File size: 15,471 Bytes
5be463c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c757801
 
5be463c
 
c757801
 
5be463c
c587bf9
 
 
85350d4
 
c587bf9
 
85350d4
5be463c
c757801
 
5be463c
 
c757801
 
5be463c
 
c757801
 
5be463c
 
 
 
 
 
 
 
 
3eee1cc
b1b4090
5be463c
 
27c87a7
 
 
 
 
 
 
 
 
 
 
 
5be463c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907cc24
5be463c
 
 
 
 
 
907cc24
5be463c
 
907cc24
5be463c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907cc24
 
 
05f882f
 
 
b1b4090
 
 
 
 
 
 
e41e3f2
b1b4090
 
 
 
 
 
f0d6709
b1b4090
f0d6709
 
 
5be463c
 
d5e3066
5be463c
 
 
 
 
 
907cc24
b1b4090
5be463c
907cc24
5be463c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27c87a7
5be463c
 
27c87a7
c757801
5be463c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5fba0c
 
 
 
d7eb61c
f5fba0c
5be463c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5fba0c
f0d6709
5be463c
 
 
 
 
c587bf9
f5fba0c
5be463c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c757801
5be463c
 
 
 
 
 
 
 
 
 
 
27c87a7
5be463c
 
 
 
 
 
 
 
c80711f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#-*- coding: UTF-8 -*-
# Copyright 2022 The Impira Team and the HuggingFace Team.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import json
import base64
from io import BytesIO
from PIL import Image
import traceback

import requests
import numpy as np
import gradio as gr
import pdf2image
import fitz
import cv2

fitz_tools = fitz.Tools()


def pdf2img(stream, pagenos, dpi=300, thread_count=3, height=1600):
    images = []
    cimages = pdf2image.convert_from_bytes(
        stream, dpi=dpi, thread_count=thread_count, first_page=pagenos[0] + 1, last_page=pagenos[-1] + 1,
        size=height)
    for _image in cimages:
        image = np.array(_image)
        image = image[..., ::-1]
        images.append(image)
    return images


class PdfReader(object):
    """pdf reader"""
    def __init__(self,
                 stream: bytes,
                 image_height: int = 1600):
        self.stream = stream
        self._image_height = image_height
        self._dpi = 200
        self._inpdf = self.load_file(stream)

    @staticmethod
    def load_file(stream):
        """load document"""
        try:
            inpdf = fitz.Document(stream=stream, filetype="pdf")
        except Exception as e:
            print(f"[PDF_READER]-[Failed to load the file]-[{repr(e)}]")
        return inpdf

    @staticmethod
    def _convert_page_obj_to_image(page_obj, image_height: int = None):
        """fitz convert pdf to image

        Args:
            page_obj ([type]): [description]
            ratio ([type]): [description]

        Returns:
            [type]: [description]
        """
        if image_height:
            _, page_height = page_obj.rect.x1 - \
                page_obj.rect.x0, page_obj.rect.y1 - page_obj.rect.y0
            ratio = image_height / page_height
        else:
            ratio = 1.0
        trans = fitz.Matrix(ratio, ratio)
        pixmap = page_obj.get_pixmap(matrix=trans, alpha=False)
        image = cv2.imdecode(np.frombuffer(pixmap.tobytes(), np.uint8), -1)
        fitz_tools.store_shrink(100)
        return image

    def get_page_image(self,
                       pageno):
        """get page image

        Args:
            pageno ([type]): [description]

        Returns:
            [type]: [description]
        """
        try:
            page_obj = self._inpdf[pageno]
            return self._convert_page_obj_to_image(page_obj, self._image_height)
        except Exception as e:
            print(f"[Failed to convert the PDF to images]-[{repr(e)}]")
        try:
            return pdf2img(stream=self.stream,
                           pagenos=[pageno],
                           height=self._image_height,
                           dpi=self._dpi)[0]
        except Exception as e:
            print(f"[Failed to convert the PDF to images]-[{repr(e)}]")
        return None


examples = [
    [
        "budget_form.png",
        "What is the total actual and/or obligated expenses of ECG Center?"
    ],
    [
        "poster.png",
        "Which gift idea needs a printer?"
    ],
        [
        "receipt.png",
        "เบอร์โทรร้านอะไรคะ?"
    ],
    [
        "medical_bill_2.jpg",
        "患者さんは何でお金を払いますか。"
    ],
    [
        "resume.png",
        "五百丁本次想要担任的是什么职位?",
    ],
    [
        "custom_declaration_form.png",
        "在哪个口岸进口?"
    ],
    [
        "invoice.jpg",
        "发票号码是多少?",
    ],
]

prompt_files = {
    "发票号码是多少?": "invoice.jpg",
    "五百丁本次想要担任的是什么职位?": "resume.png",
    "在哪个口岸进口?": "custom_declaration_form.png",
    "What is the total actual and/or obligated expenses of ECG Center?": "budget_form.png",
    "Which gift idea needs a printer?": "poster.png",
    "患者さんは何でお金を払いますか。": "medical_bill_2.jpg",
    "เบอร์โทรร้านอะไรคะ?": "receipt.png",
}

lang_map = {
    "invoice.jpg": "ch",
    "resume.png": "ch",
    "custom_declaration_form.png": "ch",
    "medical_bill_1.png": "ch",
    "budget_form.png": "en",
    "website_design_guide.jpeg": "en",
    "poster.png": "en",
    "medical_bill_2.jpg": "ch",
    "receipt.png": "en"
}


def load_document(path):
    if path.startswith("http://") or path.startswith("https://"):
        resp = requests.get(path, allow_redirects=True, stream=True)
        b = resp.raw
    else:
        b = open(path, "rb")

    if path.endswith(".pdf"):
        images_list = []
        pdfreader = PdfReader(stream=b.read())
        for p_no in range(0, pdfreader._inpdf.page_count):
            img_np = pdfreader.get_page_image(pageno=p_no)
            images_list.append(img_np)
    else:
        image = Image.open(b)
        images_list = [np.array(image.convert("RGB"))]
    return images_list

def process_path(path):
    error = None
    if path:
        try:
            images_list = load_document(path)
            return (
                path,
                gr.update(visible=True, value=images_list),
                gr.update(visible=True),
                gr.update(visible=False, value=None),
                gr.update(visible=False, value=None),
                None,
            )
        except Exception as e:
            traceback.print_exc()
            error = str(e)
    return (
        None,
        gr.update(visible=False, value=None),
        gr.update(visible=False),
        gr.update(visible=False, value=None),
        gr.update(visible=False, value=None),
        gr.update(visible=True, value=error) if error is not None else None,
        None,
    )


def process_upload(file):
    if file:
        return process_path(file.name)
    else:
        return (
            None,
            gr.update(visible=False, value=None),
            gr.update(visible=False),
            gr.update(visible=False, value=None),
            gr.update(visible=False, value=None),
            None,
        )


def np2base64(image_np):
    image = cv2.imencode('.jpg', image_np)[1]
    base64_str = str(base64.b64encode(image))[2:-1]
    return base64_str


def get_base64(path):
    if path.startswith("http://") or path.startswith("https://"):
        resp = requests.get(path, allow_redirects=True, stream=True)
        b = resp.raw
    else:
        b = open(path, "rb")

    if path.endswith(".pdf"):
        images_list = []
        pdfreader = PdfReader(stream=b.read())
        for p_no in range(0, min(pdfreader._inpdf.page_count, 1)):
            img_np = pdfreader.get_page_image(pageno=p_no)
            images_list.append(img_np)
        base64_str = np2base64(images_list[0])
    else:
        base64_str = base64.b64encode(b.read()).decode()
    return base64_str


def process_prompt(prompt, document, lang="ch"):
    if not prompt:
        prompt = "What is the total actual and/or obligated expenses of ECG Center?"
    if document is None:
        return None, None, None

    access_token = os.environ['token']

    url = f"https://aip.baidubce.com/rpc/2.0/nlp-itec/poc/docprompt?access_token={access_token}"
    
    base64_str = get_base64(document)

    r = requests.post(url, json={"doc": base64_str, "prompt": [prompt], "lang": lang})
    response = r.json()
    
    predictions = response['result']
    img_list = response['image']
    pages = [Image.open(BytesIO(base64.b64decode(img))) for img in img_list]

    text_value = predictions[0]['result'][0]['value']

    return (
        gr.update(visible=True, value=pages),
        gr.update(visible=True, value=predictions),
        gr.update(
            visible=True,
            value=text_value,
        ),
    )


def load_example_document(img, prompt):
    if img is not None:
        document = prompt_files[prompt]
        lang = lang_map[document]
        preview, answer, answer_text = process_prompt(prompt, document, lang)
        return document, prompt, preview, gr.update(visible=True), answer, answer_text
    else:
        return None, None, None, gr.update(visible=False), None, None


def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content


CSS = """
#prompt input {
    font-size: 16px;
}
#url-textbox {
    padding: 0 !important;
}
#short-upload-box .w-full {
    min-height: 10rem !important;
}
/* I think something like this can be used to re-shape
 * the table
 */
/*
.gr-samples-table tr {
    display: inline;
}
.gr-samples-table .p-2 {
    width: 100px;
}
*/
#select-a-file {
    width: 100%;
}
#file-clear {
    padding-top: 2px !important;
    padding-bottom: 2px !important;
    padding-left: 8px !important;
    padding-right: 8px !important;
	margin-top: 10px;
}
.gradio-container .gr-button-primary {
    background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
    border: 1px solid #B0DCCC;
    border-radius: 8px;
    color: #1B8700;
}
.gradio-container.dark button#submit-button {
    background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
    border: 1px solid #B0DCCC;
    border-radius: 8px;
    color: #1B8700
}
table.gr-samples-table tr td {
    border: none;
    outline: none;
}
table.gr-samples-table tr td:first-of-type {
    width: 0%;
}
div#short-upload-box div.absolute {
    display: none !important;
}
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div {
    gap: 0px 2%;
}
gradio-app div div div div.w-full, .gradio-app div div div div.w-full {
    gap: 0px;
}
gradio-app h2, .gradio-app h2 {
    padding-top: 10px;
}
#answer {
    overflow-y: scroll;
    color: white;
    background: #666;
    border-color: #666;
    font-size: 20px;
    font-weight: bold;
}
#answer span {
    color: white;
}
#answer textarea {
    color:white;
    background: #777;
    border-color: #777;
    font-size: 18px;
}
#url-error input {
    color: red;
}
"""

with gr.Blocks(css=CSS) as demo:
    gr.HTML(read_content("header.html"))
    gr.Markdown(
        "DocPrompt🔖 is a Document Prompt Engine using ERNIE-Layout as the backbone model."
        "The engine is powered by BAIDU WenXin Document Intelligence Team "
        "and has the ability for multilingual documents information extraction and question ansering. "
        "For more details, please visit the [Github](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-layout)."
    )

    document = gr.Variable()
    example_prompt = gr.Textbox(visible=False)
    example_image = gr.Image(visible=False)
    with gr.Row(equal_height=True):
        with gr.Column():
            with gr.Row():
                gr.Markdown("## 1. Select a file", elem_id="select-a-file")
                img_clear_button = gr.Button(
                    "Clear", variant="secondary", elem_id="file-clear", visible=False
                )
            image = gr.Gallery(visible=False)
            with gr.Row(equal_height=True):
                with gr.Column():
                    with gr.Row():
                        url = gr.Textbox(
                            show_label=False,
                            placeholder="URL",
                            lines=1,
                            max_lines=1,
                            elem_id="url-textbox",
                        )
                        submit = gr.Button("Get")
                    url_error = gr.Textbox(
                        visible=False,
                        elem_id="url-error",
                        max_lines=1,
                        interactive=False,
                        label="Error",
                    )
            gr.Markdown("— or —")
            upload = gr.File(label=None, interactive=True, elem_id="short-upload-box")
            gr.Examples(
                examples=examples,
                inputs=[example_image, example_prompt],
            )

        with gr.Column() as col:
            gr.Markdown("## 2. Make a request")
            prompt = gr.Textbox(
                label="Prompt (No restrictions on the setting of prompt. You can type any prompt.)",
                placeholder="e.g. What is the total actual and/or obligated expenses of ECG Center?",
                lines=1,
                max_lines=1,
            )
            ocr_lang = gr.Radio(
                choices=["ch", "en"],
                value="en",
                label="Select OCR Language (Please choose ch for Chinese images.)",
            )

            with gr.Row():
                clear_button = gr.Button("Clear", variant="secondary")
                submit_button = gr.Button(
                    "Submit", variant="primary", elem_id="submit-button"
                )
            with gr.Column():
                output_text = gr.Textbox(
                    label="Top Answer", visible=False, elem_id="answer"
                )
                output = gr.JSON(label="Output", visible=False)

    for cb in [img_clear_button, clear_button]:
        cb.click(
            lambda _: (
                gr.update(visible=False, value=None),
                None,
                gr.update(visible=False, value=None),
                gr.update(visible=False, value=None),
                gr.update(visible=False),
                None,
                None,
                None,
                gr.update(visible=False, value=None),
                None,
            ),
            inputs=clear_button,
            outputs=[
                image,
                document,
                output,
                output_text,
                img_clear_button,
                example_image,
                upload,
                url,
                url_error,
                prompt,
            ],
        )

    upload.change(
        fn=process_upload,
        inputs=[upload],
        outputs=[document, image, img_clear_button, output, output_text, url_error],
    )
    submit.click(
        fn=process_path,
        inputs=[url],
        outputs=[document, image, img_clear_button, output, output_text, url_error],
    )

    prompt.submit(
        fn=process_prompt,
        inputs=[prompt, document, ocr_lang],
        outputs=[image, output, output_text],
    )

    submit_button.click(
        fn=process_prompt,
        inputs=[prompt, document, ocr_lang],
        outputs=[image, output, output_text],
    )

    example_image.change(
        fn=load_example_document,
        inputs=[example_image, example_prompt],
        outputs=[document, prompt, image, img_clear_button, output, output_text],
    )

    gr.Markdown("[![Stargazers repo roster for @PaddlePaddle/PaddleNLP](https://reporoster.com/stars/PaddlePaddle/PaddleNLP)](https://github.com/PaddlePaddle/PaddleNLP)")
    gr.HTML(read_content("footer.html"))


if __name__ == "__main__":
    demo.launch(enable_queue=False)