Spaces:
Build error
Build error
File size: 9,143 Bytes
a6aa138 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
import os.path as osp
import math
from tqdm import tqdm
import numpy as np
import cv2
import torch
from PIL import ImageFont
from yolov6.utils.events import LOGGER, load_yaml
from yolov6.layers.common import DetectBackend
from yolov6.data.data_augment import letterbox
from yolov6.utils.nms import non_max_suppression
from yolov6.utils.torch_utils import get_model_info
class Inferer:
def __init__(self, source, weights, device, yaml, img_size, half):
import glob
from yolov6.data.datasets import IMG_FORMATS
self.__dict__.update(locals())
# Init model
self.device = device
self.img_size = img_size
cuda = self.device != 'cpu' and torch.cuda.is_available()
self.device = torch.device('cuda:0' if cuda else 'cpu')
self.model = DetectBackend(weights, device=self.device)
self.stride = self.model.stride
self.class_names = load_yaml(yaml)['names']
self.img_size = self.check_img_size(self.img_size, s=self.stride) # check image size
# Half precision
if half & (self.device.type != 'cpu'):
self.model.model.half()
else:
self.model.model.float()
half = False
if self.device.type != 'cpu':
self.model(torch.zeros(1, 3, *self.img_size).to(self.device).type_as(next(self.model.model.parameters()))) # warmup
# Load data
if os.path.isdir(source):
img_paths = sorted(glob.glob(os.path.join(source, '*.*'))) # dir
elif os.path.isfile(source):
img_paths = [source] # files
else:
raise Exception(f'Invalid path: {source}')
self.img_paths = [img_path for img_path in img_paths if img_path.split('.')[-1].lower() in IMG_FORMATS]
# Switch model to deploy status
self.model_switch(self.model, self.img_size)
def model_switch(self, model, img_size):
''' Model switch to deploy status '''
from yolov6.layers.common import RepVGGBlock
for layer in model.modules():
if isinstance(layer, RepVGGBlock):
layer.switch_to_deploy()
LOGGER.info("Switch model to deploy modality.")
def infer(self, conf_thres, iou_thres, classes, agnostic_nms, max_det, save_dir, save_txt, save_img, hide_labels, hide_conf):
''' Model Inference and results visualization '''
for img_path in tqdm(self.img_paths):
img, img_src = self.precess_image(img_path, self.img_size, self.stride, self.half)
img = img.to(self.device)
if len(img.shape) == 3:
img = img[None]
# expand for batch dim
pred_results = self.model(img)
det = non_max_suppression(pred_results, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)[0]
save_path = osp.join(save_dir, osp.basename(img_path)) # im.jpg
txt_path = osp.join(save_dir, 'labels', osp.splitext(osp.basename(img_path))[0])
gn = torch.tensor(img_src.shape)[[1, 0, 1, 0]] # normalization gain whwh
img_ori = img_src
# check image and font
assert img_ori.data.contiguous, 'Image needs to be contiguous. Please apply to input images with np.ascontiguousarray(im).'
self.font_check()
if len(det):
det[:, :4] = self.rescale(img.shape[2:], det[:, :4], img_src.shape).round()
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (self.box_convert(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf)
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img:
class_num = int(cls) # integer class
label = None if hide_labels else (self.class_names[class_num] if hide_conf else f'{self.class_names[class_num]} {conf:.2f}')
self.plot_box_and_label(img_ori, max(round(sum(img_ori.shape) / 2 * 0.003), 2), xyxy, label, color=self.generate_colors(class_num, True))
img_src = np.asarray(img_ori)
# Save results (image with detections)
if save_img:
cv2.imwrite(save_path, img_src)
@staticmethod
def precess_image(path, img_size, stride, half):
'''Process image before image inference.'''
try:
img_src = cv2.imread(path)
assert img_src is not None, f'Invalid image: {path}'
except Exception as e:
LOGGER.warning(e)
image = letterbox(img_src, img_size, stride=stride)[0]
# Convert
image = image.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
image = torch.from_numpy(np.ascontiguousarray(image))
image = image.half() if half else image.float() # uint8 to fp16/32
image /= 255 # 0 - 255 to 0.0 - 1.0
return image, img_src
@staticmethod
def rescale(ori_shape, boxes, target_shape):
'''Rescale the output to the original image shape'''
ratio = min(ori_shape[0] / target_shape[0], ori_shape[1] / target_shape[1])
padding = (ori_shape[1] - target_shape[1] * ratio) / 2, (ori_shape[0] - target_shape[0] * ratio) / 2
boxes[:, [0, 2]] -= padding[0]
boxes[:, [1, 3]] -= padding[1]
boxes[:, :4] /= ratio
boxes[:, 0].clamp_(0, target_shape[1]) # x1
boxes[:, 1].clamp_(0, target_shape[0]) # y1
boxes[:, 2].clamp_(0, target_shape[1]) # x2
boxes[:, 3].clamp_(0, target_shape[0]) # y2
return boxes
def check_img_size(self, img_size, s=32, floor=0):
"""Make sure image size is a multiple of stride s in each dimension, and return a new shape list of image."""
if isinstance(img_size, int): # integer i.e. img_size=640
new_size = max(self.make_divisible(img_size, int(s)), floor)
elif isinstance(img_size, list): # list i.e. img_size=[640, 480]
new_size = [max(self.make_divisible(x, int(s)), floor) for x in img_size]
else:
raise Exception(f"Unsupported type of img_size: {type(img_size)}")
if new_size != img_size:
print(f'WARNING: --img-size {img_size} must be multiple of max stride {s}, updating to {new_size}')
return new_size if isinstance(img_size,list) else [new_size]*2
def make_divisible(self, x, divisor):
# Upward revision the value x to make it evenly divisible by the divisor.
return math.ceil(x / divisor) * divisor
@staticmethod
def plot_box_and_label(image, lw, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
# Add one xyxy box to image with label
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
cv2.rectangle(image, p1, p2, color, thickness=lw, lineType=cv2.LINE_AA)
if label:
tf = max(lw - 1, 1) # font thickness
w, h = cv2.getTextSize(label, 0, fontScale=lw / 3, thickness=tf)[0] # text width, height
outside = p1[1] - h - 3 >= 0 # label fits outside box
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
cv2.rectangle(image, p1, p2, color, -1, cv2.LINE_AA) # filled
cv2.putText(image, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, lw / 3, txt_color,
thickness=tf, lineType=cv2.LINE_AA)
@staticmethod
def font_check(font='./yolov6/utils/Arial.ttf', size=10):
# Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
assert osp.exists(font), f'font path not exists: {font}'
try:
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
except Exception as e: # download if missing
return ImageFont.truetype(str(font), size)
@staticmethod
def box_convert(x):
# Convert boxes with shape [n, 4] from [x1, y1, x2, y2] to [x, y, w, h] where x1y1=top-left, x2y2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
return y
@staticmethod
def generate_colors(i, bgr=False):
hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
palette = []
for iter in hex:
h = '#' + iter
palette.append(tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)))
num = len(palette)
color = palette[int(i) % num]
return (color[2], color[1], color[0]) if bgr else color
|