=True,\n",
|
566 |
+
" generation_config=GenerationConfig(max_length=max_length),\n",
|
567 |
+
")\n",
|
568 |
+
"trainer = Seq2SeqTrainer(\n",
|
569 |
+
" model=model,\n",
|
570 |
+
" tokenizer=tokenizer,\n",
|
571 |
+
" args=training_args,\n",
|
572 |
+
" train_dataset=train_dataset,\n",
|
573 |
+
" eval_dataset=eval_dataset,\n",
|
574 |
+
" data_collator=default_data_collator,\n",
|
575 |
+
" compute_metrics=compute_metrics,\n",
|
576 |
+
")\n",
|
577 |
+
"trainer.train()"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "code",
|
582 |
+
"execution_count": 6,
|
583 |
+
"id": "a8de6005",
|
584 |
+
"metadata": {
|
585 |
+
"ExecuteTime": {
|
586 |
+
"end_time": "2023-05-30T09:53:13.045146Z",
|
587 |
+
"start_time": "2023-05-30T09:53:13.035612Z"
|
588 |
+
}
|
589 |
+
},
|
590 |
+
"outputs": [],
|
591 |
+
"source": [
|
592 |
+
"# saving model\n",
|
593 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
594 |
+
"model.save_pretrained(peft_model_id)"
|
595 |
+
]
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"cell_type": "code",
|
599 |
+
"execution_count": 7,
|
600 |
+
"id": "bd20cd4c",
|
601 |
+
"metadata": {
|
602 |
+
"ExecuteTime": {
|
603 |
+
"end_time": "2023-05-30T09:53:15.240763Z",
|
604 |
+
"start_time": "2023-05-30T09:53:15.059304Z"
|
605 |
+
}
|
606 |
+
},
|
607 |
+
"outputs": [
|
608 |
+
{
|
609 |
+
"name": "stdout",
|
610 |
+
"output_type": "stream",
|
611 |
+
"text": [
|
612 |
+
"164K\tt5-large_PROMPT_TUNING_SEQ_2_SEQ_LM/adapter_model.bin\r\n"
|
613 |
+
]
|
614 |
+
}
|
615 |
+
],
|
616 |
+
"source": [
|
617 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
618 |
+
"!du -h $ckpt"
|
619 |
+
]
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"cell_type": "code",
|
623 |
+
"execution_count": 8,
|
624 |
+
"id": "76c2fc29",
|
625 |
+
"metadata": {
|
626 |
+
"ExecuteTime": {
|
627 |
+
"end_time": "2023-05-30T09:53:25.055105Z",
|
628 |
+
"start_time": "2023-05-30T09:53:17.797989Z"
|
629 |
+
}
|
630 |
+
},
|
631 |
+
"outputs": [],
|
632 |
+
"source": [
|
633 |
+
"from peft import PeftModel, PeftConfig\n",
|
634 |
+
"\n",
|
635 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
636 |
+
"\n",
|
637 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
638 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n",
|
639 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
640 |
+
]
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"cell_type": "code",
|
644 |
+
"execution_count": 9,
|
645 |
+
"id": "d997f1cc",
|
646 |
+
"metadata": {
|
647 |
+
"ExecuteTime": {
|
648 |
+
"end_time": "2023-05-30T09:53:26.777030Z",
|
649 |
+
"start_time": "2023-05-30T09:53:26.013697Z"
|
650 |
+
}
|
651 |
+
},
|
652 |
+
"outputs": [
|
653 |
+
{
|
654 |
+
"name": "stdout",
|
655 |
+
"output_type": "stream",
|
656 |
+
"text": [
|
657 |
+
"Aspocomp Group , headquartered in Helsinki , Finland , develops interconnection solutions for the electronics industry .\n",
|
658 |
+
"{'input_ids': tensor([[ 71, 7990, 7699, 1531, 3, 6, 3, 27630, 16, 29763,\n",
|
659 |
+
" 3, 6, 16458, 3, 6, 1344, 7, 1413, 28102, 1275,\n",
|
660 |
+
" 21, 8, 12800, 681, 3, 5, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
661 |
+
" 1, 1, 1]])}\n",
|
662 |
+
"tensor([[ 0, 7163, 1]])\n",
|
663 |
+
"['neutral']\n"
|
664 |
+
]
|
665 |
+
}
|
666 |
+
],
|
667 |
+
"source": [
|
668 |
+
"model.eval()\n",
|
669 |
+
"i = 107\n",
|
670 |
+
"inputs = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\")\n",
|
671 |
+
"print(dataset[\"validation\"][text_column][i])\n",
|
672 |
+
"print(inputs)\n",
|
673 |
+
"\n",
|
674 |
+
"with torch.no_grad():\n",
|
675 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n",
|
676 |
+
" print(outputs)\n",
|
677 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
678 |
+
]
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"cell_type": "code",
|
682 |
+
"execution_count": null,
|
683 |
+
"id": "fb746c1e",
|
684 |
+
"metadata": {},
|
685 |
+
"outputs": [],
|
686 |
+
"source": []
|
687 |
+
}
|
688 |
+
],
|
689 |
+
"metadata": {
|
690 |
+
"kernelspec": {
|
691 |
+
"display_name": "peft",
|
692 |
+
"language": "python",
|
693 |
+
"name": "peft"
|
694 |
+
},
|
695 |
+
"language_info": {
|
696 |
+
"codemirror_mode": {
|
697 |
+
"name": "ipython",
|
698 |
+
"version": 3
|
699 |
+
},
|
700 |
+
"file_extension": ".py",
|
701 |
+
"mimetype": "text/x-python",
|
702 |
+
"name": "python",
|
703 |
+
"nbconvert_exporter": "python",
|
704 |
+
"pygments_lexer": "ipython3",
|
705 |
+
"version": "3.9.16"
|
706 |
+
},
|
707 |
+
"toc": {
|
708 |
+
"base_numbering": 1,
|
709 |
+
"nav_menu": {},
|
710 |
+
"number_sections": true,
|
711 |
+
"sideBar": true,
|
712 |
+
"skip_h1_title": false,
|
713 |
+
"title_cell": "Table of Contents",
|
714 |
+
"title_sidebar": "Contents",
|
715 |
+
"toc_cell": false,
|
716 |
+
"toc_position": {},
|
717 |
+
"toc_section_display": true,
|
718 |
+
"toc_window_display": false
|
719 |
+
},
|
720 |
+
"varInspector": {
|
721 |
+
"cols": {
|
722 |
+
"lenName": 16,
|
723 |
+
"lenType": 16,
|
724 |
+
"lenVar": 40
|
725 |
+
},
|
726 |
+
"kernels_config": {
|
727 |
+
"python": {
|
728 |
+
"delete_cmd_postfix": "",
|
729 |
+
"delete_cmd_prefix": "del ",
|
730 |
+
"library": "var_list.py",
|
731 |
+
"varRefreshCmd": "print(var_dic_list())"
|
732 |
+
},
|
733 |
+
"r": {
|
734 |
+
"delete_cmd_postfix": ") ",
|
735 |
+
"delete_cmd_prefix": "rm(",
|
736 |
+
"library": "var_list.r",
|
737 |
+
"varRefreshCmd": "cat(var_dic_list()) "
|
738 |
+
}
|
739 |
+
},
|
740 |
+
"types_to_exclude": [
|
741 |
+
"module",
|
742 |
+
"function",
|
743 |
+
"builtin_function_or_method",
|
744 |
+
"instance",
|
745 |
+
"_Feature"
|
746 |
+
],
|
747 |
+
"window_display": false
|
748 |
+
},
|
749 |
+
"vscode": {
|
750 |
+
"interpreter": {
|
751 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
752 |
+
}
|
753 |
+
}
|
754 |
+
},
|
755 |
+
"nbformat": 4,
|
756 |
+
"nbformat_minor": 5
|
757 |
+
}
|