Spaces:
Build error
Build error
File size: 20,610 Bytes
e6a2ff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import glob
import os
import os.path as osp
import random
import json
import time
import hashlib
from multiprocessing.pool import Pool
import cv2
import numpy as np
import torch
from PIL import ExifTags, Image, ImageOps
from torch.utils.data import Dataset
from tqdm import tqdm
from .data_augment import (
augment_hsv,
letterbox,
mixup,
random_affine,
mosaic_augmentation,
)
from yolov6.utils.events import LOGGER
# Parameters
IMG_FORMATS = ["bmp", "jpg", "jpeg", "png", "tif", "tiff", "dng", "webp", "mpo"]
# Get orientation exif tag
for k, v in ExifTags.TAGS.items():
if v == "Orientation":
ORIENTATION = k
break
class TrainValDataset(Dataset):
# YOLOv6 train_loader/val_loader, loads images and labels for training and validation
def __init__(
self,
img_dir,
img_size=640,
batch_size=16,
augment=False,
hyp=None,
rect=False,
check_images=False,
check_labels=False,
stride=32,
pad=0.0,
rank=-1,
data_dict=None,
task="train",
):
assert task.lower() in ("train", "val", "speed"), f"Not supported task: {task}"
t1 = time.time()
self.__dict__.update(locals())
self.main_process = self.rank in (-1, 0)
self.task = self.task.capitalize()
self.class_names = data_dict["names"]
self.img_paths, self.labels = self.get_imgs_labels(self.img_dir)
if self.rect:
shapes = [self.img_info[p]["shape"] for p in self.img_paths]
self.shapes = np.array(shapes, dtype=np.float64)
self.batch_indices = np.floor(
np.arange(len(shapes)) / self.batch_size
).astype(
np.int
) # batch indices of each image
self.sort_files_shapes()
t2 = time.time()
if self.main_process:
LOGGER.info(f"%.1fs for dataset initialization." % (t2 - t1))
def __len__(self):
"""Get the length of dataset"""
return len(self.img_paths)
def __getitem__(self, index):
"""Fetching a data sample for a given key.
This function applies mosaic and mixup augments during training.
During validation, letterbox augment is applied.
"""
# Mosaic Augmentation
if self.augment and random.random() < self.hyp["mosaic"]:
img, labels = self.get_mosaic(index)
shapes = None
# MixUp augmentation
if random.random() < self.hyp["mixup"]:
img_other, labels_other = self.get_mosaic(
random.randint(0, len(self.img_paths) - 1)
)
img, labels = mixup(img, labels, img_other, labels_other)
else:
# Load image
img, (h0, w0), (h, w) = self.load_image(index)
# Letterbox
shape = (
self.batch_shapes[self.batch_indices[index]]
if self.rect
else self.img_size
) # final letterboxed shape
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
labels = self.labels[index].copy()
if labels.size:
w *= ratio
h *= ratio
# new boxes
boxes = np.copy(labels[:, 1:])
boxes[:, 0] = (
w * (labels[:, 1] - labels[:, 3] / 2) + pad[0]
) # top left x
boxes[:, 1] = (
h * (labels[:, 2] - labels[:, 4] / 2) + pad[1]
) # top left y
boxes[:, 2] = (
w * (labels[:, 1] + labels[:, 3] / 2) + pad[0]
) # bottom right x
boxes[:, 3] = (
h * (labels[:, 2] + labels[:, 4] / 2) + pad[1]
) # bottom right y
labels[:, 1:] = boxes
if self.augment:
img, labels = random_affine(
img,
labels,
degrees=self.hyp["degrees"],
translate=self.hyp["translate"],
scale=self.hyp["scale"],
shear=self.hyp["shear"],
new_shape=(self.img_size, self.img_size),
)
if len(labels):
h, w = img.shape[:2]
labels[:, [1, 3]] = labels[:, [1, 3]].clip(0, w - 1e-3) # x1, x2
labels[:, [2, 4]] = labels[:, [2, 4]].clip(0, h - 1e-3) # y1, y2
boxes = np.copy(labels[:, 1:])
boxes[:, 0] = ((labels[:, 1] + labels[:, 3]) / 2) / w # x center
boxes[:, 1] = ((labels[:, 2] + labels[:, 4]) / 2) / h # y center
boxes[:, 2] = (labels[:, 3] - labels[:, 1]) / w # width
boxes[:, 3] = (labels[:, 4] - labels[:, 2]) / h # height
labels[:, 1:] = boxes
if self.augment:
img, labels = self.general_augment(img, labels)
labels_out = torch.zeros((len(labels), 6))
if len(labels):
labels_out[:, 1:] = torch.from_numpy(labels)
# Convert
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
img = np.ascontiguousarray(img)
return torch.from_numpy(img), labels_out, self.img_paths[index], shapes
def load_image(self, index):
"""Load image.
This function loads image by cv2, resize original image to target shape(img_size) with keeping ratio.
Returns:
Image, original shape of image, resized image shape
"""
path = self.img_paths[index]
im = cv2.imread(path)
assert im is not None, f"Image Not Found {path}, workdir: {os.getcwd()}"
h0, w0 = im.shape[:2] # origin shape
r = self.img_size / max(h0, w0)
if r != 1:
im = cv2.resize(
im,
(int(w0 * r), int(h0 * r)),
interpolation=cv2.INTER_AREA
if r < 1 and not self.augment
else cv2.INTER_LINEAR,
)
return im, (h0, w0), im.shape[:2]
@staticmethod
def collate_fn(batch):
"""Merges a list of samples to form a mini-batch of Tensor(s)"""
img, label, path, shapes = zip(*batch)
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
def get_imgs_labels(self, img_dir):
assert osp.exists(img_dir), f"{img_dir} is an invalid directory path!"
valid_img_record = osp.join(
osp.dirname(img_dir), "." + osp.basename(img_dir) + ".json"
)
NUM_THREADS = min(8, os.cpu_count())
img_paths = glob.glob(osp.join(img_dir, "*"), recursive=True)
img_paths = sorted(
p for p in img_paths if p.split(".")[-1].lower() in IMG_FORMATS
)
assert img_paths, f"No images found in {img_dir}."
img_hash = self.get_hash(img_paths)
if osp.exists(valid_img_record):
with open(valid_img_record, "r") as f:
cache_info = json.load(f)
if "image_hash" in cache_info and cache_info["image_hash"] == img_hash:
img_info = cache_info["information"]
else:
self.check_images = True
else:
self.check_images = True
# check images
if self.check_images and self.main_process:
img_info = {}
nc, msgs = 0, [] # number corrupt, messages
LOGGER.info(
f"{self.task}: Checking formats of images with {NUM_THREADS} process(es): "
)
with Pool(NUM_THREADS) as pool:
pbar = tqdm(
pool.imap(TrainValDataset.check_image, img_paths),
total=len(img_paths),
)
for img_path, shape_per_img, nc_per_img, msg in pbar:
if nc_per_img == 0: # not corrupted
img_info[img_path] = {"shape": shape_per_img}
nc += nc_per_img
if msg:
msgs.append(msg)
pbar.desc = f"{nc} image(s) corrupted"
pbar.close()
if msgs:
LOGGER.info("\n".join(msgs))
cache_info = {"information": img_info, "image_hash": img_hash}
# save valid image paths.
with open(valid_img_record, "w") as f:
json.dump(cache_info, f)
# check and load anns
label_dir = osp.join(
osp.dirname(osp.dirname(img_dir)), "labels", osp.basename(img_dir)
)
assert osp.exists(label_dir), f"{label_dir} is an invalid directory path!"
img_paths = list(img_info.keys())
label_paths = sorted(
osp.join(label_dir, osp.splitext(osp.basename(p))[0] + ".txt")
for p in img_paths
)
label_hash = self.get_hash(label_paths)
if "label_hash" not in cache_info or cache_info["label_hash"] != label_hash:
self.check_labels = True
if self.check_labels:
cache_info["label_hash"] = label_hash
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number corrupt, messages
LOGGER.info(
f"{self.task}: Checking formats of labels with {NUM_THREADS} process(es): "
)
with Pool(NUM_THREADS) as pool:
pbar = pool.imap(
TrainValDataset.check_label_files, zip(img_paths, label_paths)
)
pbar = tqdm(pbar, total=len(label_paths)) if self.main_process else pbar
for (
img_path,
labels_per_file,
nc_per_file,
nm_per_file,
nf_per_file,
ne_per_file,
msg,
) in pbar:
if nc_per_file == 0:
img_info[img_path]["labels"] = labels_per_file
else:
img_info.pop(img_path)
nc += nc_per_file
nm += nm_per_file
nf += nf_per_file
ne += ne_per_file
if msg:
msgs.append(msg)
if self.main_process:
pbar.desc = f"{nf} label(s) found, {nm} label(s) missing, {ne} label(s) empty, {nc} invalid label files"
if self.main_process:
pbar.close()
with open(valid_img_record, "w") as f:
json.dump(cache_info, f)
if msgs:
LOGGER.info("\n".join(msgs))
if nf == 0:
LOGGER.warning(
f"WARNING: No labels found in {osp.dirname(self.img_paths[0])}. "
)
if self.task.lower() == "val":
if self.data_dict.get("is_coco", False): # use original json file when evaluating on coco dataset.
assert osp.exists(self.data_dict["anno_path"]), "Eval on coco dataset must provide valid path of the annotation file in config file: data/coco.yaml"
else:
assert (
self.class_names
), "Class names is required when converting labels to coco format for evaluating."
save_dir = osp.join(osp.dirname(osp.dirname(img_dir)), "annotations")
if not osp.exists(save_dir):
os.mkdir(save_dir)
save_path = osp.join(
save_dir, "instances_" + osp.basename(img_dir) + ".json"
)
TrainValDataset.generate_coco_format_labels(
img_info, self.class_names, save_path
)
img_paths, labels = list(
zip(
*[
(
img_path,
np.array(info["labels"], dtype=np.float32)
if info["labels"]
else np.zeros((0, 5), dtype=np.float32),
)
for img_path, info in img_info.items()
]
)
)
self.img_info = img_info
LOGGER.info(
f"{self.task}: Final numbers of valid images: {len(img_paths)}/ labels: {len(labels)}. "
)
return img_paths, labels
def get_mosaic(self, index):
"""Gets images and labels after mosaic augments"""
indices = [index] + random.choices(
range(0, len(self.img_paths)), k=3
) # 3 additional image indices
random.shuffle(indices)
imgs, hs, ws, labels = [], [], [], []
for index in indices:
img, _, (h, w) = self.load_image(index)
labels_per_img = self.labels[index]
imgs.append(img)
hs.append(h)
ws.append(w)
labels.append(labels_per_img)
img, labels = mosaic_augmentation(self.img_size, imgs, hs, ws, labels, self.hyp)
return img, labels
def general_augment(self, img, labels):
"""Gets images and labels after general augment
This function applies hsv, random ud-flip and random lr-flips augments.
"""
nl = len(labels)
# HSV color-space
augment_hsv(
img,
hgain=self.hyp["hsv_h"],
sgain=self.hyp["hsv_s"],
vgain=self.hyp["hsv_v"],
)
# Flip up-down
if random.random() < self.hyp["flipud"]:
img = np.flipud(img)
if nl:
labels[:, 2] = 1 - labels[:, 2]
# Flip left-right
if random.random() < self.hyp["fliplr"]:
img = np.fliplr(img)
if nl:
labels[:, 1] = 1 - labels[:, 1]
return img, labels
def sort_files_shapes(self):
# Sort by aspect ratio
batch_num = self.batch_indices[-1] + 1
s = self.shapes # wh
ar = s[:, 1] / s[:, 0] # aspect ratio
irect = ar.argsort()
self.img_paths = [self.img_paths[i] for i in irect]
self.labels = [self.labels[i] for i in irect]
self.shapes = s[irect] # wh
ar = ar[irect]
# Set training image shapes
shapes = [[1, 1]] * batch_num
for i in range(batch_num):
ari = ar[self.batch_indices == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = (
np.ceil(np.array(shapes) * self.img_size / self.stride + self.pad).astype(
np.int
)
* self.stride
)
@staticmethod
def check_image(im_file):
# verify an image.
nc, msg = 0, ""
try:
im = Image.open(im_file)
im.verify() # PIL verify
shape = im.size # (width, height)
im_exif = im._getexif()
if im_exif and ORIENTATION in im_exif:
rotation = im_exif[ORIENTATION]
if rotation in (6, 8):
shape = (shape[1], shape[0])
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
if im.format.lower() in ("jpg", "jpeg"):
with open(im_file, "rb") as f:
f.seek(-2, 2)
if f.read() != b"\xff\xd9": # corrupt JPEG
ImageOps.exif_transpose(Image.open(im_file)).save(
im_file, "JPEG", subsampling=0, quality=100
)
msg += f"WARNING: {im_file}: corrupt JPEG restored and saved"
return im_file, shape, nc, msg
except Exception as e:
nc = 1
msg = f"WARNING: {im_file}: ignoring corrupt image: {e}"
return im_file, None, nc, msg
@staticmethod
def check_label_files(args):
img_path, lb_path = args
nm, nf, ne, nc, msg = 0, 0, 0, 0, "" # number (missing, found, empty, message
try:
if osp.exists(lb_path):
nf = 1 # label found
with open(lb_path, "r") as f:
labels = [
x.split() for x in f.read().strip().splitlines() if len(x)
]
labels = np.array(labels, dtype=np.float32)
if len(labels):
assert all(
len(l) == 5 for l in labels
), f"{lb_path}: wrong label format."
assert (
labels >= 0
).all(), f"{lb_path}: Label values error: all values in label file must > 0"
assert (
labels[:, 1:] <= 1
).all(), f"{lb_path}: Label values error: all coordinates must be normalized"
_, indices = np.unique(labels, axis=0, return_index=True)
if len(indices) < len(labels): # duplicate row check
labels = labels[indices] # remove duplicates
msg += f"WARNING: {lb_path}: {len(labels) - len(indices)} duplicate labels removed"
labels = labels.tolist()
else:
ne = 1 # label empty
labels = []
else:
nm = 1 # label missing
labels = []
return img_path, labels, nc, nm, nf, ne, msg
except Exception as e:
nc = 1
msg = f"WARNING: {lb_path}: ignoring invalid labels: {e}"
return img_path, None, nc, nm, nf, ne, msg
@staticmethod
def generate_coco_format_labels(img_info, class_names, save_path):
# for evaluation with pycocotools
dataset = {"categories": [], "annotations": [], "images": []}
for i, class_name in enumerate(class_names):
dataset["categories"].append(
{"id": i, "name": class_name, "supercategory": ""}
)
ann_id = 0
LOGGER.info(f"Convert to COCO format")
for i, (img_path, info) in enumerate(tqdm(img_info.items())):
labels = info["labels"] if info["labels"] else []
img_id = osp.splitext(osp.basename(img_path))[0]
img_id = int(img_id) if img_id.isnumeric() else img_id
img_w, img_h = info["shape"]
dataset["images"].append(
{
"file_name": os.path.basename(img_path),
"id": img_id,
"width": img_w,
"height": img_h,
}
)
if labels:
for label in labels:
c, x, y, w, h = label[:5]
# convert x,y,w,h to x1,y1,x2,y2
x1 = (x - w / 2) * img_w
y1 = (y - h / 2) * img_h
x2 = (x + w / 2) * img_w
y2 = (y + h / 2) * img_h
# cls_id starts from 0
cls_id = int(c)
w = max(0, x2 - x1)
h = max(0, y2 - y1)
dataset["annotations"].append(
{
"area": h * w,
"bbox": [x1, y1, w, h],
"category_id": cls_id,
"id": ann_id,
"image_id": img_id,
"iscrowd": 0,
# mask
"segmentation": [],
}
)
ann_id += 1
with open(save_path, "w") as f:
json.dump(dataset, f)
LOGGER.info(
f"Convert to COCO format finished. Resutls saved in {save_path}"
)
@staticmethod
def get_hash(paths):
"""Get the hash value of paths"""
assert isinstance(paths, list), "Only support list currently."
h = hashlib.md5("".join(paths).encode())
return h.hexdigest()
|