import gradio as gr import pickle from datasets import load_dataset from plaid.containers.sample import Sample import numpy as np import pyrender from trimesh import Trimesh import matplotlib as mpl import matplotlib.cm as cm import os # switch to "osmesa" or "egl" before loading pyrender os.environ["PYOPENGL_PLATFORM"] = "egl" hf_dataset = load_dataset("PLAID-datasets/Rotor37", split="all_samples") nb_samples = 1000 field_names_train = ["Density", "Pressure", "Temperature"] _HEADER_ = '''

Visualization demo of Rotor37 dataset

''' def round_num(num)->str: return '%s' % float('%.3g' % num) def sample_info(sample_id_str, fieldn): sample_ = hf_dataset[int(sample_id_str)]["sample"] plaid_sample = Sample.model_validate(pickle.loads(sample_)) # plaid_sample = Sample.load_from_dir(f"Tensile2d/dataset/samples/sample_"+str(sample_id_str).zfill(9)) nodes = plaid_sample.get_nodes() field = plaid_sample.get_field(fieldn) # if nodes.shape[1] == 2: # nodes__ = np.zeros((nodes.shape[0],nodes.shape[1]+1)) # nodes__[:,:-1] = nodes # nodes = nodes__ norm = (field - field.min()) / (field.max() - field.min()) colormap_func = mpl.pyplot.get_cmap('viridis') rgb_colors = colormap_func(norm)[:, :3] nb_nodes = nodes.shape[0] quads = plaid_sample.get_elements()['QUAD_4'] nb_quads = quads.shape[0] assert field.shape[0] == nb_nodes with open("visu.obj", 'w') as f: for i in range(nb_nodes): f.write(f"v {nodes[i,0]} {nodes[i,1]} {nodes[i,2]} {rgb_colors[i,0]} {rgb_colors[i,1]} {rgb_colors[i,2]}\n") for i in range(nb_quads): f.write(f"f {quads[i,0] + 1} {quads[i,1] + 1} {quads[i,2] + 1} {quads[i,3] + 1}\n") # quads = plaid_sample.get_elements()['QUAD_4'] # # generate colormap # if np.linalg.norm(field) > 0: # norm = mpl.colors.Normalize(vmin=np.min(field), vmax=np.max(field)) # cmap = cm.nipy_spectral#cm.coolwarm # m = cm.ScalarMappable(norm=norm, cmap=cmap) # vertex_colors = m.to_rgba(field)[:,:3] # else: # vertex_colors = 1+np.zeros((field.shape[0], 3)) # vertex_colors[:,0] = 0.2298057 # vertex_colors[:,1] = 0.01555616 # vertex_colors[:,2] = 0.15023281 # # generate mesh # trimesh = Trimesh(vertices = nodes, faces = quads) # trimesh.visual.vertex_colors = vertex_colors # mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False) # # compose scene # scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0]) # camera = pyrender.PerspectiveCamera( yfov=np.pi / 6.0) # light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.) # scene.add(mesh, pose= np.eye(4)) # scene.add(light, pose= np.eye(4)) # scene.add(camera, pose=[[ 1, 0, 0, 0.02], # [ 0, 1, 0, 0.21], # [ 0, 0, 1, 0.19], # [ 0, 0, 0, 1]]) # # render scene # r = pyrender.OffscreenRenderer(1024, 1024) # color, _ = r.render(scene) str__ = f"Training sample {sample_id_str}\n" str__ += str(plaid_sample)+"\n" if len(hf_dataset.description['in_scalars_names'])>0: str__ += "\ninput scalars:\n" for sname in hf_dataset.description['in_scalars_names']: str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n" if len(hf_dataset.description['out_scalars_names'])>0: str__ += "\noutput scalars:\n" for sname in hf_dataset.description['out_scalars_names']: str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n" str__ += f"\n\nMesh number of nodes: {nodes.shape[0]}\n" if len(hf_dataset.description['in_fields_names'])>0: str__ += "\ninput fields:\n" for fname in hf_dataset.description['in_fields_names']: str__ += f"- {fname}\n" if len(hf_dataset.description['out_fields_names'])>0: str__ += "\noutput fields:\n" for fname in hf_dataset.description['out_fields_names']: str__ += f"- {fname}\n" return str__, "./visu.obj" if __name__ == "__main__": with gr.Blocks(fill_width=True) as demo: gr.Markdown(_HEADER_) with gr.Row(variant="panel"): with gr.Column(scale=1): d1 = gr.Slider(0, nb_samples-1, value=0, label="Training sample id", info="Choose between 0 and "+str(nb_samples-1)) output1 = gr.Text(label="Training sample info") with gr.Column(scale=2, min_width=300): d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name") # output2 = gr.Image(label="Training sample visualization") output2 = gr.Model3D(label="Training sample visualization") d1.input(sample_info, [d1, d2], [output1, output2]) d2.input(sample_info, [d1, d2], [output1, output2]) demo.launch()