gradioappdemo / main.py
PTWZ's picture
Upload folder using huggingface_hub
0f8b456 verified
# This is a sample Python script.
# Press ⌃R to execute it or replace it with your code.
# Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings.
import gradio as gr
from transformers import pipeline, Pipeline
from transformers import Conversation
def chatwith_blenderbot400m():
pipe = pipeline(task="conversational", model="facebook/blenderbot-400M-distill")
user_message = "What are some fun activities I can do in the winter?"
conversation = Conversation(user_message)
print(conversation)
print(type(conversation))
conversation = pipe(conversation)
print(conversation)
conversation.add_message(
{"role": "user", "content": "I would like to do outdoor activities. Which activities can I do?"})
conversation = pipe(conversation)
print(conversation)
def chatwith_qwen2_1point5b_instruct():
pipe = pipeline(task="text-generation", model="Qwen/Qwen2-1.5B-Instruct")
messages = [{"role": "user", "content": "What are some fun activities I can do in the winter?"}]
messages = pipe(messages, max_new_tokens=50)[0]["generated_text"]
print(messages)
messages.append({"role": "user", "content": "I would like to do outdoor activities. Which activities can I do?"})
print(messages)
messages = pipe(messages, max_new_tokens=50)[0]["generated_text"]
print(messages)
#chatwith_qwen2_1point5b_instruct()
def chatwith_qwen2_1point5b_instruct(prompt, max_newtokens):
print("Aaaaa")
pipe = pipeline(task="text-generation", model="Qwen/Qwen2-1.5B-Instruct")
messages = [{"role": "user", "content": prompt}]
messages = pipe(messages, max_new_tokens=max_newtokens)[0]["generated_text"]
return messages
pipe = pipeline(task="text-generation", model="Qwen/Qwen2-1.5B-Instruct")
def chatbot_handler(user_message, history):
bot_response = "I don't think so"
messages = []
user_message = {"role": "user", "content": user_message}
# TODO: build messages based on history then add user_message to messages. call model
for message in history:
messages.append({"role": "user", "content": message[0]})
messages.append({"role": "assistant", "content": message[1]})
# print(message[0])
# print(message[1])
messages.append(user_message)
print(f"messages before sending to model {messages}")
messages = pipe(messages, max_new_tokens=512)[0]['generated_text']
print(f"messages after sending to model{messages}")
if messages:
# messages has at least one item
print(f"the last message is: {messages[-1]}")
bot_response = messages[-1]["content"]
print(bot_response)
return bot_response
chatbot = gr.ChatInterface(chatbot_handler)
chatbot.launch(share=False)