import gradio as gr from source.visualization_tools import single_map from PIL import Image import io import random # Threshold for the sea level threshold = 0.6 # Sigma for the gaussian smoothing sigma = 5. def generate_maps(kind_noise,boxsize,index,scale,octaves,persistence,lacunarity,make_island,deterministic): if kind_noise=="gauss": params = index else: params = [scale,octaves,persistence,lacunarity,boxsize] if deterministic: seeds = range(3) else: seeds = random.sample(range(1000),3) images = [] for llavor in seeds: fig = single_map(kind_noise,boxsize,llavor,params,sigma,threshold,make_island=make_island) img_buf = io.BytesIO() fig.savefig(img_buf, format='png') img = Image.open(img_buf) images.append(img) return images md =""" # Map generator Generate procedural geographic maps from random fields. """ with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(md) with gr.Accordion("General settings", open=True): with gr.Row(): kind_noise = gr.Dropdown(["gauss", "perlin", "warped_perlin"], label="Random field", value="gauss") boxsize = gr.Slider(100, 1000, value=500, label="Box size")#, info="Box size"), make_island = gr.Checkbox(label="Island", info="Mark to ensure that boundaries are sea") deterministic = gr.Checkbox(label="Deterministic", info="Mark to employ the same random seed") with gr.Accordion("Gaussian field settings", open=False): index = gr.Slider(-5, -1, value=-3, label="Spectral index")#, info="Spectral index"), with gr.Accordion("Perlin field settings", open=False): with gr.Row(): scale = gr.Slider(100, 1000, value=500, label="Scale") octaves = gr.Slider(1, 10, value=6, label="Octaves", step=1) persistence = gr.Slider(0, 1, value=0.5, label="Persistence") lacunarity = gr.Slider(0.1, 10, value=2, label="Lacunarity") inputs = [kind_noise,boxsize,index,scale,octaves,persistence,lacunarity,make_island,deterministic] btn = gr.Button("Generate maps", scale=1) gallery = gr.Gallery(label="Generated maps", show_label=False, elem_id="gallery", columns=[3], rows=[1], height="20vw") btn.click(generate_maps, inputs=inputs, outputs=gallery) if __name__ == "__main__": demo.launch()