Spaces:
Build error
Build error
commit
Browse files- yolov6/solver/build.py +42 -0
yolov6/solver/build.py
CHANGED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
import os
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
|
10 |
+
def build_optimizer(cfg, model):
|
11 |
+
""" Build optimizer from cfg file."""
|
12 |
+
g_bnw, g_w, g_b = [], [], []
|
13 |
+
for v in model.modules():
|
14 |
+
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
|
15 |
+
g_b.append(v.bias)
|
16 |
+
if isinstance(v, nn.BatchNorm2d):
|
17 |
+
g_bnw.append(v.weight)
|
18 |
+
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
|
19 |
+
g_w.append(v.weight)
|
20 |
+
|
21 |
+
assert cfg.solver.optim == 'SGD' or 'Adam', 'ERROR: unknown optimizer, use SGD defaulted'
|
22 |
+
if cfg.solver.optim == 'SGD':
|
23 |
+
optimizer = torch.optim.SGD(g_bnw, lr=cfg.solver.lr0, momentum=cfg.solver.momentum, nesterov=True)
|
24 |
+
elif cfg.solver.optim == 'Adam':
|
25 |
+
optimizer = torch.optim.Adam(g_bnw, lr=cfg.solver.lr0, betas=(cfg.solver.momentum, 0.999))
|
26 |
+
|
27 |
+
optimizer.add_param_group({'params': g_w, 'weight_decay': cfg.solver.weight_decay})
|
28 |
+
optimizer.add_param_group({'params': g_b})
|
29 |
+
|
30 |
+
del g_bnw, g_w, g_b
|
31 |
+
return optimizer
|
32 |
+
|
33 |
+
|
34 |
+
def build_lr_scheduler(cfg, optimizer, epochs):
|
35 |
+
"""Build learning rate scheduler from cfg file."""
|
36 |
+
if cfg.solver.lr_scheduler == 'Cosine':
|
37 |
+
lf = lambda x: ((1 - math.cos(x * math.pi / epochs)) / 2) * (cfg.solver.lrf - 1) + 1
|
38 |
+
else:
|
39 |
+
LOGGER.error('unknown lr scheduler, use Cosine defaulted')
|
40 |
+
|
41 |
+
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
42 |
+
return scheduler, lf
|