File size: 10,873 Bytes
e31779b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
from tqdm import tqdm
import numpy as np
import json
import torch
import yaml
from pathlib import Path

from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval

from yolov6.data.data_load import create_dataloader
from yolov6.utils.events import LOGGER, NCOLS
from yolov6.utils.nms import non_max_suppression
from yolov6.utils.checkpoint import load_checkpoint
from yolov6.utils.torch_utils import time_sync, get_model_info

'''
python tools/eval.py --task 'train'/'val'/'speed'
'''


class Evaler:
    def __init__(self,
                 data,
                 batch_size=32,
                 img_size=640,
                 conf_thres=0.001,
                 iou_thres=0.65,
                 device='',
                 half=True,
                 save_dir=''):
        self.data = data
        self.batch_size = batch_size
        self.img_size = img_size
        self.conf_thres = conf_thres
        self.iou_thres = iou_thres
        self.device = device
        self.half = half
        self.save_dir = save_dir

    def init_model(self, model, weights, task):
        if task != 'train':
            model = load_checkpoint(weights, map_location=self.device)
            self.stride = int(model.stride.max())
            if self.device.type != 'cpu':
                model(torch.zeros(1, 3, self.img_size, self.img_size).to(self.device).type_as(next(model.parameters())))
            # switch to deploy
            from yolov6.layers.common import RepVGGBlock
            for layer in model.modules():
                if isinstance(layer, RepVGGBlock):
                    layer.switch_to_deploy()
            LOGGER.info("Switch model to deploy modality.")
            LOGGER.info("Model Summary: {}".format(get_model_info(model, self.img_size)))
        model.half() if self.half else model.float()
        return model

    def init_data(self, dataloader, task):
        '''Initialize dataloader.
        Returns a dataloader for task val or speed.
        '''
        self.is_coco = self.data.get("is_coco", False)
        self.ids = self.coco80_to_coco91_class() if self.is_coco else list(range(1000))
        if task != 'train':
            pad = 0.0 if task == 'speed' else 0.5
            dataloader = create_dataloader(self.data[task if task in ('train', 'val', 'test') else 'val'],
                                           self.img_size, self.batch_size, self.stride, check_labels=True, pad=pad, rect=True,
                                           data_dict=self.data, task=task)[0]
        return dataloader

    def predict_model(self, model, dataloader, task):
        '''Model prediction
        Predicts the whole dataset and gets the prediced results and inference time.
        '''
        self.speed_result = torch.zeros(4, device=self.device)
        pred_results = []
        pbar = tqdm(dataloader, desc="Inferencing model in val datasets.", ncols=NCOLS)
        for imgs, targets, paths, shapes in pbar:
            # pre-process
            t1 = time_sync()
            imgs = imgs.to(self.device, non_blocking=True)
            imgs = imgs.half() if self.half else imgs.float()
            imgs /= 255
            self.speed_result[1] += time_sync() - t1  # pre-process time

            # Inference
            t2 = time_sync()
            outputs = model(imgs)
            self.speed_result[2] += time_sync() - t2  # inference time

            # post-process
            t3 = time_sync()
            outputs = non_max_suppression(outputs, self.conf_thres, self.iou_thres, multi_label=True)
            self.speed_result[3] += time_sync() - t3  # post-process time
            self.speed_result[0] += len(outputs)

            # save result
            pred_results.extend(self.convert_to_coco_format(outputs, imgs, paths, shapes, self.ids))
        return pred_results

    def eval_model(self, pred_results, model, dataloader, task):
        '''Evaluate models
        For task speed, this function only evaluates the speed of model and outputs inference time.
        For task val, this function evaluates the speed and mAP by pycocotools, and returns
        inference time and mAP value.
        '''
        LOGGER.info(f'\nEvaluating speed.')
        self.eval_speed(task)

        LOGGER.info(f'\nEvaluating mAP by pycocotools.')
        if task != 'speed' and len(pred_results):
            if 'anno_path' in self.data:
                anno_json = self.data['anno_path']
            else:
                # generated coco format labels in dataset initialization
                dataset_root = os.path.dirname(os.path.dirname(self.data['val']))
                base_name = os.path.basename(self.data['val'])
                anno_json = os.path.join(dataset_root, 'annotations', f'instances_{base_name}.json')
            pred_json = os.path.join(self.save_dir, "predictions.json")
            LOGGER.info(f'Saving {pred_json}...')
            with open(pred_json, 'w') as f:
                json.dump(pred_results, f)

            anno = COCO(anno_json)
            pred = anno.loadRes(pred_json)
            cocoEval = COCOeval(anno, pred, 'bbox')
            if self.is_coco:
                imgIds = [int(os.path.basename(x).split(".")[0])
                            for x in dataloader.dataset.img_paths]
                cocoEval.params.imgIds = imgIds
            cocoEval.evaluate()
            cocoEval.accumulate()
            cocoEval.summarize()
            map, map50 = cocoEval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
            # Return results
            model.float()  # for training
            if task != 'train':
                LOGGER.info(f"Results saved to {self.save_dir}")
            return (map50, map)
        return (0.0, 0.0)

    def eval_speed(self, task):
        '''Evaluate model inference speed.'''
        if task != 'train':
            n_samples = self.speed_result[0].item()
            pre_time, inf_time, nms_time = 1000 * self.speed_result[1:].cpu().numpy() / n_samples
            for n, v in zip(["pre-process", "inference", "NMS"],[pre_time, inf_time, nms_time]):
                LOGGER.info("Average {} time: {:.2f} ms".format(n, v))

    def box_convert(self, x):
        # Convert boxes with shape [n, 4] from [x1, y1, x2, y2] to [x, y, w, h] where x1y1=top-left, x2y2=bottom-right
        y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
        y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
        y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
        y[:, 2] = x[:, 2] - x[:, 0]  # width
        y[:, 3] = x[:, 3] - x[:, 1]  # height
        return y

    def scale_coords(self, img1_shape, coords, img0_shape, ratio_pad=None):
        # Rescale coords (xyxy) from img1_shape to img0_shape
        if ratio_pad is None:  # calculate from img0_shape
            gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
            pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
        else:
            gain = ratio_pad[0][0]
            pad = ratio_pad[1]

        coords[:, [0, 2]] -= pad[0]  # x padding
        coords[:, [1, 3]] -= pad[1]  # y padding
        coords[:, :4] /= gain
        if isinstance(coords, torch.Tensor):  # faster individually
            coords[:, 0].clamp_(0, img0_shape[1])  # x1
            coords[:, 1].clamp_(0, img0_shape[0])  # y1
            coords[:, 2].clamp_(0, img0_shape[1])  # x2
            coords[:, 3].clamp_(0, img0_shape[0])  # y2
        else:  # np.array (faster grouped)
            coords[:, [0, 2]] = coords[:, [0, 2]].clip(0, img0_shape[1])  # x1, x2
            coords[:, [1, 3]] = coords[:, [1, 3]].clip(0, img0_shape[0])  # y1, y2
        return coords

    def convert_to_coco_format(self, outputs, imgs, paths, shapes, ids):
        pred_results = []
        for i, pred in enumerate(outputs):
            if len(pred) == 0:
                continue
            path, shape = Path(paths[i]), shapes[i][0]
            self.scale_coords(imgs[i].shape[1:], pred[:, :4], shape, shapes[i][1])
            image_id = int(path.stem) if path.stem.isnumeric() else path.stem
            bboxes = self.box_convert(pred[:, 0:4])
            bboxes[:, :2] -= bboxes[:, 2:] / 2
            cls = pred[:, 5]
            scores = pred[:, 4]
            for ind in range(pred.shape[0]):
                category_id = ids[int(cls[ind])]
                bbox = [round(x, 3) for x in bboxes[ind].tolist()]
                score = round(scores[ind].item(), 5)
                pred_data = {
                    "image_id": image_id,
                    "category_id": category_id,
                    "bbox": bbox,
                    "score": score
                }
                pred_results.append(pred_data)
        return pred_results

    @staticmethod
    def check_task(task):
        if task not in ['train', 'val', 'speed']:
            raise Exception("task argument error: only support 'train' / 'val' / 'speed' task.")

    @staticmethod
    def reload_thres(conf_thres, iou_thres, task):
        '''Sets conf and iou threshold for task val/speed'''
        if task != 'train':
            if task == 'val':
                conf_thres = 0.001
            if task == 'speed':
                conf_thres = 0.25
                iou_thres = 0.45
        return conf_thres, iou_thres

    @staticmethod
    def reload_device(device, model, task):
        # device = 'cpu' or '0' or '0,1,2,3'
        if task == 'train':
            device = next(model.parameters()).device
        else:
            if device == 'cpu':
                os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
            elif device:
                os.environ['CUDA_VISIBLE_DEVICES'] = device
                assert torch.cuda.is_available()
            cuda = device != 'cpu' and torch.cuda.is_available()
            device = torch.device('cuda:0' if cuda else 'cpu')
        return device

    @staticmethod
    def reload_dataset(data):
        with open(data, errors='ignore') as yaml_file:
            data = yaml.safe_load(yaml_file)
        val = data.get('val')
        if not os.path.exists(val):
            raise Exception('Dataset not found.')
        return data

    @staticmethod
    def coco80_to_coco91_class():  # converts 80-index (val2014) to 91-index (paper)
    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
        x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20,
            21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
            41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
            59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79,
            80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
        return x