import streamlit as st import pandas as pd import numpy as np import sklearn from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.metrics import accuracy_score df = pd.read_csv(r"C:\Users\rajus\Downloads\spam.csv") st.title("Identifying Spam and Ham Emails") x = df["Message"] y = df["Category"] bow = CountVectorizer(stop_words="english") final_data = pd.DataFrame(bow.fit_transform(x).toarray(), columns=bow.get_feature_names_out()) x_train, x_test, y_train, y_test = train_test_split(final_data, y, test_size=0.2, random_state=20) models = { "Naive Bayes": MultinomialNB(), "KNN": KNeighborsClassifier(), "Logistic Regression": LogisticRegression(), "Decision Tree": DecisionTreeClassifier(), "SVM": SVC() } model_choice = st.selectbox("Choose a Classification Algorithm", list(models.keys())) obj = models[model_choice] obj.fit(x_train, y_train) y_pred = obj.predict(x_test) accuracy = accuracy_score(y_test, y_pred) if st.button("Show Accuracy"): st.write(f"Accuracy of {model_choice}: {accuracy:.4f}") email_input = st.text_input("Enter an Email for Prediction") def predict_email(email): data = bow.transform([email]).toarray() prediction = obj.predict(data)[0] st.write(f"Prediction: {prediction}") if st.button("Predict Email"): if email_input: predict_email(email_input) else: st.write(":red[Please enter an email to classify]")