Spaces:
Sleeping
Sleeping
Update raju.py
Browse files
raju.py
CHANGED
@@ -1,61 +1,61 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import sklearn
|
5 |
-
from sklearn.model_selection import train_test_split
|
6 |
-
from sklearn.feature_extraction.text import CountVectorizer
|
7 |
-
from sklearn.neighbors import KNeighborsClassifier
|
8 |
-
from sklearn.naive_bayes import MultinomialNB
|
9 |
-
from sklearn.tree import DecisionTreeClassifier
|
10 |
-
from sklearn.linear_model import LogisticRegression
|
11 |
-
from sklearn.svm import SVC
|
12 |
-
from sklearn.metrics import accuracy_score
|
13 |
-
|
14 |
-
df = pd.read_csv(r"
|
15 |
-
|
16 |
-
|
17 |
-
st.title("Identifying Spam and Ham Emails")
|
18 |
-
|
19 |
-
x = df["Message"]
|
20 |
-
y = df["Category"]
|
21 |
-
|
22 |
-
bow = CountVectorizer(stop_words="english")
|
23 |
-
final_data = pd.DataFrame(bow.fit_transform(x).toarray(), columns=bow.get_feature_names_out())
|
24 |
-
|
25 |
-
x_train, x_test, y_train, y_test = train_test_split(final_data, y, test_size=0.2, random_state=20)
|
26 |
-
|
27 |
-
|
28 |
-
models = {
|
29 |
-
"Naive Bayes": MultinomialNB(),
|
30 |
-
"KNN": KNeighborsClassifier(),
|
31 |
-
"Logistic Regression": LogisticRegression(),
|
32 |
-
"Decision Tree": DecisionTreeClassifier(),
|
33 |
-
"SVM": SVC()
|
34 |
-
}
|
35 |
-
|
36 |
-
model_choice = st.selectbox("Choose a Classification Algorithm", list(models.keys()))
|
37 |
-
|
38 |
-
|
39 |
-
obj = models[model_choice]
|
40 |
-
obj.fit(x_train, y_train)
|
41 |
-
y_pred = obj.predict(x_test)
|
42 |
-
accuracy = accuracy_score(y_test, y_pred)
|
43 |
-
|
44 |
-
|
45 |
-
if st.button("Show Accuracy"):
|
46 |
-
st.write(f"Accuracy of {model_choice}: {accuracy:.4f}")
|
47 |
-
|
48 |
-
email_input = st.text_input("Enter an Email for Prediction")
|
49 |
-
|
50 |
-
|
51 |
-
def predict_email(email):
|
52 |
-
data = bow.transform([email]).toarray()
|
53 |
-
prediction = obj.predict(data)[0]
|
54 |
-
st.write(f"Prediction: {prediction}")
|
55 |
-
|
56 |
-
|
57 |
-
if st.button("Predict Email"):
|
58 |
-
if email_input:
|
59 |
-
predict_email(email_input)
|
60 |
-
else:
|
61 |
st.write(":red[Please enter an email to classify]")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import sklearn
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
7 |
+
from sklearn.neighbors import KNeighborsClassifier
|
8 |
+
from sklearn.naive_bayes import MultinomialNB
|
9 |
+
from sklearn.tree import DecisionTreeClassifier
|
10 |
+
from sklearn.linear_model import LogisticRegression
|
11 |
+
from sklearn.svm import SVC
|
12 |
+
from sklearn.metrics import accuracy_score
|
13 |
+
|
14 |
+
df = pd.read_csv(r"spam.csv")
|
15 |
+
|
16 |
+
|
17 |
+
st.title("Identifying Spam and Ham Emails")
|
18 |
+
|
19 |
+
x = df["Message"]
|
20 |
+
y = df["Category"]
|
21 |
+
|
22 |
+
bow = CountVectorizer(stop_words="english")
|
23 |
+
final_data = pd.DataFrame(bow.fit_transform(x).toarray(), columns=bow.get_feature_names_out())
|
24 |
+
|
25 |
+
x_train, x_test, y_train, y_test = train_test_split(final_data, y, test_size=0.2, random_state=20)
|
26 |
+
|
27 |
+
|
28 |
+
models = {
|
29 |
+
"Naive Bayes": MultinomialNB(),
|
30 |
+
"KNN": KNeighborsClassifier(),
|
31 |
+
"Logistic Regression": LogisticRegression(),
|
32 |
+
"Decision Tree": DecisionTreeClassifier(),
|
33 |
+
"SVM": SVC()
|
34 |
+
}
|
35 |
+
|
36 |
+
model_choice = st.selectbox("Choose a Classification Algorithm", list(models.keys()))
|
37 |
+
|
38 |
+
|
39 |
+
obj = models[model_choice]
|
40 |
+
obj.fit(x_train, y_train)
|
41 |
+
y_pred = obj.predict(x_test)
|
42 |
+
accuracy = accuracy_score(y_test, y_pred)
|
43 |
+
|
44 |
+
|
45 |
+
if st.button("Show Accuracy"):
|
46 |
+
st.write(f"Accuracy of {model_choice}: {accuracy:.4f}")
|
47 |
+
|
48 |
+
email_input = st.text_input("Enter an Email for Prediction")
|
49 |
+
|
50 |
+
|
51 |
+
def predict_email(email):
|
52 |
+
data = bow.transform([email]).toarray()
|
53 |
+
prediction = obj.predict(data)[0]
|
54 |
+
st.write(f"Prediction: {prediction}")
|
55 |
+
|
56 |
+
|
57 |
+
if st.button("Predict Email"):
|
58 |
+
if email_input:
|
59 |
+
predict_email(email_input)
|
60 |
+
else:
|
61 |
st.write(":red[Please enter an email to classify]")
|