Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,14 +14,6 @@ hf_token = os.getenv("HF_TOK") # Set your Hugging Face token in your environmen
|
|
14 |
login(hf_token) # Log in using the Hugging Face token
|
15 |
|
16 |
model = genai.GenerativeModel("gemini-1.5-flash")
|
17 |
-
diffusion_model = InferenceApi(repo_id="black-forest-labs/FLUX.1-schnell")
|
18 |
-
|
19 |
-
def generate_response(tamil_text):
|
20 |
-
translated_text = translate_text(tamil_text)
|
21 |
-
creative_result = model.generate_content('poem about'+translated_text)
|
22 |
-
response = diffusion_model(inputs=translated_text,
|
23 |
-
params={"guidance_scale": 7.5, "num_inference_steps": 50})
|
24 |
-
return translated_text, creative_result.text, response
|
25 |
|
26 |
# Load the pre-trained model for Tamil to English translation
|
27 |
translator_model_name = "Helsinki-NLP/opus-mt-mul-en"
|
@@ -35,21 +27,22 @@ def translate_text(tamil_text):
|
|
35 |
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
36 |
|
37 |
def generate_creative_writing(english_text):
|
38 |
-
#
|
39 |
-
|
40 |
-
return model.generate_content('poem about'+english_text).text
|
41 |
|
42 |
def generate_image(prompt):
|
43 |
# Make an inference request to generate an image
|
44 |
response = diffusion_model(inputs=prompt, params={"guidance_scale": 7.5, "num_inference_steps": 50})
|
45 |
-
return response #
|
46 |
|
47 |
def process_input(tamil_text):
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
|
54 |
# Create a Gradio interface
|
55 |
iface = gr.Interface(
|
@@ -62,3 +55,4 @@ iface = gr.Interface(
|
|
62 |
|
63 |
# Launch the Gradio app
|
64 |
iface.launch()
|
|
|
|
14 |
login(hf_token) # Log in using the Hugging Face token
|
15 |
|
16 |
model = genai.GenerativeModel("gemini-1.5-flash")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Load the pre-trained model for Tamil to English translation
|
19 |
translator_model_name = "Helsinki-NLP/opus-mt-mul-en"
|
|
|
27 |
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
28 |
|
29 |
def generate_creative_writing(english_text):
|
30 |
+
# Generate creative writing
|
31 |
+
return 'model.generate_content('poem about ' + english_text).text'
|
|
|
32 |
|
33 |
def generate_image(prompt):
|
34 |
# Make an inference request to generate an image
|
35 |
response = diffusion_model(inputs=prompt, params={"guidance_scale": 7.5, "num_inference_steps": 50})
|
36 |
+
return response # Ensure this is the correct format
|
37 |
|
38 |
def process_input(tamil_text):
|
39 |
+
try:
|
40 |
+
translated_text = translate_text(tamil_text)
|
41 |
+
creative_response = generate_creative_writing(translated_text)
|
42 |
+
generated_image = generate_image(translated_text)
|
43 |
+
return translated_text, creative_response, generated_image
|
44 |
+
except Exception as e:
|
45 |
+
return str(e), "Error occurred during processing", None
|
46 |
|
47 |
# Create a Gradio interface
|
48 |
iface = gr.Interface(
|
|
|
55 |
|
56 |
# Launch the Gradio app
|
57 |
iface.launch()
|
58 |
+
|