File size: 9,259 Bytes
4a1df2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
Augmenter Recipes:
===================

Transformations and constraints can be used for simple NLP data augmentations. Here is a list of recipes for NLP data augmentations

"""
import random

from textattack.constraints.pre_transformation import (
    RepeatModification,
    StopwordModification,
)
from textattack.constraints.semantics.sentence_encoders import UniversalSentenceEncoder

from . import Augmenter

DEFAULT_CONSTRAINTS = [RepeatModification(), StopwordModification()]


class EasyDataAugmenter(Augmenter):
    """An implementation of Easy Data Augmentation, which combines:

    - WordNet synonym replacement
        - Randomly replace words with their synonyms.
    - Word deletion
        - Randomly remove words from the sentence.
    - Word order swaps
        - Randomly swap the position of words in the sentence.
    - Random synonym insertion
        - Insert a random synonym of a random word at a random location.

    in one augmentation method.

    "EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks" (Wei and Zou, 2019)
    https://arxiv.org/abs/1901.11196
    """

    def __init__(self, pct_words_to_swap=0.1, transformations_per_example=4):
        assert 0.0 <= pct_words_to_swap <= 1.0, "pct_words_to_swap must be in [0., 1.]"
        assert (
            transformations_per_example > 0
        ), "transformations_per_example must be a positive integer"
        self.pct_words_to_swap = pct_words_to_swap
        self.transformations_per_example = transformations_per_example
        n_aug_each = max(transformations_per_example // 4, 1)

        self.synonym_replacement = WordNetAugmenter(
            pct_words_to_swap=pct_words_to_swap,
            transformations_per_example=n_aug_each,
        )
        self.random_deletion = DeletionAugmenter(
            pct_words_to_swap=pct_words_to_swap,
            transformations_per_example=n_aug_each,
        )
        self.random_swap = SwapAugmenter(
            pct_words_to_swap=pct_words_to_swap,
            transformations_per_example=n_aug_each,
        )
        self.random_insertion = SynonymInsertionAugmenter(
            pct_words_to_swap=pct_words_to_swap, transformations_per_example=n_aug_each
        )

    def augment(self, text):
        augmented_text = []
        augmented_text += self.synonym_replacement.augment(text)
        augmented_text += self.random_deletion.augment(text)
        augmented_text += self.random_swap.augment(text)
        augmented_text += self.random_insertion.augment(text)
        augmented_text = list(set(augmented_text))
        random.shuffle(augmented_text)
        return augmented_text[: self.transformations_per_example]

    def __repr__(self):
        return "EasyDataAugmenter"


class SwapAugmenter(Augmenter):
    def __init__(self, **kwargs):
        from textattack.transformations import WordInnerSwapRandom

        transformation = WordInnerSwapRandom()
        super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs)


class SynonymInsertionAugmenter(Augmenter):
    def __init__(self, **kwargs):
        from textattack.transformations import WordInsertionRandomSynonym

        transformation = WordInsertionRandomSynonym()
        super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs)


class WordNetAugmenter(Augmenter):
    """Augments text by replacing with synonyms from the WordNet thesaurus."""

    def __init__(self, **kwargs):
        from textattack.transformations import WordSwapWordNet

        transformation = WordSwapWordNet()
        super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs)


class DeletionAugmenter(Augmenter):
    def __init__(self, **kwargs):
        from textattack.transformations import WordDeletion

        transformation = WordDeletion()
        super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs)


class EmbeddingAugmenter(Augmenter):
    """Augments text by transforming words with their embeddings."""

    def __init__(self, **kwargs):
        from textattack.transformations import WordSwapEmbedding

        transformation = WordSwapEmbedding(max_candidates=50)
        from textattack.constraints.semantics import WordEmbeddingDistance

        constraints = DEFAULT_CONSTRAINTS + [WordEmbeddingDistance(min_cos_sim=0.8)]
        super().__init__(transformation, constraints=constraints, **kwargs)


class CharSwapAugmenter(Augmenter):
    """Augments words by swapping characters out for other characters."""

    def __init__(self, **kwargs):
        from textattack.transformations import (
            CompositeTransformation,
            WordSwapNeighboringCharacterSwap,
            WordSwapRandomCharacterDeletion,
            WordSwapRandomCharacterInsertion,
            WordSwapRandomCharacterSubstitution,
        )

        transformation = CompositeTransformation(
            [
                # (1) Swap: Swap two adjacent letters in the word.
                WordSwapNeighboringCharacterSwap(),
                # (2) Substitution: Substitute a letter in the word with a random letter.
                WordSwapRandomCharacterSubstitution(),
                # (3) Deletion: Delete a random letter from the word.
                WordSwapRandomCharacterDeletion(),
                # (4) Insertion: Insert a random letter in the word.
                WordSwapRandomCharacterInsertion(),
            ]
        )
        super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs)


class CheckListAugmenter(Augmenter):
    """Augments words by using the transformation methods provided by CheckList
    INV testing, which combines:

    - Name Replacement
    - Location Replacement
    - Number Alteration
    - Contraction/Extension

    "Beyond Accuracy: Behavioral Testing of NLP models with CheckList" (Ribeiro et al., 2020)
    https://arxiv.org/abs/2005.04118
    """

    def __init__(self, **kwargs):
        from textattack.transformations import (
            CompositeTransformation,
            WordSwapChangeLocation,
            WordSwapChangeName,
            WordSwapChangeNumber,
            WordSwapContract,
            WordSwapExtend,
        )

        transformation = CompositeTransformation(
            [
                WordSwapChangeNumber(),
                WordSwapChangeLocation(),
                WordSwapChangeName(),
                WordSwapExtend(),
                WordSwapContract(),
            ]
        )

        constraints = [DEFAULT_CONSTRAINTS[0]]

        super().__init__(transformation, constraints=constraints, **kwargs)


class CLAREAugmenter(Augmenter):
    """Li, Zhang, Peng, Chen, Brockett, Sun, Dolan.

    "Contextualized Perturbation for Textual Adversarial Attack" (Li et al., 2020)

    https://arxiv.org/abs/2009.07502

    CLARE builds on a pre-trained masked language model and modifies the inputs in a contextaware manner.
    We propose three contextualized perturbations, Replace, Insert and Merge, allowing for generating outputs
    of varied lengths.
    """

    def __init__(
        self, model="distilroberta-base", tokenizer="distilroberta-base", **kwargs
    ):
        import transformers

        from textattack.transformations import (
            CompositeTransformation,
            WordInsertionMaskedLM,
            WordMergeMaskedLM,
            WordSwapMaskedLM,
        )

        shared_masked_lm = transformers.AutoModelForCausalLM.from_pretrained(model)
        shared_tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer)

        transformation = CompositeTransformation(
            [
                WordSwapMaskedLM(
                    method="bae",
                    masked_language_model=shared_masked_lm,
                    tokenizer=shared_tokenizer,
                    max_candidates=50,
                    min_confidence=5e-4,
                ),
                WordInsertionMaskedLM(
                    masked_language_model=shared_masked_lm,
                    tokenizer=shared_tokenizer,
                    max_candidates=50,
                    min_confidence=0.0,
                ),
                WordMergeMaskedLM(
                    masked_language_model=shared_masked_lm,
                    tokenizer=shared_tokenizer,
                    max_candidates=50,
                    min_confidence=5e-3,
                ),
            ]
        )

        use_constraint = UniversalSentenceEncoder(
            threshold=0.7,
            metric="cosine",
            compare_against_original=True,
            window_size=15,
            skip_text_shorter_than_window=True,
        )

        constraints = DEFAULT_CONSTRAINTS + [use_constraint]

        super().__init__(transformation, constraints=constraints, **kwargs)


class BackTranslationAugmenter(Augmenter):
    """Sentence level augmentation that uses MarianMTModel to back-translate.

    https://huggingface.co/transformers/model_doc/marian.html
    """

    def __init__(self, **kwargs):
        from textattack.transformations.sentence_transformations import BackTranslation

        transformation = BackTranslation(chained_back_translation=5)
        super().__init__(transformation, **kwargs)