Spaces:
Sleeping
Sleeping
File size: 9,259 Bytes
4a1df2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
"""
Augmenter Recipes:
===================
Transformations and constraints can be used for simple NLP data augmentations. Here is a list of recipes for NLP data augmentations
"""
import random
from textattack.constraints.pre_transformation import (
RepeatModification,
StopwordModification,
)
from textattack.constraints.semantics.sentence_encoders import UniversalSentenceEncoder
from . import Augmenter
DEFAULT_CONSTRAINTS = [RepeatModification(), StopwordModification()]
class EasyDataAugmenter(Augmenter):
"""An implementation of Easy Data Augmentation, which combines:
- WordNet synonym replacement
- Randomly replace words with their synonyms.
- Word deletion
- Randomly remove words from the sentence.
- Word order swaps
- Randomly swap the position of words in the sentence.
- Random synonym insertion
- Insert a random synonym of a random word at a random location.
in one augmentation method.
"EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks" (Wei and Zou, 2019)
https://arxiv.org/abs/1901.11196
"""
def __init__(self, pct_words_to_swap=0.1, transformations_per_example=4):
assert 0.0 <= pct_words_to_swap <= 1.0, "pct_words_to_swap must be in [0., 1.]"
assert (
transformations_per_example > 0
), "transformations_per_example must be a positive integer"
self.pct_words_to_swap = pct_words_to_swap
self.transformations_per_example = transformations_per_example
n_aug_each = max(transformations_per_example // 4, 1)
self.synonym_replacement = WordNetAugmenter(
pct_words_to_swap=pct_words_to_swap,
transformations_per_example=n_aug_each,
)
self.random_deletion = DeletionAugmenter(
pct_words_to_swap=pct_words_to_swap,
transformations_per_example=n_aug_each,
)
self.random_swap = SwapAugmenter(
pct_words_to_swap=pct_words_to_swap,
transformations_per_example=n_aug_each,
)
self.random_insertion = SynonymInsertionAugmenter(
pct_words_to_swap=pct_words_to_swap, transformations_per_example=n_aug_each
)
def augment(self, text):
augmented_text = []
augmented_text += self.synonym_replacement.augment(text)
augmented_text += self.random_deletion.augment(text)
augmented_text += self.random_swap.augment(text)
augmented_text += self.random_insertion.augment(text)
augmented_text = list(set(augmented_text))
random.shuffle(augmented_text)
return augmented_text[: self.transformations_per_example]
def __repr__(self):
return "EasyDataAugmenter"
class SwapAugmenter(Augmenter):
def __init__(self, **kwargs):
from textattack.transformations import WordInnerSwapRandom
transformation = WordInnerSwapRandom()
super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs)
class SynonymInsertionAugmenter(Augmenter):
def __init__(self, **kwargs):
from textattack.transformations import WordInsertionRandomSynonym
transformation = WordInsertionRandomSynonym()
super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs)
class WordNetAugmenter(Augmenter):
"""Augments text by replacing with synonyms from the WordNet thesaurus."""
def __init__(self, **kwargs):
from textattack.transformations import WordSwapWordNet
transformation = WordSwapWordNet()
super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs)
class DeletionAugmenter(Augmenter):
def __init__(self, **kwargs):
from textattack.transformations import WordDeletion
transformation = WordDeletion()
super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs)
class EmbeddingAugmenter(Augmenter):
"""Augments text by transforming words with their embeddings."""
def __init__(self, **kwargs):
from textattack.transformations import WordSwapEmbedding
transformation = WordSwapEmbedding(max_candidates=50)
from textattack.constraints.semantics import WordEmbeddingDistance
constraints = DEFAULT_CONSTRAINTS + [WordEmbeddingDistance(min_cos_sim=0.8)]
super().__init__(transformation, constraints=constraints, **kwargs)
class CharSwapAugmenter(Augmenter):
"""Augments words by swapping characters out for other characters."""
def __init__(self, **kwargs):
from textattack.transformations import (
CompositeTransformation,
WordSwapNeighboringCharacterSwap,
WordSwapRandomCharacterDeletion,
WordSwapRandomCharacterInsertion,
WordSwapRandomCharacterSubstitution,
)
transformation = CompositeTransformation(
[
# (1) Swap: Swap two adjacent letters in the word.
WordSwapNeighboringCharacterSwap(),
# (2) Substitution: Substitute a letter in the word with a random letter.
WordSwapRandomCharacterSubstitution(),
# (3) Deletion: Delete a random letter from the word.
WordSwapRandomCharacterDeletion(),
# (4) Insertion: Insert a random letter in the word.
WordSwapRandomCharacterInsertion(),
]
)
super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs)
class CheckListAugmenter(Augmenter):
"""Augments words by using the transformation methods provided by CheckList
INV testing, which combines:
- Name Replacement
- Location Replacement
- Number Alteration
- Contraction/Extension
"Beyond Accuracy: Behavioral Testing of NLP models with CheckList" (Ribeiro et al., 2020)
https://arxiv.org/abs/2005.04118
"""
def __init__(self, **kwargs):
from textattack.transformations import (
CompositeTransformation,
WordSwapChangeLocation,
WordSwapChangeName,
WordSwapChangeNumber,
WordSwapContract,
WordSwapExtend,
)
transformation = CompositeTransformation(
[
WordSwapChangeNumber(),
WordSwapChangeLocation(),
WordSwapChangeName(),
WordSwapExtend(),
WordSwapContract(),
]
)
constraints = [DEFAULT_CONSTRAINTS[0]]
super().__init__(transformation, constraints=constraints, **kwargs)
class CLAREAugmenter(Augmenter):
"""Li, Zhang, Peng, Chen, Brockett, Sun, Dolan.
"Contextualized Perturbation for Textual Adversarial Attack" (Li et al., 2020)
https://arxiv.org/abs/2009.07502
CLARE builds on a pre-trained masked language model and modifies the inputs in a contextaware manner.
We propose three contextualized perturbations, Replace, Insert and Merge, allowing for generating outputs
of varied lengths.
"""
def __init__(
self, model="distilroberta-base", tokenizer="distilroberta-base", **kwargs
):
import transformers
from textattack.transformations import (
CompositeTransformation,
WordInsertionMaskedLM,
WordMergeMaskedLM,
WordSwapMaskedLM,
)
shared_masked_lm = transformers.AutoModelForCausalLM.from_pretrained(model)
shared_tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer)
transformation = CompositeTransformation(
[
WordSwapMaskedLM(
method="bae",
masked_language_model=shared_masked_lm,
tokenizer=shared_tokenizer,
max_candidates=50,
min_confidence=5e-4,
),
WordInsertionMaskedLM(
masked_language_model=shared_masked_lm,
tokenizer=shared_tokenizer,
max_candidates=50,
min_confidence=0.0,
),
WordMergeMaskedLM(
masked_language_model=shared_masked_lm,
tokenizer=shared_tokenizer,
max_candidates=50,
min_confidence=5e-3,
),
]
)
use_constraint = UniversalSentenceEncoder(
threshold=0.7,
metric="cosine",
compare_against_original=True,
window_size=15,
skip_text_shorter_than_window=True,
)
constraints = DEFAULT_CONSTRAINTS + [use_constraint]
super().__init__(transformation, constraints=constraints, **kwargs)
class BackTranslationAugmenter(Augmenter):
"""Sentence level augmentation that uses MarianMTModel to back-translate.
https://huggingface.co/transformers/model_doc/marian.html
"""
def __init__(self, **kwargs):
from textattack.transformations.sentence_transformations import BackTranslation
transformation = BackTranslation(chained_back_translation=5)
super().__init__(transformation, **kwargs)
|