Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import wikipedia as wiki
|
2 |
+
import pprint as pp
|
3 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline, AutoModelForSeq2SeqLM
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
def greet(name):
|
8 |
+
#question = 'Why is the sky blue?'
|
9 |
+
question = name
|
10 |
+
|
11 |
+
results = wiki.search(question)
|
12 |
+
#print("Wikipedia search results for our question:\n")
|
13 |
+
#pp.pprint(results)
|
14 |
+
|
15 |
+
page = wiki.page(results[0])
|
16 |
+
text = page.content
|
17 |
+
#print(f"\nThe {results[0]} Wikipedia article contains {len(text)} characters.")
|
18 |
+
|
19 |
+
#print(text)
|
20 |
+
|
21 |
+
|
22 |
+
model_name = "deepset/roberta-base-squad2"
|
23 |
+
|
24 |
+
#from transformers import AutoModel
|
25 |
+
|
26 |
+
#model_name = AutoModelForQuestionAnswering.from_pretrained('./roberta-base-squad2/')
|
27 |
+
|
28 |
+
def get_sentence(text, pos):
|
29 |
+
start = text.rfind('.', 0, pos) + 1
|
30 |
+
end = text.find('.', pos)
|
31 |
+
if end == -1:
|
32 |
+
end = len(text)
|
33 |
+
return text[start:end].strip()
|
34 |
+
|
35 |
+
|
36 |
+
# a) Get predictions
|
37 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
38 |
+
QA_input = {
|
39 |
+
'question': question,
|
40 |
+
'context': text
|
41 |
+
}
|
42 |
+
res = nlp(QA_input)
|
43 |
+
|
44 |
+
# b) Load model & tokenizer
|
45 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
+
print("{'answer': '"+res['answer']+"', 'text': '")
|
48 |
+
#print(res['answer'])
|
49 |
+
#print("', 'text': '")
|
50 |
+
|
51 |
+
position = res['start']
|
52 |
+
#words = sum(map(str.split, text), [])
|
53 |
+
#sentence = ' '.join(words[position-1:]).split('.')[0] + '.'
|
54 |
+
|
55 |
+
print(get_sentence(text, position)+'.')
|
56 |
+
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("tuner007/pegasus_paraphrase")
|
58 |
+
|
59 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("tuner007/pegasus_paraphrase")
|
60 |
+
|
61 |
+
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
62 |
+
|
63 |
+
def get_response(input_text,num_return_sequences,num_beams):
|
64 |
+
batch = tokenizer([input_text],truncation=True,padding='longest',max_length=60, return_tensors="pt").to(torch_device)
|
65 |
+
translated = model.generate(**batch,max_length=60,num_beams=num_beams, num_return_sequences=num_return_sequences, temperature=1.5)
|
66 |
+
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
|
67 |
+
return tgt_text
|
68 |
+
|
69 |
+
|
70 |
+
num_beams = 20
|
71 |
+
num_return_sequences = 1
|
72 |
+
context = get_sentence(text, position)+'.'
|
73 |
+
print(get_response(context,num_return_sequences,num_beams)[0])
|
74 |
+
print("'}")
|
75 |
+
|
76 |
+
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
77 |
+
|
78 |
+
demo.launch()
|