SingleZombie commited on
Commit
0825d29
·
1 Parent(s): 9fd841c

update readme

Browse files
Files changed (1) hide show
  1. README.md +8 -208
README.md CHANGED
@@ -1,208 +1,8 @@
1
- # FRESCO - Official PyTorch Implementation
2
-
3
-
4
- **FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation**<br>
5
- [Shuai Yang](https://williamyang1991.github.io/), [Yifan Zhou](https://zhouyifan.net/), [Ziwei Liu](https://liuziwei7.github.io/) and [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)<br>
6
- in CVPR 2024 <br>
7
- [**Project Page**](https://www.mmlab-ntu.com/project/fresco/) | [**Paper**](https://arxiv.org/abs/2403.12962) | [**Supplementary Video**](https://youtu.be/jLnGx5H-wLw) | [**Input Data and Video Results**](https://drive.google.com/file/d/12BFx3hp8_jp9m0EmKpw-cus2SABPQx2Q/view?usp=sharing) <br>
8
-
9
- **Abstract:** *The remarkable efficacy of text-to-image diffusion models has motivated extensive exploration of their potential application in video domains.
10
- Zero-shot methods seek to extend image diffusion models to videos without necessitating model training.
11
- Recent methods mainly focus on incorporating inter-frame correspondence into attention mechanisms. However, the soft constraint imposed on determining where to attend to valid features can sometimes be insufficient, resulting in temporal inconsistency.
12
- In this paper, we introduce FRESCO, intra-frame correspondence alongside inter-frame correspondence to establish a more robust spatial-temporal constraint. This enhancement ensures a more consistent transformation of semantically similar content across frames. Beyond mere attention guidance, our approach involves an explicit update of features to achieve high spatial-temporal consistency with the input video, significantly improving the visual coherence of the resulting translated videos.
13
- Extensive experiments demonstrate the effectiveness of our proposed framework in producing high-quality, coherent videos, marking a notable improvement over existing zero-shot methods.*
14
-
15
- **Features**:<br>
16
- - **Temporal consistency**: use intra-and inter-frame constraint with better consistency and coverage than optical flow alone.
17
- - Compared with our previous work [Rerender-A-Video](https://github.com/williamyang1991/Rerender_A_Video), FRESCO is more robust to large and quick motion.
18
- - **Zero-shot**: no training or fine-tuning required.
19
- - **Flexibility**: compatible with off-the-shelf models (e.g., [ControlNet](https://github.com/lllyasviel/ControlNet), [LoRA](https://civitai.com/)) for customized translation.
20
-
21
- https://github.com/williamyang1991/FRESCO/assets/18130694/aad358af-4d27-4f18-b069-89a1abd94d38
22
-
23
-
24
- ## Updates
25
- - [03/2023] Paper is released.
26
- - [03/2023] Code is released.
27
- - [03/2024] This website is created.
28
-
29
- ### TODO
30
- - [ ] Integrate into Diffusers
31
- - [ ] Add Huggingface web demo
32
- - [x] ~~Add webUI.~~
33
- - [x] ~~Update readme~~
34
- - [x] ~~Upload paper to arXiv, release related material~~
35
-
36
- ## Installation
37
-
38
- 1. Clone the repository.
39
-
40
- ```shell
41
- git clone https://github.com/williamyang1991/FRESCO.git
42
- cd FRESCO
43
- ```
44
-
45
- 2. You can simply set up the environment with pip based on [requirements.txt](https://github.com/williamyang1991/FRESCO/blob/main/requirements.txt)
46
- - Create a conda environment and install torch >= 2.0.0. Here is an example script to install torch 2.0.0 + CUDA 11.8 :
47
- ```
48
- conda create --name diffusers python==3.8.5
49
- conda activate diffusers
50
- pip install torch==2.0.0 torchvision==0.15.1 --index-url https://download.pytorch.org/whl/cu118
51
- ```
52
- - Run `pip install -r requirements.txt` in an environment where torch is installed.
53
- - We have tested on torch 2.0.0/2.1.0 and diffusers 0.19.3
54
- - If you use new versions of diffusers, you need to modify [my_forward()](https://github.com/williamyang1991/FRESCO/blob/fb991262615665de88f7a8f2cc903d9539e1b234/src/diffusion_hacked.py#L496)
55
-
56
- 3. Run the installation script. The required models will be downloaded in `./model`, `./src/ControlNet/annotator` and `./src/ebsynth/deps/ebsynth/bin`.
57
- - Requires access to huggingface.co
58
-
59
- ```shell
60
- python install.py
61
- ```
62
-
63
- 4. You can run the demo with `run_fresco.py`
64
-
65
- ```shell
66
- python run_fresco.py ./config/config_music.yaml
67
- ```
68
-
69
- 5. For issues with Ebsynth, please refer to [issues](https://github.com/williamyang1991/Rerender_A_Video#issues)
70
-
71
-
72
- ## (1) Inference
73
-
74
- ### WebUI (recommended)
75
-
76
- ```
77
- python webUI.py
78
- ```
79
- The Gradio app also allows you to flexibly change the inference options. Just try it for more details.
80
-
81
- Upload your video, input the prompt, select the model and seed, and hit:
82
- - **Run Key Frames**: detect keyframes, translate all keyframes.
83
- - **Run Propagation**: propagate the keyframes to other frames for full video translation
84
- - **Run All**: **Run Key Frames** and **Run Propagation**
85
-
86
- Select the model:
87
- - **Base model**: base Stable Diffusion model (SD 1.5)
88
- - Stable Diffusion 1.5: official model
89
- - [rev-Animated](https://huggingface.co/stablediffusionapi/rev-animated): a semi-realistic (2.5D) model
90
- - [realistic-Vision](https://huggingface.co/SG161222/Realistic_Vision_V2.0): a photo-realistic model
91
- - [flat2d-animerge](https://huggingface.co/stablediffusionapi/flat-2d-animerge): a cartoon model
92
- - You can add other models on huggingface.co by modifying this [line](https://github.com/williamyang1991/FRESCO/blob/1afcca9c7b1bc1ac68254f900be9bd768fbb6988/webUI.py#L362)
93
-
94
- ![overview](https://github.com/williamyang1991/FRESCO/assets/18130694/6ce5d54e-b020-4e43-95e7-72ab1783f482)
95
-
96
- We provide abundant advanced options to play with
97
-
98
- </details>
99
-
100
- <details id="option1">
101
- <summary> <b>Advanced options for single frame processing</b></summary>
102
-
103
- 1. **Frame resolution**: resize the short side of the video to 512.
104
- 2. ControlNet related:
105
- - **ControlNet strength**: how well the output matches the input control edges
106
- - **Control type**: HED edge, Canny edge, Depth map
107
- - **Canny low/high threshold**: low values for more edge details
108
- 3. SDEdit related:
109
- - **Denoising strength**: repaint degree (low value to make the output look more like the original video)
110
- - **Preserve color**: preserve the color of the original video
111
- 4. SD related:
112
- - **Steps**: denoising step
113
- - **CFG scale**: how well the output matches the prompt
114
- - **Added prompt/Negative prompt**: supplementary prompts
115
- 5. FreeU related:
116
- - **FreeU first/second-stage backbone factor**: =1 do nothing; >1 enhance output color and details
117
- - **FreeU first/second-stage skip factor**: =1 do nothing; <1 enhance output color and details
118
-
119
- </details>
120
-
121
- <details id="option2">
122
- <summary> <b>Advanced options for FRESCO constraints</b></summary>
123
-
124
- 1. Keyframe related
125
- - **Number of frames**: Total frames to be translated
126
- - **Number of frames in a batch**: To avoid out-of-memory, use small batch size
127
- - **Min keyframe interval (s_min)**: The keyframes will be detected at least every s_min frames
128
- - **Max keyframe interval (s_max)**: The keyframes will be detected at most every s_max frames
129
- 2. FRESCO constraints
130
- - FRESCO-guided Attention:
131
- - **spatial-guided attention**: Check to enable spatial-guided attention
132
- - **cross-frame attention**: Check to enable efficient cross-frame attention
133
- - **temporal-guided attention**: Check to enable temporal-guided attention
134
- - FRESCO-guided optimization:
135
- - **spatial-guided optimization**: Check to enable spatial-guided optimization
136
- - **temporal-guided optimization**: Check to enable temporal-guided optimization
137
- 3. **Background smoothing**: Check to enable background smoothing (best for static background)
138
-
139
- </details>
140
-
141
- <details id="option3">
142
- <summary> <b>Advanced options for the full video translation</b></summary>
143
-
144
- 1. **Gradient blending**: apply Poisson Blending to reduce ghosting artifacts. May slow the process and increase flickers.
145
- 2. **Number of parallel processes**: multiprocessing to speed up the process. Large value (4) is recommended.
146
- </details>
147
-
148
- ![option](https://github.com/williamyang1991/FRESCO/assets/18130694/72600758-1dff-4b7c-8f3f-65ee3909f8f6)
149
-
150
- ### Command Line
151
-
152
- We provide a flexible script `run_fresco.py` to run our method.
153
-
154
- Set the options via a config file. For example,
155
- ```shell
156
- python run_fresco.py ./config/config_music.yaml
157
- ```
158
- We provide some examples of the config in `config` directory.
159
- Most options in the config is the same as those in WebUI.
160
- Please check the explanations in the WebUI section.
161
-
162
- We provide a separate Ebsynth python script `video_blend.py` with the temporal blending algorithm introduced in
163
- [Stylizing Video by Example](https://dcgi.fel.cvut.cz/home/sykorad/ebsynth.html) for interpolating style between key frames.
164
- It can work on your own stylized key frames independently of our FRESCO algorithm.
165
- For the details, please refer to our previous work [Rerender-A-Video](https://github.com/williamyang1991/Rerender_A_Video/tree/main?tab=readme-ov-file#our-ebsynth-implementation)
166
-
167
- ## (2) Results
168
-
169
- ### Key frame translation
170
-
171
- <table class="center">
172
- <tr>
173
- <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/e8d5776a-37c5-49ae-8ab4-15669df6f572" raw=true></td>
174
- <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/8a792af6-555c-4e82-ac1e-5c2e1ee35fdb" raw=true></td>
175
- <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/10f9a964-85ac-4433-84c5-1611a6c2c434" raw=true></td>
176
- <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/0ec0fbf9-90dd-4d8b-964d-945b5f6687c2" raw=true></td>
177
- </tr>
178
- <tr>
179
- <td width=26.5% align="center">a red car turns in the winter</td>
180
- <td width=26.5% align="center">an African American boxer wearing black boxing gloves punches towards the camera, cartoon style</td>
181
- <td width=26.5% align="center">a cartoon spiderman in black suit, black shoes and white gloves is dancing</td>
182
- <td width=20.5% align="center">a beautiful woman holding her glasses in CG style</td>
183
- </tr>
184
- </table>
185
-
186
-
187
- ### Full video translation
188
-
189
- https://github.com/williamyang1991/FRESCO/assets/18130694/bf8bfb82-5cb7-4b2f-8169-cf8dbf408b54
190
-
191
- ## Citation
192
-
193
- If you find this work useful for your research, please consider citing our paper:
194
-
195
- ```bibtex
196
- @inproceedings{yang2024fresco,
197
-  title = {FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation},
198
-  author = {Yang, Shuai and Zhou, Yifan and Liu, Ziwei and and Loy, Chen Change},
199
- booktitle = {CVPR},
200
-  year = {2024},
201
- }
202
- ```
203
-
204
- ## Acknowledgments
205
-
206
- The code is mainly developed based on [Rerender-A-Video](https://github.com/williamyang1991/Rerender_A_Video), [ControlNet](https://github.com/lllyasviel/ControlNet), [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [GMFlow](https://github.com/haofeixu/gmflow) and [Ebsynth](https://github.com/jamriska/ebsynth).
207
-
208
-
 
1
+ title: FRESCO
2
+ emoji: ⚡
3
+ colorFrom: green
4
+ colorTo: indigo
5
+ sdk: gradio
6
+ sdk_version: 3.44.4
7
+ app_file: app.py
8
+ pinned: false