Spaces:
Sleeping
Sleeping
import numpy | |
import torch | |
import torch.nn as nn | |
class LCF_Pooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states, lcf_vec): | |
device = hidden_states.device | |
lcf_vec = lcf_vec.detach().cpu().numpy() | |
pooled_output = numpy.zeros( | |
(hidden_states.shape[0], hidden_states.shape[2]), dtype=numpy.float32 | |
) | |
hidden_states = hidden_states.detach().cpu().numpy() | |
for i, vec in enumerate(lcf_vec): | |
lcf_ids = [j for j in range(len(vec)) if sum(vec[j] - 1.0) == 0] | |
pooled_output[i] = hidden_states[i][lcf_ids[len(lcf_ids) // 2]] | |
pooled_output = torch.Tensor(pooled_output).to(device) | |
pooled_output = self.dense(pooled_output) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |