File size: 2,929 Bytes
b9ee486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import math
import torch.nn as nn
from yolov6.layers.common import *
from yolov6.utils.torch_utils import initialize_weights
from yolov6.models.efficientrep import EfficientRep
from yolov6.models.reppan import RepPANNeck
from yolov6.models.effidehead import Detect, build_effidehead_layer


class Model(nn.Module):
    '''YOLOv6 model with backbone, neck and head.
    The default parts are EfficientRep Backbone, Rep-PAN and
    Efficient Decoupled Head.
    '''
    def __init__(self, config, channels=3, num_classes=None, anchors=None):  # model, input channels, number of classes
        super().__init__()
        # Build network
        num_layers = config.model.head.num_layers
        self.backbone, self.neck, self.detect = build_network(config, channels, num_classes, anchors, num_layers)

        # Init Detect head
        begin_indices = config.model.head.begin_indices
        out_indices_head = config.model.head.out_indices
        self.stride = self.detect.stride
        self.detect.i = begin_indices
        self.detect.f = out_indices_head
        self.detect.initialize_biases()

        # Init weights
        initialize_weights(self)

    def forward(self, x):
        x = self.backbone(x)
        x = self.neck(x)
        x = self.detect(x)
        return x

    def _apply(self, fn):
        self = super()._apply(fn)
        self.detect.stride = fn(self.detect.stride)
        self.detect.grid = list(map(fn, self.detect.grid))
        return self


def make_divisible(x, divisor):
    # Upward revision the value x to make it evenly divisible by the divisor.
    return math.ceil(x / divisor) * divisor


def build_network(config, channels, num_classes, anchors, num_layers):
    depth_mul = config.model.depth_multiple
    width_mul = config.model.width_multiple
    num_repeat_backbone = config.model.backbone.num_repeats
    channels_list_backbone = config.model.backbone.out_channels
    num_repeat_neck = config.model.neck.num_repeats
    channels_list_neck = config.model.neck.out_channels
    num_anchors = config.model.head.anchors
    num_repeat = [(max(round(i * depth_mul), 1) if i > 1 else i) for i in (num_repeat_backbone + num_repeat_neck)]
    channels_list = [make_divisible(i * width_mul, 8) for i in (channels_list_backbone + channels_list_neck)]

    backbone = EfficientRep(
        in_channels=channels,
        channels_list=channels_list,
        num_repeats=num_repeat
    )

    neck = RepPANNeck(
        channels_list=channels_list,
        num_repeats=num_repeat
    )

    head_layers = build_effidehead_layer(channels_list, num_anchors, num_classes)

    head = Detect(num_classes, anchors, num_layers, head_layers=head_layers)

    return backbone, neck, head


def build_model(cfg, num_classes, device):
    model = Model(cfg, channels=3, num_classes=num_classes, anchors=cfg.model.head.anchors).to(device)
    return model