Spaces:
Build error
Build error
File size: 16,328 Bytes
d570deb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# The code is based on
# https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/models/yolo_head.py
# Copyright (c) Megvii, Inc. and its affiliates.
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from yolov6.utils.figure_iou import IOUloss, pairwise_bbox_iou
class ComputeLoss:
'''Loss computation func.
This func contains SimOTA and siou loss.
'''
def __init__(self,
reg_weight=5.0,
iou_weight=3.0,
cls_weight=1.0,
center_radius=2.5,
eps=1e-7,
in_channels=[256, 512, 1024],
strides=[8, 16, 32],
n_anchors=1,
iou_type='ciou'
):
self.reg_weight = reg_weight
self.iou_weight = iou_weight
self.cls_weight = cls_weight
self.center_radius = center_radius
self.eps = eps
self.n_anchors = n_anchors
self.strides = strides
self.grids = [torch.zeros(1)] * len(in_channels)
# Define criteria
self.l1_loss = nn.L1Loss(reduction="none")
self.bcewithlog_loss = nn.BCEWithLogitsLoss(reduction="none")
self.iou_loss = IOUloss(iou_type=iou_type, reduction="none")
def __call__(
self,
outputs,
targets
):
dtype = outputs[0].type()
device = targets.device
loss_cls, loss_obj, loss_iou, loss_l1 = torch.zeros(1, device=device), torch.zeros(1, device=device), \
torch.zeros(1, device=device), torch.zeros(1, device=device)
num_classes = outputs[0].shape[-1] - 5
outputs, outputs_origin, gt_bboxes_scale, xy_shifts, expanded_strides = self.get_outputs_and_grids(
outputs, self.strides, dtype, device)
total_num_anchors = outputs.shape[1]
bbox_preds = outputs[:, :, :4] # [batch, n_anchors_all, 4]
bbox_preds_org = outputs_origin[:, :, :4] # [batch, n_anchors_all, 4]
obj_preds = outputs[:, :, 4].unsqueeze(-1) # [batch, n_anchors_all, 1]
cls_preds = outputs[:, :, 5:] # [batch, n_anchors_all, n_cls]
# targets
batch_size = bbox_preds.shape[0]
targets_list = np.zeros((batch_size, 1, 5)).tolist()
for i, item in enumerate(targets.cpu().numpy().tolist()):
targets_list[int(item[0])].append(item[1:])
max_len = max((len(l) for l in targets_list))
targets = torch.from_numpy(np.array(list(map(lambda l:l + [[-1,0,0,0,0]]*(max_len - len(l)), targets_list)))[:,1:,:]).to(targets.device)
num_targets_list = (targets.sum(dim=2) > 0).sum(dim=1) # number of objects
num_fg, num_gts = 0, 0
cls_targets, reg_targets, l1_targets, obj_targets, fg_masks = [], [], [], [], []
for batch_idx in range(batch_size):
num_gt = int(num_targets_list[batch_idx])
num_gts += num_gt
if num_gt == 0:
cls_target = outputs.new_zeros((0, num_classes))
reg_target = outputs.new_zeros((0, 4))
l1_target = outputs.new_zeros((0, 4))
obj_target = outputs.new_zeros((total_num_anchors, 1))
fg_mask = outputs.new_zeros(total_num_anchors).bool()
else:
gt_bboxes_per_image = targets[batch_idx, :num_gt, 1:5].mul_(gt_bboxes_scale)
gt_classes = targets[batch_idx, :num_gt, 0]
bboxes_preds_per_image = bbox_preds[batch_idx]
cls_preds_per_image = cls_preds[batch_idx]
obj_preds_per_image = obj_preds[batch_idx]
try:
(
gt_matched_classes,
fg_mask,
pred_ious_this_matching,
matched_gt_inds,
num_fg_img,
) = self.get_assignments(
batch_idx,
num_gt,
total_num_anchors,
gt_bboxes_per_image,
gt_classes,
bboxes_preds_per_image,
cls_preds_per_image,
obj_preds_per_image,
expanded_strides,
xy_shifts,
num_classes
)
except RuntimeError:
print(
"OOM RuntimeError is raised due to the huge memory cost during label assignment. \
CPU mode is applied in this batch. If you want to avoid this issue, \
try to reduce the batch size or image size."
)
torch.cuda.empty_cache()
print("------------CPU Mode for This Batch-------------")
_gt_bboxes_per_image = gt_bboxes_per_image.cpu().float()
_gt_classes = gt_classes.cpu().float()
_bboxes_preds_per_image = bboxes_preds_per_image.cpu().float()
_cls_preds_per_image = cls_preds_per_image.cpu().float()
_obj_preds_per_image = obj_preds_per_image.cpu().float()
_expanded_strides = expanded_strides.cpu().float()
_xy_shifts = xy_shifts.cpu()
(
gt_matched_classes,
fg_mask,
pred_ious_this_matching,
matched_gt_inds,
num_fg_img,
) = self.get_assignments(
batch_idx,
num_gt,
total_num_anchors,
_gt_bboxes_per_image,
_gt_classes,
_bboxes_preds_per_image,
_cls_preds_per_image,
_obj_preds_per_image,
_expanded_strides,
_xy_shifts,
num_classes
)
gt_matched_classes = gt_matched_classes.cuda()
fg_mask = fg_mask.cuda()
pred_ious_this_matching = pred_ious_this_matching.cuda()
matched_gt_inds = matched_gt_inds.cuda()
torch.cuda.empty_cache()
num_fg += num_fg_img
if num_fg_img > 0:
cls_target = F.one_hot(
gt_matched_classes.to(torch.int64), num_classes
) * pred_ious_this_matching.unsqueeze(-1)
obj_target = fg_mask.unsqueeze(-1)
reg_target = gt_bboxes_per_image[matched_gt_inds]
l1_target = self.get_l1_target(
outputs.new_zeros((num_fg_img, 4)),
gt_bboxes_per_image[matched_gt_inds],
expanded_strides[0][fg_mask],
xy_shifts=xy_shifts[0][fg_mask],
)
cls_targets.append(cls_target)
reg_targets.append(reg_target)
obj_targets.append(obj_target)
l1_targets.append(l1_target)
fg_masks.append(fg_mask)
cls_targets = torch.cat(cls_targets, 0)
reg_targets = torch.cat(reg_targets, 0)
obj_targets = torch.cat(obj_targets, 0)
l1_targets = torch.cat(l1_targets, 0)
fg_masks = torch.cat(fg_masks, 0)
num_fg = max(num_fg, 1)
# loss
loss_iou += (self.iou_loss(bbox_preds.view(-1, 4)[fg_masks].T, reg_targets)).sum() / num_fg
loss_l1 += (self.l1_loss(bbox_preds_org.view(-1, 4)[fg_masks], l1_targets)).sum() / num_fg
loss_obj += (self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets*1.0)).sum() / num_fg
loss_cls += (self.bcewithlog_loss(cls_preds.view(-1, num_classes)[fg_masks], cls_targets)).sum() / num_fg
total_losses = self.reg_weight * loss_iou + loss_l1 + loss_obj + loss_cls
return total_losses, torch.cat((self.reg_weight * loss_iou, loss_l1, loss_obj, loss_cls)).detach()
def decode_output(self, output, k, stride, dtype, device):
grid = self.grids[k].to(device)
batch_size = output.shape[0]
hsize, wsize = output.shape[2:4]
if grid.shape[2:4] != output.shape[2:4]:
yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)])
grid = torch.stack((xv, yv), 2).view(1, 1, hsize, wsize, 2).type(dtype).to(device)
self.grids[k] = grid
output = output.reshape(batch_size, self.n_anchors * hsize * wsize, -1)
output_origin = output.clone()
grid = grid.view(1, -1, 2)
output[..., :2] = (output[..., :2] + grid) * stride
output[..., 2:4] = torch.exp(output[..., 2:4]) * stride
return output, output_origin, grid, hsize, wsize
def get_outputs_and_grids(self, outputs, strides, dtype, device):
xy_shifts = []
expanded_strides = []
outputs_new = []
outputs_origin = []
for k, output in enumerate(outputs):
output, output_origin, grid, feat_h, feat_w = self.decode_output(
output, k, strides[k], dtype, device)
xy_shift = grid
expanded_stride = torch.full((1, grid.shape[1], 1), strides[k], dtype=grid.dtype, device=grid.device)
xy_shifts.append(xy_shift)
expanded_strides.append(expanded_stride)
outputs_new.append(output)
outputs_origin.append(output_origin)
xy_shifts = torch.cat(xy_shifts, 1) # [1, n_anchors_all, 2]
expanded_strides = torch.cat(expanded_strides, 1) # [1, n_anchors_all, 1]
outputs_origin = torch.cat(outputs_origin, 1)
outputs = torch.cat(outputs_new, 1)
feat_h *= strides[-1]
feat_w *= strides[-1]
gt_bboxes_scale = torch.Tensor([[feat_w, feat_h, feat_w, feat_h]]).type_as(outputs)
return outputs, outputs_origin, gt_bboxes_scale, xy_shifts, expanded_strides
def get_l1_target(self, l1_target, gt, stride, xy_shifts, eps=1e-8):
l1_target[:, 0:2] = gt[:, 0:2] / stride - xy_shifts
l1_target[:, 2:4] = torch.log(gt[:, 2:4] / stride + eps)
return l1_target
@torch.no_grad()
def get_assignments(
self,
batch_idx,
num_gt,
total_num_anchors,
gt_bboxes_per_image,
gt_classes,
bboxes_preds_per_image,
cls_preds_per_image,
obj_preds_per_image,
expanded_strides,
xy_shifts,
num_classes
):
fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
gt_bboxes_per_image,
expanded_strides,
xy_shifts,
total_num_anchors,
num_gt,
)
bboxes_preds_per_image = bboxes_preds_per_image[fg_mask]
cls_preds_ = cls_preds_per_image[fg_mask]
obj_preds_ = obj_preds_per_image[fg_mask]
num_in_boxes_anchor = bboxes_preds_per_image.shape[0]
# cost
pair_wise_ious = pairwise_bbox_iou(gt_bboxes_per_image, bboxes_preds_per_image, box_format='xywh')
pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)
gt_cls_per_image = (
F.one_hot(gt_classes.to(torch.int64), num_classes)
.float()
.unsqueeze(1)
.repeat(1, num_in_boxes_anchor, 1)
)
with torch.cuda.amp.autocast(enabled=False):
cls_preds_ = (
cls_preds_.float().sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1)
* obj_preds_.float().sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1)
)
pair_wise_cls_loss = F.binary_cross_entropy(
cls_preds_.sqrt_(), gt_cls_per_image, reduction="none"
).sum(-1)
del cls_preds_, obj_preds_
cost = (
self.cls_weight * pair_wise_cls_loss
+ self.iou_weight * pair_wise_ious_loss
+ 100000.0 * (~is_in_boxes_and_center)
)
(
num_fg,
gt_matched_classes,
pred_ious_this_matching,
matched_gt_inds,
) = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask)
del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss
return (
gt_matched_classes,
fg_mask,
pred_ious_this_matching,
matched_gt_inds,
num_fg,
)
def get_in_boxes_info(
self,
gt_bboxes_per_image,
expanded_strides,
xy_shifts,
total_num_anchors,
num_gt,
):
expanded_strides_per_image = expanded_strides[0]
xy_shifts_per_image = xy_shifts[0] * expanded_strides_per_image
xy_centers_per_image = (
(xy_shifts_per_image + 0.5 * expanded_strides_per_image)
.unsqueeze(0)
.repeat(num_gt, 1, 1)
) # [n_anchor, 2] -> [n_gt, n_anchor, 2]
gt_bboxes_per_image_lt = (
(gt_bboxes_per_image[:, 0:2] - 0.5 * gt_bboxes_per_image[:, 2:4])
.unsqueeze(1)
.repeat(1, total_num_anchors, 1)
)
gt_bboxes_per_image_rb = (
(gt_bboxes_per_image[:, 0:2] + 0.5 * gt_bboxes_per_image[:, 2:4])
.unsqueeze(1)
.repeat(1, total_num_anchors, 1)
) # [n_gt, 2] -> [n_gt, n_anchor, 2]
b_lt = xy_centers_per_image - gt_bboxes_per_image_lt
b_rb = gt_bboxes_per_image_rb - xy_centers_per_image
bbox_deltas = torch.cat([b_lt, b_rb], 2)
is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
# in fixed center
gt_bboxes_per_image_lt = (gt_bboxes_per_image[:, 0:2]).unsqueeze(1).repeat(
1, total_num_anchors, 1
) - self.center_radius * expanded_strides_per_image.unsqueeze(0)
gt_bboxes_per_image_rb = (gt_bboxes_per_image[:, 0:2]).unsqueeze(1).repeat(
1, total_num_anchors, 1
) + self.center_radius * expanded_strides_per_image.unsqueeze(0)
c_lt = xy_centers_per_image - gt_bboxes_per_image_lt
c_rb = gt_bboxes_per_image_rb - xy_centers_per_image
center_deltas = torch.cat([c_lt, c_rb], 2)
is_in_centers = center_deltas.min(dim=-1).values > 0.0
is_in_centers_all = is_in_centers.sum(dim=0) > 0
# in boxes and in centers
is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
is_in_boxes_and_center = (
is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
)
return is_in_boxes_anchor, is_in_boxes_and_center
def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask):
matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
ious_in_boxes_matrix = pair_wise_ious
n_candidate_k = min(10, ious_in_boxes_matrix.size(1))
topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
dynamic_ks = dynamic_ks.tolist()
for gt_idx in range(num_gt):
_, pos_idx = torch.topk(
cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
)
matching_matrix[gt_idx][pos_idx] = 1
del topk_ious, dynamic_ks, pos_idx
anchor_matching_gt = matching_matrix.sum(0)
if (anchor_matching_gt > 1).sum() > 0:
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
matching_matrix[:, anchor_matching_gt > 1] *= 0
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
fg_mask_inboxes = matching_matrix.sum(0) > 0
num_fg = fg_mask_inboxes.sum().item()
fg_mask[fg_mask.clone()] = fg_mask_inboxes
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
gt_matched_classes = gt_classes[matched_gt_inds]
pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[
fg_mask_inboxes
]
return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds
|