import torch from anonymous_demo.network.sa_encoder import Encoder from torch import nn class LSA(nn.Module): def __init__(self, bert, opt): super(LSA, self).__init__() self.opt = opt self.encoder = Encoder(bert.config, opt) self.encoder_left = Encoder(bert.config, opt) self.encoder_right = Encoder(bert.config, opt) self.linear_window_3h = nn.Linear(opt.embed_dim * 3, opt.embed_dim) self.linear_window_2h = nn.Linear(opt.embed_dim * 2, opt.embed_dim) self.eta1 = nn.Parameter(torch.tensor(self.opt.eta, dtype=torch.float)) self.eta2 = nn.Parameter(torch.tensor(self.opt.eta, dtype=torch.float)) def forward( self, global_context_features, spc_mask_vec, lcf_matrix, left_lcf_matrix, right_lcf_matrix, ): masked_global_context_features = torch.mul( spc_mask_vec, global_context_features ) # # --------------------------------------------------- # lcf_features = torch.mul(global_context_features, lcf_matrix) lcf_features = self.encoder(lcf_features) # # --------------------------------------------------- # left_lcf_features = torch.mul(masked_global_context_features, left_lcf_matrix) left_lcf_features = self.encoder_left(left_lcf_features) # # --------------------------------------------------- # right_lcf_features = torch.mul(masked_global_context_features, right_lcf_matrix) right_lcf_features = self.encoder_right(right_lcf_features) # # --------------------------------------------------- # if "lr" == self.opt.window or "rl" == self.opt.window: if self.eta1 <= 0 and self.opt.eta != -1: torch.nn.init.uniform_(self.eta1) print("reset eta1 to: {}".format(self.eta1.item())) if self.eta2 <= 0 and self.opt.eta != -1: torch.nn.init.uniform_(self.eta2) print("reset eta2 to: {}".format(self.eta2.item())) if self.opt.eta >= 0: cat_features = torch.cat( ( lcf_features, self.eta1 * left_lcf_features, self.eta2 * right_lcf_features, ), -1, ) else: cat_features = torch.cat( (lcf_features, left_lcf_features, right_lcf_features), -1 ) sent_out = self.linear_window_3h(cat_features) elif "l" == self.opt.window: sent_out = self.linear_window_2h( torch.cat((lcf_features, self.eta1 * left_lcf_features), -1) ) elif "r" == self.opt.window: sent_out = self.linear_window_2h( torch.cat((lcf_features, self.eta2 * right_lcf_features), -1) ) else: raise KeyError("Invalid parameter:", self.opt.window) return sent_out