humandetect / yolov6 /data /voc2yolo.py
PKaushik's picture
commit
41602dd
raw
history blame
4.01 kB
import xml.etree.ElementTree as ET
from tqdm import tqdm
import os
import shutil
import argparse
# VOC dataset (refer https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml)
# VOC2007 trainval: 446MB, 5012 images
# VOC2007 test: 438MB, 4953 images
# VOC2012 trainval: 1.95GB, 17126 images
VOC_NAMES = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
def convert_label(path, lb_path, year, image_id):
def convert_box(size, box):
dw, dh = 1. / size[0], 1. / size[1]
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
return x * dw, y * dh, w * dw, h * dh
in_file = open(os.path.join(path, f'VOC{year}/Annotations/{image_id}.xml'))
out_file = open(lb_path, 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
cls = obj.find('name').text
if cls in VOC_NAMES and not int(obj.find('difficult').text) == 1:
xmlbox = obj.find('bndbox')
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
cls_id = VOC_NAMES.index(cls) # class id
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
def gen_voc07_12(voc_path):
'''
Generate voc07+12 setting dataset:
train: # train images 16551 images
- images/train2012
- images/train2007
- images/val2012
- images/val2007
val: # val images (relative to 'path') 4952 images
- images/test2007
'''
dataset_root = os.path.join(voc_path, 'voc_07_12')
if not os.path.exists(dataset_root):
os.makedirs(dataset_root)
dataset_settings = {'train': ['train2007', 'val2007', 'train2012', 'val2012'], 'val':['test2007']}
for item in ['images', 'labels']:
for data_type, data_list in dataset_settings.items():
for data_name in data_list:
ori_path = os.path.join(voc_path, item, data_name)
new_path = os.path.join(dataset_root, item, data_type)
if not os.path.exists(new_path):
os.makedirs(new_path)
print(f'[INFO]: Copying {ori_path} to {new_path}')
for file in os.listdir(ori_path):
shutil.copy(os.path.join(ori_path, file), new_path)
def main(args):
voc_path = args.voc_path
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
imgs_path = os.path.join(voc_path, 'images', f'{image_set}')
lbs_path = os.path.join(voc_path, 'labels', f'{image_set}')
try:
with open(os.path.join(voc_path, f'VOC{year}/ImageSets/Main/{image_set}.txt'), 'r') as f:
image_ids = f.read().strip().split()
if not os.path.exists(imgs_path):
os.makedirs(imgs_path)
if not os.path.exists(lbs_path):
os.makedirs(lbs_path)
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
f = os.path.join(voc_path, f'VOC{year}/JPEGImages/{id}.jpg') # old img path
lb_path = os.path.join(lbs_path, f'{id}.txt') # new label path
convert_label(voc_path, lb_path, year, id) # convert labels to YOLO format
if os.path.exists(f):
shutil.move(f, imgs_path) # move image
except Exception as e:
print(f'[Warning]: {e} {year}{image_set} convert fail!')
gen_voc07_12(voc_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--voc_path', default='VOCdevkit')
args = parser.parse_args()
print(args)
main(args)