harshildarji commited on
Commit
789d89c
1 Parent(s): d162d0d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -1
README.md CHANGED
@@ -10,4 +10,87 @@ pinned: false
10
  license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  license: mit
11
  ---
12
 
13
+ #### German Legal NER:
14
+
15
+ This language model is trained on the [Legal Entity Recognition](https://github.com/elenanereiss/Legal-Entity-Recognition) dataset. We conducted a stratified 10-fold cross-validation to prevent overfitting. The results showed that their fine-tuned German BERT model outperformed the existing BiLSTM-CRF+ model, which was previously used on the same LER dataset. It is capable of annotating German legal data with the following 19 distinct labels:
16
+
17
+ |Abbreviation|Class|
18
+ |----|----|
19
+ |PER|Person|
20
+ |RR|Judge|
21
+ |AN|Lawyer|
22
+ |LD|Country|
23
+ |ST|City|
24
+ |STR|Street|
25
+ |LDS|Landscape|
26
+ |ORG|Organization|
27
+ |UN|Company|
28
+ |INN|Institution|
29
+ |GRT|Court|
30
+ |MRK|Brand|
31
+ |GS|Law|
32
+ |VO|Ordinance|
33
+ |EUN|European legal norm|
34
+ |VS|Regulation|
35
+ |VT|Contract|
36
+ |RS|Court decision|
37
+ |LIT|Legal literature|
38
+
39
+ This model is publicly available at [PaDaS-Lab/gbert-legal-ner](https://huggingface.co/PaDaS-Lab/gbert-legal-ner). We have also published a corresponding [paper](https://arxiv.org/pdf/2303.05388.pdf) in this regard. Please cite this paper while using this model:
40
+
41
+ ```bibtex
42
+ @conference{icaart23,
43
+ author={Harshil Darji. and Jelena Mitrović. and Michael Granitzer.},
44
+ title={German BERT Model for Legal Named Entity Recognition},
45
+ booktitle={Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART,},
46
+ year={2023},
47
+ pages={723-728},
48
+ publisher={SciTePress},
49
+ organization={INSTICC},
50
+ doi={10.5220/0011749400003393},
51
+ isbn={978-989-758-623-1},
52
+ issn={2184-433X},
53
+ }
54
+ ```
55
+ ---
56
+ #### GDPR Privacy Policy NER:
57
+
58
+ This language model is trained on a privacy policy dataset. This dataset is annotated using 33 labels that are in accordance with GDPR. This model aims to facilitate information extraction related to GDPR from a given privacy policy. It can also be further improved to verify whether a given privacy policy follows the GDPR regulations. As stated above, this model is capable of annotating given privacy policy-related text with the following 33 labels:
59
+
60
+ |Abbreviation|Class|
61
+ |----|----|
62
+ |DC|Data Controller|
63
+ |DP|Data Processor|
64
+ |DPO|Data Protection Officer|
65
+ |R|Recipient|
66
+ |TP|Third Party|
67
+ |A|Authority|
68
+ |DS|Data Subject|
69
+ |DSO|Data Source|
70
+ |RP|Required Purpose|
71
+ |NRP|Not-Required Purpose|
72
+ |P|Processing|
73
+ |NPD|Non-Personal Data|
74
+ |PD|Personal Data|
75
+ |OM|Organisational Measure|
76
+ |TM|Technical Measure|
77
+ |LB|Legal Basis|
78
+ |CONS|Consent|
79
+ |CONT|Contract|
80
+ |LI|Legitimate Interest|
81
+ |ADM|Automated Decision Making|
82
+ |RET|Retention|
83
+ |SEU|Scale EU|
84
+ |SNEU|Scale Non-EU|
85
+ |RI|Right|
86
+ |DSR15|Art. 15 Right of access by the data subject|
87
+ |DSR16|Art. 16 Right to rectification|
88
+ |DSR17|Art. 17 Right to erasure ("right to be forgotten")|
89
+ |DSR18|Art. 18 Right to restriction of processing|
90
+ |DSR19|Art. 19 Notification obligation regarding rectification or erasure of personal data or restriction of processing|
91
+ |DSR20|Art. 20 Right to data portability|
92
+ |DSR21|Art. 21 Right to object|
93
+ |DSR22|Art. 22 Automated individual decision-making, including profiling|
94
+ |LC|Lodge Complaint|
95
+
96
+ This model is publicly available at [PaDaS-Lab/gdpr-privacy-policy-ner](https://huggingface.co/PaDaS-Lab/gdpr-privacy-policy-ner).