Spaces:
Sleeping
Sleeping
import argparse | |
from io import BytesIO | |
import multiprocessing | |
from functools import partial | |
import os | |
from PIL import Image | |
import lmdb | |
from tqdm import tqdm | |
from torchvision import datasets | |
from torchvision.transforms import functional as trans_fn | |
def resize_and_convert(img, size, resample, quality=100): | |
img = trans_fn.resize(img, size, resample) | |
img = trans_fn.center_crop(img, size) | |
buffer = BytesIO() | |
img.save(buffer, format="jpeg", quality=quality) | |
val = buffer.getvalue() | |
return val | |
def resize_multiple( | |
img, sizes=(128, 256, 512, 1024), resample=Image.LANCZOS, quality=100 | |
): | |
imgs = [] | |
for size in sizes: | |
imgs.append(resize_and_convert(img, size, resample, quality)) | |
return imgs | |
def resize_worker(img_file, sizes, resample): | |
i, file = img_file | |
img = Image.open(file) | |
img = img.convert("RGB") | |
out = resize_multiple(img, sizes=sizes, resample=resample) | |
return i, out | |
def prepare( | |
env, dataset, n_worker, sizes=(128, 256, 512, 1024), resample=Image.LANCZOS | |
): | |
resize_fn = partial(resize_worker, sizes=sizes, resample=resample) | |
files = sorted(dataset.imgs, key=lambda x: x[0]) | |
files = [(i, file) for i, (file, label) in enumerate(files)] | |
total = 0 | |
with multiprocessing.Pool(n_worker) as pool: | |
for i, imgs in tqdm(pool.imap_unordered(resize_fn, files)): | |
for size, img in zip(sizes, imgs): | |
key = f"{size}-{str(i).zfill(5)}".encode("utf-8") | |
with env.begin(write=True) as txn: | |
txn.put(key, img) | |
total += 1 | |
with env.begin(write=True) as txn: | |
txn.put("length".encode("utf-8"), str(total).encode("utf-8")) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Preprocess images for model training") | |
parser.add_argument("--out", type=str, help="filename of the result lmdb dataset") | |
parser.add_argument( | |
"--size", | |
type=str, | |
default="128,256,512,1024", | |
help="resolutions of images for the dataset", | |
) | |
parser.add_argument( | |
"--n_worker", | |
type=int, | |
default=8, | |
help="number of workers for preparing dataset", | |
) | |
parser.add_argument( | |
"--resample", | |
type=str, | |
default="lanczos", | |
help="resampling methods for resizing images", | |
) | |
parser.add_argument("path", type=str, help="path to the image dataset") | |
args = parser.parse_args() | |
if not os.path.exists(args.out): | |
os.makedirs(args.out) | |
resample_map = {"lanczos": Image.LANCZOS, "bilinear": Image.BILINEAR} | |
resample = resample_map[args.resample] | |
sizes = [int(s.strip()) for s in args.size.split(",")] | |
print(f"Make dataset of image sizes:", ", ".join(str(s) for s in sizes)) | |
imgset = datasets.ImageFolder(args.path) | |
with lmdb.open(args.out, map_size=1024 ** 4, readahead=False) as env: | |
prepare(env, imgset, args.n_worker, sizes=sizes, resample=resample) | |