File size: 13,177 Bytes
53e65b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
from flask import Flask, jsonify, request
import requests
from bs4 import BeautifulSoup
import os
import re
import urllib.parse
import time
import random
import base64
from io import BytesIO
from googlesearch import search
import json
app = Flask(__name__)
def search_images(query, num_images=5):
# Headers to mimic a browser request
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate',
'DNT': '1',
'Connection': 'keep-alive',
}
# Format the query for URL
formatted_query = urllib.parse.quote(query + " high quality")
# Google Images URL
url = f"https://www.google.com/search?q={formatted_query}&tbm=isch&safe=active"
try:
# Get the HTML content
response = requests.get(url, headers=headers, timeout=30)
response.raise_for_status()
# Find all image URLs using regex
image_urls = re.findall(r'https?://[^"\']*?(?:jpg|jpeg|png|gif)', response.text)
# Remove duplicates while preserving order
image_urls = list(dict.fromkeys(image_urls))
# Filter and clean results
results = []
for img_url in image_urls:
if len(results) >= num_images:
break
# Skip small thumbnails, icons, and low-quality images
if ('gstatic.com' in img_url or
'google.com' in img_url or
'icon' in img_url.lower() or
'thumb' in img_url.lower() or
'small' in img_url.lower()):
continue
try:
# Verify the image URL is valid
img_response = requests.head(img_url, headers=headers, timeout=5)
if img_response.status_code == 200:
content_type = img_response.headers.get('Content-Type', '')
if content_type.startswith('image/'):
results.append({
'url': img_url,
'content_type': content_type
})
except Exception as e:
print(f"Error checking image URL: {str(e)}")
continue
# Add a small delay between checks
time.sleep(random.uniform(0.2, 0.5))
return results
except Exception as e:
print(f"An error occurred: {str(e)}")
return []
def get_cover_image(query):
"""Get a high-quality cover image URL for a given query"""
try:
# Search for images
images = search_images(query, num_images=3) # Get top 3 images to choose from
if not images:
return None
# Return the first valid image URL
return images[0]['url']
except Exception as e:
print(f"Error getting cover image: {str(e)}")
return None
@app.route('/search_images', methods=['GET'])
def api_search_images():
try:
# Get query parameters
query = request.args.get('query', '')
num_images = int(request.args.get('num_images', 5))
if not query:
return jsonify({'error': 'Query parameter is required'}), 400
if num_images < 1 or num_images > 20:
return jsonify({'error': 'Number of images must be between 1 and 20'}), 400
# Search for images
results = search_images(query, num_images)
return jsonify({
'success': True,
'query': query,
'results': results
})
except Exception as e:
return jsonify({
'success': False,
'error': str(e)
}), 500
def scrape_site_content(query, num_sites=5):
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate',
'DNT': '1',
'Connection': 'keep-alive',
}
results = []
scraped = 0
retries = 2 # Number of retries per URL
timeout = 5 # Reduced timeout to 5 seconds
try:
# Get more URLs than needed to account for failures
search_results = list(search(query, num_results=num_sites * 2))
# Process each found URL
for url in search_results:
if scraped >= num_sites:
break
success = False
for attempt in range(retries):
try:
# Get the HTML content
print(f"Trying {url} (attempt {attempt + 1}/{retries})")
response = requests.get(
url,
headers=headers,
timeout=timeout,
verify=False # Skip SSL verification
)
response.raise_for_status()
# Verify it's HTML content
content_type = response.headers.get('Content-Type', '').lower()
if 'text/html' not in content_type:
print(f"Skipping {url} - not HTML content")
break
# Parse the HTML content
soup = BeautifulSoup(response.text, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Extract text content (limit to first 10000 characters)
text_content = soup.get_text(separator='\n', strip=True)[:10000]
# Skip if not enough content
if len(text_content.split()) < 100: # Skip if less than 100 words
print(f"Skipping {url} - not enough content")
break
# Extract all links (limit to first 10)
links = []
for link in soup.find_all('a', href=True)[:10]:
href = link['href']
if href.startswith('http'):
links.append({
'text': link.get_text(strip=True),
'url': href
})
# Extract meta information
title = soup.title.string if soup.title else ''
meta_description = ''
meta_keywords = ''
meta_desc_tag = soup.find('meta', attrs={'name': 'description'})
if meta_desc_tag:
meta_description = meta_desc_tag.get('content', '')
meta_keywords_tag = soup.find('meta', attrs={'name': 'keywords'})
if meta_keywords_tag:
meta_keywords = meta_keywords_tag.get('content', '')
results.append({
'url': url,
'title': title,
'meta_description': meta_description,
'meta_keywords': meta_keywords,
'text_content': text_content,
'links': links
})
scraped += 1
success = True
# Add a random delay between scrapes
time.sleep(random.uniform(0.5, 1))
break # Break retry loop on success
except requests.Timeout:
print(f"Timeout on {url} (attempt {attempt + 1}/{retries})")
if attempt == retries - 1: # Last attempt
print(f"Skipping {url} after {retries} timeout attempts")
except requests.RequestException as e:
print(f"Error scraping {url} (attempt {attempt + 1}/{retries}): {str(e)}")
if attempt == retries - 1: # Last attempt
print(f"Skipping {url} after {retries} failed attempts")
# Add a longer delay between retries
if not success and attempt < retries - 1:
time.sleep(random.uniform(1, 2))
# If we haven't found enough valid content and have more URLs, continue
if scraped < num_sites and len(results) < len(search_results):
continue
return results
except Exception as e:
print(f"Error in search/scraping process: {str(e)}")
# Return whatever results we've managed to gather
return results
@app.route('/scrape_sites', methods=['GET'])
def api_scrape_sites():
try:
# Get query parameters
query = request.args.get('query', '')
num_sites = int(request.args.get('num_sites', 10))
if not query:
return jsonify({'error': 'Query parameter is required'}), 400
if num_sites < 1 or num_sites > 20:
return jsonify({'error': 'Number of sites must be between 1 and 20'}), 400
# Scrape the websites
results = scrape_site_content(query, num_sites)
return jsonify({
'success': True,
'query': query,
'results': results
})
except Exception as e:
return jsonify({
'success': False,
'error': str(e)
}), 500
def analyze_with_gpt(scraped_content, research_query):
"""Analyze scraped content using OpenRouter's Gemini model"""
try:
headers = {
'Authorization': f'Bearer {os.getenv("OPENROUTER_API_KEY")}',
'HTTP-Referer': 'http://localhost:5001',
'X-Title': 'Research Assistant'
}
# Prepare the prompt
prompt = f"""You are a research assistant analyzing web content to provide comprehensive research.
Research Query: {research_query}
Below is content scraped from various web sources. Analyze this content and provide a detailed, well-structured research response.
Make sure to cite sources when making specific claims.
Scraped Content:
{json.dumps(scraped_content, indent=2)}
Please provide:
1. A comprehensive analysis of the topic
2. Key findings and insights
3. Supporting evidence from the sources
4. Any additional considerations or caveats
Format your response in markdown with proper headings and citations."""
response = requests.post(
'https://openrouter.ai/api/v1/chat/completions',
headers=headers,
json={
'model': 'google/gemini-2.0-flash-thinking-exp:free',
'messages': [{
'role': 'user',
'content': prompt
}]
},
timeout=60
)
if response.status_code != 200:
raise Exception(f"OpenRouter API error: {response.text}")
return response.json()['choices'][0]['message']['content']
except Exception as e:
print(f"Error in analyze_with_gpt: {str(e)}")
return f"Error analyzing content: {str(e)}"
def research_topic(query, num_sites=5):
"""Research a topic using web scraping and GPT analysis"""
try:
# First get web content using existing scrape_site_content function
scraped_results = scrape_site_content(query, num_sites)
# Format scraped content for analysis
formatted_content = []
for result in scraped_results:
formatted_content.append({
'source': result['url'],
'title': result['title'],
'content': result['text_content'][:2000], # Limit content length for GPT
'meta_info': {
'description': result['meta_description'],
'keywords': result['meta_keywords']
}
})
# Get AI analysis of the scraped content
analysis = analyze_with_gpt(formatted_content, query)
return {
'success': True,
'query': query,
'analysis': analysis,
'sources': formatted_content
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
@app.route('/research', methods=['GET'])
def api_research():
try:
query = request.args.get('query', '')
# Always use 5 sites for consistency
num_sites = 5
if not query:
return jsonify({'error': 'Query parameter is required'}), 400
results = research_topic(query, num_sites)
return jsonify(results)
except Exception as e:
return jsonify({
'success': False,
'error': str(e)
}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
|