Pamudu13's picture
Update app.py
1d64e70 verified
raw
history blame
2.81 kB
import streamlit as st
import pandas as pd
import numpy as np
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from fastapi import FastAPI
from fastapi.responses import JSONResponse
import threading
# Read dataset
df = pd.read_csv(r"spam.csv")
# Initialize Streamlit app
st.title("Identifying Spam and Ham Emails")
# Define feature and target variables
x = df["Message"]
y = df["Category"]
# Create a Bag of Words (BoW) model
bow = CountVectorizer(stop_words="english")
final_data = pd.DataFrame(bow.fit_transform(x).toarray(), columns=bow.get_feature_names_out())
# Train-test split
x_train, x_test, y_train, y_test = train_test_split(final_data, y, test_size=0.2, random_state=20)
# Initialize models
models = {
"Naive Bayes": MultinomialNB(),
"KNN": KNeighborsClassifier(),
"Logistic Regression": LogisticRegression(),
"Decision Tree": DecisionTreeClassifier(),
"SVM": SVC()
}
# Model selection
model_choice = st.selectbox("Choose a Classification Algorithm", list(models.keys()))
# Train the selected model
obj = models[model_choice]
obj.fit(x_train, y_train)
y_pred = obj.predict(x_test)
accuracy = accuracy_score(y_test, y_pred)
# Display accuracy
if st.button("Show Accuracy"):
st.write(f"Accuracy of {model_choice}: {accuracy:.4f}")
# Email input and prediction function
email_input = st.text_input("Enter an Email for Prediction")
def predict_email(email):
data = bow.transform([email]).toarray()
prediction = obj.predict(data)[0]
st.write(f"Prediction: {prediction}")
if st.button("Predict Email"):
if email_input:
predict_email(email_input)
else:
st.write(":red[Please enter an email to classify]")
# FastAPI app to handle GET requests
app = FastAPI()
@app.get("/predict/")
def predict_spam(email: str):
"""
This endpoint predicts whether the email is Spam or Ham.
Query parameter: email (str) - The email text to be classified.
"""
data = bow.transform([email]).toarray()
prediction = obj.predict(data)[0]
return JSONResponse(content={"prediction": prediction})
# Running FastAPI in a separate thread to work alongside Streamlit
def run_api():
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
# Start FastAPI in a separate thread
api_thread = threading.Thread(target=run_api, daemon=True)
api_thread.start()
# You can also check API response using the link below:
# http://localhost:8000/predict/?email=Your_email_text_here