File size: 16,328 Bytes
d570deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#!/usr/bin/env python3
# -*- coding:utf-8 -*-

# The code is based on
# https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/models/yolo_head.py
# Copyright (c) Megvii, Inc. and its affiliates.

import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from yolov6.utils.figure_iou import IOUloss, pairwise_bbox_iou


class ComputeLoss:
    '''Loss computation func.
    This func contains SimOTA and siou loss.
    '''
    def __init__(self,
                 reg_weight=5.0,
                 iou_weight=3.0,
                 cls_weight=1.0,
                 center_radius=2.5,
                 eps=1e-7,
                 in_channels=[256, 512, 1024],
                 strides=[8, 16, 32],
                 n_anchors=1,
                 iou_type='ciou'
                 ):

        self.reg_weight = reg_weight
        self.iou_weight = iou_weight
        self.cls_weight = cls_weight

        self.center_radius = center_radius
        self.eps = eps
        self.n_anchors = n_anchors
        self.strides = strides
        self.grids = [torch.zeros(1)] * len(in_channels)

        # Define criteria
        self.l1_loss = nn.L1Loss(reduction="none")
        self.bcewithlog_loss = nn.BCEWithLogitsLoss(reduction="none")
        self.iou_loss = IOUloss(iou_type=iou_type, reduction="none")

    def __call__(
        self,
        outputs,
        targets
    ):
        dtype = outputs[0].type()
        device = targets.device
        loss_cls, loss_obj, loss_iou, loss_l1 = torch.zeros(1, device=device), torch.zeros(1, device=device), \
            torch.zeros(1, device=device), torch.zeros(1, device=device)
        num_classes = outputs[0].shape[-1] - 5

        outputs, outputs_origin, gt_bboxes_scale, xy_shifts, expanded_strides = self.get_outputs_and_grids(
            outputs, self.strides, dtype, device)

        total_num_anchors = outputs.shape[1]
        bbox_preds = outputs[:, :, :4]  # [batch, n_anchors_all, 4]
        bbox_preds_org = outputs_origin[:, :, :4]  # [batch, n_anchors_all, 4]
        obj_preds = outputs[:, :, 4].unsqueeze(-1)  # [batch, n_anchors_all, 1]
        cls_preds = outputs[:, :, 5:]  # [batch, n_anchors_all, n_cls]

        # targets
        batch_size = bbox_preds.shape[0]
        targets_list = np.zeros((batch_size, 1, 5)).tolist()
        for i, item in enumerate(targets.cpu().numpy().tolist()):
            targets_list[int(item[0])].append(item[1:])
        max_len = max((len(l) for l in targets_list))

        targets = torch.from_numpy(np.array(list(map(lambda l:l + [[-1,0,0,0,0]]*(max_len - len(l)), targets_list)))[:,1:,:]).to(targets.device)
        num_targets_list = (targets.sum(dim=2) > 0).sum(dim=1)  # number of objects

        num_fg, num_gts = 0, 0
        cls_targets, reg_targets, l1_targets, obj_targets, fg_masks = [], [], [], [], []

        for batch_idx in range(batch_size):
            num_gt = int(num_targets_list[batch_idx])
            num_gts += num_gt
            if num_gt == 0:
                cls_target = outputs.new_zeros((0, num_classes))
                reg_target = outputs.new_zeros((0, 4))
                l1_target = outputs.new_zeros((0, 4))
                obj_target = outputs.new_zeros((total_num_anchors, 1))
                fg_mask = outputs.new_zeros(total_num_anchors).bool()
            else:

                gt_bboxes_per_image = targets[batch_idx, :num_gt, 1:5].mul_(gt_bboxes_scale)
                gt_classes = targets[batch_idx, :num_gt, 0]
                bboxes_preds_per_image = bbox_preds[batch_idx]
                cls_preds_per_image = cls_preds[batch_idx]
                obj_preds_per_image = obj_preds[batch_idx]

                try:
                    (
                        gt_matched_classes,
                        fg_mask,
                        pred_ious_this_matching,
                        matched_gt_inds,
                        num_fg_img,
                    ) = self.get_assignments(
                        batch_idx,
                        num_gt,
                        total_num_anchors,
                        gt_bboxes_per_image,
                        gt_classes,
                        bboxes_preds_per_image,
                        cls_preds_per_image,
                        obj_preds_per_image,
                        expanded_strides,
                        xy_shifts,
                        num_classes
                    )

                except RuntimeError:
                    print(
                        "OOM RuntimeError is raised due to the huge memory cost during label assignment. \
                           CPU mode is applied in this batch. If you want to avoid this issue, \
                           try to reduce the batch size or image size."
                    )
                    torch.cuda.empty_cache()
                    print("------------CPU Mode for This Batch-------------")

                    _gt_bboxes_per_image = gt_bboxes_per_image.cpu().float()
                    _gt_classes = gt_classes.cpu().float()
                    _bboxes_preds_per_image = bboxes_preds_per_image.cpu().float()
                    _cls_preds_per_image = cls_preds_per_image.cpu().float()
                    _obj_preds_per_image = obj_preds_per_image.cpu().float()

                    _expanded_strides = expanded_strides.cpu().float()
                    _xy_shifts = xy_shifts.cpu()

                    (
                        gt_matched_classes,
                        fg_mask,
                        pred_ious_this_matching,
                        matched_gt_inds,
                        num_fg_img,
                    ) = self.get_assignments(
                        batch_idx,
                        num_gt,
                        total_num_anchors,
                        _gt_bboxes_per_image,
                        _gt_classes,
                        _bboxes_preds_per_image,
                        _cls_preds_per_image,
                        _obj_preds_per_image,
                        _expanded_strides,
                        _xy_shifts,
                        num_classes
                    )

                    gt_matched_classes = gt_matched_classes.cuda()
                    fg_mask = fg_mask.cuda()
                    pred_ious_this_matching = pred_ious_this_matching.cuda()
                    matched_gt_inds = matched_gt_inds.cuda()

                torch.cuda.empty_cache()
                num_fg += num_fg_img
                if num_fg_img > 0:
                    cls_target = F.one_hot(
                        gt_matched_classes.to(torch.int64), num_classes
                    ) * pred_ious_this_matching.unsqueeze(-1)
                    obj_target = fg_mask.unsqueeze(-1)
                    reg_target = gt_bboxes_per_image[matched_gt_inds]

                    l1_target = self.get_l1_target(
                        outputs.new_zeros((num_fg_img, 4)),
                        gt_bboxes_per_image[matched_gt_inds],
                        expanded_strides[0][fg_mask],
                        xy_shifts=xy_shifts[0][fg_mask],
                    )

            cls_targets.append(cls_target)
            reg_targets.append(reg_target)
            obj_targets.append(obj_target)
            l1_targets.append(l1_target)
            fg_masks.append(fg_mask)

        cls_targets = torch.cat(cls_targets, 0)
        reg_targets = torch.cat(reg_targets, 0)
        obj_targets = torch.cat(obj_targets, 0)
        l1_targets = torch.cat(l1_targets, 0)
        fg_masks = torch.cat(fg_masks, 0)

        num_fg = max(num_fg, 1)
        # loss
        loss_iou += (self.iou_loss(bbox_preds.view(-1, 4)[fg_masks].T, reg_targets)).sum() / num_fg
        loss_l1 += (self.l1_loss(bbox_preds_org.view(-1, 4)[fg_masks], l1_targets)).sum() / num_fg

        loss_obj += (self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets*1.0)).sum() / num_fg
        loss_cls += (self.bcewithlog_loss(cls_preds.view(-1, num_classes)[fg_masks], cls_targets)).sum() / num_fg

        total_losses = self.reg_weight * loss_iou + loss_l1 + loss_obj + loss_cls
        return total_losses, torch.cat((self.reg_weight * loss_iou, loss_l1, loss_obj, loss_cls)).detach()

    def decode_output(self, output, k, stride, dtype, device):
        grid = self.grids[k].to(device)
        batch_size = output.shape[0]
        hsize, wsize = output.shape[2:4]
        if grid.shape[2:4] != output.shape[2:4]:
            yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)])
            grid = torch.stack((xv, yv), 2).view(1, 1, hsize, wsize, 2).type(dtype).to(device)
            self.grids[k] = grid

        output = output.reshape(batch_size, self.n_anchors * hsize * wsize, -1)
        output_origin = output.clone()
        grid = grid.view(1, -1, 2)

        output[..., :2] = (output[..., :2] + grid) * stride
        output[..., 2:4] = torch.exp(output[..., 2:4]) * stride

        return output, output_origin, grid, hsize, wsize

    def get_outputs_and_grids(self, outputs, strides, dtype, device):
        xy_shifts = []
        expanded_strides = []
        outputs_new = []
        outputs_origin = []

        for k, output in enumerate(outputs):
            output, output_origin, grid, feat_h, feat_w = self.decode_output(
                output, k, strides[k], dtype, device)

            xy_shift = grid
            expanded_stride = torch.full((1, grid.shape[1], 1), strides[k], dtype=grid.dtype, device=grid.device)

            xy_shifts.append(xy_shift)
            expanded_strides.append(expanded_stride)
            outputs_new.append(output)
            outputs_origin.append(output_origin)

        xy_shifts = torch.cat(xy_shifts, 1)  # [1, n_anchors_all, 2]
        expanded_strides = torch.cat(expanded_strides, 1) # [1, n_anchors_all, 1]
        outputs_origin = torch.cat(outputs_origin, 1)
        outputs = torch.cat(outputs_new, 1)

        feat_h *= strides[-1]
        feat_w *= strides[-1]
        gt_bboxes_scale = torch.Tensor([[feat_w, feat_h, feat_w, feat_h]]).type_as(outputs)

        return outputs, outputs_origin, gt_bboxes_scale, xy_shifts, expanded_strides

    def get_l1_target(self, l1_target, gt, stride, xy_shifts, eps=1e-8):

        l1_target[:, 0:2] = gt[:, 0:2] / stride - xy_shifts
        l1_target[:, 2:4] = torch.log(gt[:, 2:4] / stride + eps)
        return l1_target

    @torch.no_grad()
    def get_assignments(
        self,
        batch_idx,
        num_gt,
        total_num_anchors,
        gt_bboxes_per_image,
        gt_classes,
        bboxes_preds_per_image,
        cls_preds_per_image,
        obj_preds_per_image,
        expanded_strides,
        xy_shifts,
        num_classes
    ):

        fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
            gt_bboxes_per_image,
            expanded_strides,
            xy_shifts,
            total_num_anchors,
            num_gt,
        )

        bboxes_preds_per_image = bboxes_preds_per_image[fg_mask]
        cls_preds_ = cls_preds_per_image[fg_mask]
        obj_preds_ = obj_preds_per_image[fg_mask]
        num_in_boxes_anchor = bboxes_preds_per_image.shape[0]

        # cost
        pair_wise_ious = pairwise_bbox_iou(gt_bboxes_per_image, bboxes_preds_per_image, box_format='xywh')
        pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)

        gt_cls_per_image = (
            F.one_hot(gt_classes.to(torch.int64), num_classes)
            .float()
            .unsqueeze(1)
            .repeat(1, num_in_boxes_anchor, 1)
        )

        with torch.cuda.amp.autocast(enabled=False):
            cls_preds_ = (
                cls_preds_.float().sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1)
                * obj_preds_.float().sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1)
            )
            pair_wise_cls_loss = F.binary_cross_entropy(
                cls_preds_.sqrt_(), gt_cls_per_image, reduction="none"
            ).sum(-1)
        del cls_preds_, obj_preds_

        cost = (
            self.cls_weight * pair_wise_cls_loss
            + self.iou_weight * pair_wise_ious_loss
            + 100000.0 * (~is_in_boxes_and_center)
        )

        (
            num_fg,
            gt_matched_classes,
            pred_ious_this_matching,
            matched_gt_inds,
        ) = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask)

        del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss

        return (
            gt_matched_classes,
            fg_mask,
            pred_ious_this_matching,
            matched_gt_inds,
            num_fg,
        )

    def get_in_boxes_info(
        self,
        gt_bboxes_per_image,
        expanded_strides,
        xy_shifts,
        total_num_anchors,
        num_gt,
    ):
        expanded_strides_per_image = expanded_strides[0]
        xy_shifts_per_image = xy_shifts[0] * expanded_strides_per_image
        xy_centers_per_image = (
            (xy_shifts_per_image + 0.5 * expanded_strides_per_image)
            .unsqueeze(0)
            .repeat(num_gt, 1, 1)
        )  # [n_anchor, 2] -> [n_gt, n_anchor, 2]

        gt_bboxes_per_image_lt = (
            (gt_bboxes_per_image[:, 0:2] - 0.5 * gt_bboxes_per_image[:, 2:4])
            .unsqueeze(1)
            .repeat(1, total_num_anchors, 1)
        )
        gt_bboxes_per_image_rb = (
            (gt_bboxes_per_image[:, 0:2] + 0.5 * gt_bboxes_per_image[:, 2:4])
            .unsqueeze(1)
            .repeat(1, total_num_anchors, 1)
        )  # [n_gt, 2] -> [n_gt, n_anchor, 2]

        b_lt = xy_centers_per_image - gt_bboxes_per_image_lt
        b_rb = gt_bboxes_per_image_rb - xy_centers_per_image
        bbox_deltas = torch.cat([b_lt, b_rb], 2)

        is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
        is_in_boxes_all = is_in_boxes.sum(dim=0) > 0

        # in fixed center
        gt_bboxes_per_image_lt = (gt_bboxes_per_image[:, 0:2]).unsqueeze(1).repeat(
            1, total_num_anchors, 1
        ) - self.center_radius * expanded_strides_per_image.unsqueeze(0)
        gt_bboxes_per_image_rb = (gt_bboxes_per_image[:, 0:2]).unsqueeze(1).repeat(
            1, total_num_anchors, 1
        ) + self.center_radius * expanded_strides_per_image.unsqueeze(0)

        c_lt = xy_centers_per_image - gt_bboxes_per_image_lt
        c_rb = gt_bboxes_per_image_rb - xy_centers_per_image
        center_deltas = torch.cat([c_lt, c_rb], 2)
        is_in_centers = center_deltas.min(dim=-1).values > 0.0
        is_in_centers_all = is_in_centers.sum(dim=0) > 0

        # in boxes and in centers
        is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all

        is_in_boxes_and_center = (
            is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
        )
        return is_in_boxes_anchor, is_in_boxes_and_center

    def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask):
        matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
        ious_in_boxes_matrix = pair_wise_ious
        n_candidate_k = min(10, ious_in_boxes_matrix.size(1))
        topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
        dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
        dynamic_ks = dynamic_ks.tolist()

        for gt_idx in range(num_gt):
            _, pos_idx = torch.topk(
                cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
            )
            matching_matrix[gt_idx][pos_idx] = 1
        del topk_ious, dynamic_ks, pos_idx

        anchor_matching_gt = matching_matrix.sum(0)
        if (anchor_matching_gt > 1).sum() > 0:
            _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
            matching_matrix[:, anchor_matching_gt > 1] *= 0
            matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
        fg_mask_inboxes = matching_matrix.sum(0) > 0
        num_fg = fg_mask_inboxes.sum().item()
        fg_mask[fg_mask.clone()] = fg_mask_inboxes
        matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
        gt_matched_classes = gt_classes[matched_gt_inds]

        pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[
            fg_mask_inboxes
        ]

        return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds