Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,177 Bytes
ff715ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
from src.utils import *
from src.flow_utils import warp_tensor
import torch
import torchvision
import gc
"""
==========================================================================
* step(): one DDPM step with background smoothing
* inference(): translate one batch with FRESCO and background smoothing
==========================================================================
"""
def step(pipe, model_output, timestep, sample, generator, repeat_noise=False,
visualize_pipeline=False, flows=None, occs=None, saliency=None):
"""
DDPM step with background smoothing
* background smoothing: warp the background region of the previous frame to the current frame
"""
scheduler = pipe.scheduler
# 1. get previous step value (=t-1)
prev_timestep = scheduler.previous_timestep(timestep)
# 2. compute alphas, betas
alpha_prod_t = scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
current_beta_t = 1 - current_alpha_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
"""
[HACK] add background smoothing
decode the feature
warp the feature of f_{i-1}
fuse the warped f_{i-1} with f_{i} in the non-salient region (i.e., background)
encode the fused feature
"""
if saliency is not None and flows is not None and occs is not None:
image = pipe.vae.decode(pred_original_sample / pipe.vae.config.scaling_factor).sample
image = warp_tensor(image, flows, occs, saliency, unet_chunk_size=1)
pred_original_sample = pipe.vae.config.scaling_factor * pipe.vae.encode(image).latent_dist.sample()
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
variance = beta_prod_t_prev / beta_prod_t * current_beta_t
variance = torch.clamp(variance, min=1e-20)
variance = (variance ** 0.5) * torch.randn(model_output.shape, generator=generator,
device=model_output.device, dtype=model_output.dtype)
"""
[HACK] background smoothing
applying the same noise could be good for static background
"""
if repeat_noise:
variance = variance[0:1].repeat(model_output.shape[0],1,1,1)
if visualize_pipeline: # for debug
image = pipe.vae.decode(pred_original_sample / pipe.vae.config.scaling_factor).sample
viz = torchvision.utils.make_grid(torch.clamp(image, -1, 1), image.shape[0], 1)
visualize(viz.cpu(), 90)
pred_prev_sample = pred_prev_sample + variance
return (pred_prev_sample, pred_original_sample)
@torch.no_grad()
def inference(pipe, controlnet, frescoProc,
imgs, prompt_embeds, edges, timesteps,
cond_scale=[0.7]*20, num_inference_steps=20, num_warmup_steps=6,
do_classifier_free_guidance=True, seed=0, guidance_scale=7.5, use_controlnet=True,
record_latents=[], propagation_mode=False, visualize_pipeline=False,
flows = None, occs = None, saliency=None, repeat_noise=False,
num_intraattn_steps = 1, step_interattn_end = 350, bg_smoothing_steps = [16,17]):
"""
video-to-video translation inference pipeline with FRESCO
* add controlnet and SDEdit
* add FRESCO-guided attention
* add FRESCO-guided optimization
* add background smoothing
* add support for inter-batch long video translation
[input of the original pipe]
pipe: base diffusion model
imgs: a batch of the input frames
prompt_embeds: prompts
num_inference_steps: number of DDPM steps
timesteps: generated by pipe.scheduler.set_timesteps(num_inference_steps)
do_classifier_free_guidance: cfg, should be always true
guidance_scale: cfg scale
seed
[input of SDEdit]
num_warmup_steps: skip the first num_warmup_steps DDPM steps
[input of controlnet]
use_controlnet: bool, whether using controlnet
controlnet: controlnet model
edges: input for controlnet (edge/stroke/depth, etc.)
cond_scale: controlnet scale
[input of FRESCO]
frescoProc: FRESCO attention controller
flows: optical flows
occs: occlusion mask
num_intraattn_steps: apply num_interattn_steps steps of spatial-guided attention
step_interattn_end: apply temporal-guided attention in [step_interattn_end, 1000] steps
[input for background smoothing]
saliency: saliency mask
repeat_noise: bool, use the same noise for all frames
bg_smoothing_steps: apply background smoothing in bg_smoothing_steps
[input for long video translation]
record_latents: recorded latents in the last batch
propagation_mode: bool, whether this is not the first batch
[output]
latents: a batch of latents of the translated frames
"""
gc.collect()
torch.cuda.empty_cache()
device = pipe._execution_device
noise_scheduler = pipe.scheduler
generator = torch.Generator(device=device).manual_seed(seed)
B, C, H, W = imgs.shape
latents = pipe.prepare_latents(
B,
pipe.unet.config.in_channels,
H,
W,
prompt_embeds.dtype,
device,
generator,
latents = None,
)
if repeat_noise:
latents = latents[0:1].repeat(B,1,1,1).detach()
if num_warmup_steps < 0:
latents_init = latents.detach()
num_warmup_steps = 0
else:
# SDEdit, use the noisy latent of imges as the input rather than a pure gausssian noise
latent_x0 = pipe.vae.config.scaling_factor * pipe.vae.encode(imgs.to(pipe.unet.dtype)).latent_dist.sample()
latents_init = noise_scheduler.add_noise(latent_x0, latents, timesteps[num_warmup_steps]).detach()
# SDEdit, run num_inference_steps-num_warmup_steps steps
with pipe.progress_bar(total=num_inference_steps-num_warmup_steps) as progress_bar:
latents = latents_init
for i, t in enumerate(timesteps[num_warmup_steps:]):
"""
[HACK] control the steps to apply spatial/temporal-guided attention
[HACK] record and restore latents from previous batch
"""
if i >= num_intraattn_steps:
frescoProc.controller.disable_intraattn()
if t < step_interattn_end:
frescoProc.controller.disable_interattn()
if propagation_mode: # restore latent from previous batch and record latent of the current batch
latents[0:2] = record_latents[i].detach().clone()
record_latents[i] = latents[[0,len(latents)-1]].detach().clone()
else: # frist batch, record_latents[0][t] = [x_1,t, x_{N,t}]
record_latents += [latents[[0,len(latents)-1]].detach().clone()]
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
if use_controlnet:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
down_block_res_samples, mid_block_res_sample = controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=edges,
conditioning_scale=cond_scale[i+num_warmup_steps],
guess_mode=False,
return_dict=False,
)
else:
down_block_res_samples, mid_block_res_sample = None, None
# predict the noise residual
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=None,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
"""
[HACK] background smoothing
Note: bg_smoothing_steps should be rescaled based on num_inference_steps
current [16,17] is based on num_inference_steps=20
"""
if i + num_warmup_steps in bg_smoothing_steps:
latents = step(pipe, noise_pred, t, latents, generator,
visualize_pipeline=visualize_pipeline,
flows = flows, occs = occs, saliency=saliency)[0]
else:
latents = step(pipe, noise_pred, t, latents, generator,
visualize_pipeline=visualize_pipeline)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % pipe.scheduler.order == 0):
progress_bar.update()
return latents |