File size: 13,177 Bytes
53e65b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from flask import Flask, jsonify, request
import requests
from bs4 import BeautifulSoup
import os
import re
import urllib.parse
import time
import random
import base64
from io import BytesIO
from googlesearch import search
import json

app = Flask(__name__)

def search_images(query, num_images=5):
    # Headers to mimic a browser request
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
        'Accept-Language': 'en-US,en;q=0.5',
        'Accept-Encoding': 'gzip, deflate',
        'DNT': '1',
        'Connection': 'keep-alive',
    }

    # Format the query for URL
    formatted_query = urllib.parse.quote(query + " high quality")

    # Google Images URL
    url = f"https://www.google.com/search?q={formatted_query}&tbm=isch&safe=active"

    try:
        # Get the HTML content
        response = requests.get(url, headers=headers, timeout=30)
        response.raise_for_status()

        # Find all image URLs using regex
        image_urls = re.findall(r'https?://[^"\']*?(?:jpg|jpeg|png|gif)', response.text)

        # Remove duplicates while preserving order
        image_urls = list(dict.fromkeys(image_urls))

        # Filter and clean results
        results = []
        for img_url in image_urls:
            if len(results) >= num_images:
                break

            # Skip small thumbnails, icons, and low-quality images
            if ('gstatic.com' in img_url or 
                'google.com' in img_url or 
                'icon' in img_url.lower() or 
                'thumb' in img_url.lower() or
                'small' in img_url.lower()):
                continue

            try:
                # Verify the image URL is valid
                img_response = requests.head(img_url, headers=headers, timeout=5)
                if img_response.status_code == 200:
                    content_type = img_response.headers.get('Content-Type', '')
                    if content_type.startswith('image/'):
                        results.append({
                            'url': img_url,
                            'content_type': content_type
                        })

            except Exception as e:
                print(f"Error checking image URL: {str(e)}")
                continue

            # Add a small delay between checks
            time.sleep(random.uniform(0.2, 0.5))

        return results

    except Exception as e:
        print(f"An error occurred: {str(e)}")
        return []

def get_cover_image(query):
    """Get a high-quality cover image URL for a given query"""
    try:
        # Search for images
        images = search_images(query, num_images=3)  # Get top 3 images to choose from
        
        if not images:
            return None
            
        # Return the first valid image URL
        return images[0]['url']
        
    except Exception as e:
        print(f"Error getting cover image: {str(e)}")
        return None

@app.route('/search_images', methods=['GET'])
def api_search_images():
    try:
        # Get query parameters
        query = request.args.get('query', '')
        num_images = int(request.args.get('num_images', 5))

        if not query:
            return jsonify({'error': 'Query parameter is required'}), 400

        if num_images < 1 or num_images > 20:
            return jsonify({'error': 'Number of images must be between 1 and 20'}), 400

        # Search for images
        results = search_images(query, num_images)

        return jsonify({
            'success': True,
            'query': query,
            'results': results
        })

    except Exception as e:
        return jsonify({
            'success': False,
            'error': str(e)
        }), 500

def scrape_site_content(query, num_sites=5):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
        'Accept-Language': 'en-US,en;q=0.5',
        'Accept-Encoding': 'gzip, deflate',
        'DNT': '1',
        'Connection': 'keep-alive',
    }

    results = []
    scraped = 0
    retries = 2  # Number of retries per URL
    timeout = 5  # Reduced timeout to 5 seconds

    try:
        # Get more URLs than needed to account for failures
        search_results = list(search(query, num_results=num_sites * 2))
        
        # Process each found URL
        for url in search_results:
            if scraped >= num_sites:
                break

            success = False
            for attempt in range(retries):
                try:
                    # Get the HTML content
                    print(f"Trying {url} (attempt {attempt + 1}/{retries})")
                    response = requests.get(
                        url, 
                        headers=headers, 
                        timeout=timeout,
                        verify=False  # Skip SSL verification
                    )
                    response.raise_for_status()

                    # Verify it's HTML content
                    content_type = response.headers.get('Content-Type', '').lower()
                    if 'text/html' not in content_type:
                        print(f"Skipping {url} - not HTML content")
                        break

                    # Parse the HTML content
                    soup = BeautifulSoup(response.text, 'html.parser')

                    # Remove script and style elements
                    for script in soup(["script", "style"]):
                        script.decompose()

                    # Extract text content (limit to first 10000 characters)
                    text_content = soup.get_text(separator='\n', strip=True)[:10000]
                    
                    # Skip if not enough content
                    if len(text_content.split()) < 100:  # Skip if less than 100 words
                        print(f"Skipping {url} - not enough content")
                        break

                    # Extract all links (limit to first 10)
                    links = []
                    for link in soup.find_all('a', href=True)[:10]:
                        href = link['href']
                        if href.startswith('http'):
                            links.append({
                                'text': link.get_text(strip=True),
                                'url': href
                            })

                    # Extract meta information
                    title = soup.title.string if soup.title else ''
                    meta_description = ''
                    meta_keywords = ''

                    meta_desc_tag = soup.find('meta', attrs={'name': 'description'})
                    if meta_desc_tag:
                        meta_description = meta_desc_tag.get('content', '')

                    meta_keywords_tag = soup.find('meta', attrs={'name': 'keywords'})
                    if meta_keywords_tag:
                        meta_keywords = meta_keywords_tag.get('content', '')

                    results.append({
                        'url': url,
                        'title': title,
                        'meta_description': meta_description,
                        'meta_keywords': meta_keywords,
                        'text_content': text_content,
                        'links': links
                    })

                    scraped += 1
                    success = True
                    # Add a random delay between scrapes
                    time.sleep(random.uniform(0.5, 1))
                    break  # Break retry loop on success

                except requests.Timeout:
                    print(f"Timeout on {url} (attempt {attempt + 1}/{retries})")
                    if attempt == retries - 1:  # Last attempt
                        print(f"Skipping {url} after {retries} timeout attempts")
                except requests.RequestException as e:
                    print(f"Error scraping {url} (attempt {attempt + 1}/{retries}): {str(e)}")
                    if attempt == retries - 1:  # Last attempt
                        print(f"Skipping {url} after {retries} failed attempts")
                
                # Add a longer delay between retries
                if not success and attempt < retries - 1:
                    time.sleep(random.uniform(1, 2))

            # If we haven't found enough valid content and have more URLs, continue
            if scraped < num_sites and len(results) < len(search_results):
                continue

        return results

    except Exception as e:
        print(f"Error in search/scraping process: {str(e)}")
        # Return whatever results we've managed to gather
        return results

@app.route('/scrape_sites', methods=['GET'])
def api_scrape_sites():
    try:
        # Get query parameters
        query = request.args.get('query', '')
        num_sites = int(request.args.get('num_sites', 10))

        if not query:
            return jsonify({'error': 'Query parameter is required'}), 400

        if num_sites < 1 or num_sites > 20:
            return jsonify({'error': 'Number of sites must be between 1 and 20'}), 400

        # Scrape the websites
        results = scrape_site_content(query, num_sites)

        return jsonify({
            'success': True,
            'query': query,
            'results': results
        })

    except Exception as e:
        return jsonify({
            'success': False,
            'error': str(e)
        }), 500

def analyze_with_gpt(scraped_content, research_query):
    """Analyze scraped content using OpenRouter's Gemini model"""
    try:
        headers = {
            'Authorization': f'Bearer {os.getenv("OPENROUTER_API_KEY")}',
            'HTTP-Referer': 'http://localhost:5001',
            'X-Title': 'Research Assistant'
        }

        # Prepare the prompt
        prompt = f"""You are a research assistant analyzing web content to provide comprehensive research.

Research Query: {research_query}

Below is content scraped from various web sources. Analyze this content and provide a detailed, well-structured research response.
Make sure to cite sources when making specific claims.

Scraped Content:
{json.dumps(scraped_content, indent=2)}

Please provide:
1. A comprehensive analysis of the topic
2. Key findings and insights
3. Supporting evidence from the sources
4. Any additional considerations or caveats

Format your response in markdown with proper headings and citations."""

        response = requests.post(
            'https://openrouter.ai/api/v1/chat/completions',
            headers=headers,
            json={
                'model': 'google/gemini-2.0-flash-thinking-exp:free',
                'messages': [{
                    'role': 'user',
                    'content': prompt
                }]
            },
            timeout=60
        )

        if response.status_code != 200:
            raise Exception(f"OpenRouter API error: {response.text}")

        return response.json()['choices'][0]['message']['content']
    except Exception as e:
        print(f"Error in analyze_with_gpt: {str(e)}")
        return f"Error analyzing content: {str(e)}"

def research_topic(query, num_sites=5):
    """Research a topic using web scraping and GPT analysis"""
    try:
        # First get web content using existing scrape_site_content function
        scraped_results = scrape_site_content(query, num_sites)
        
        # Format scraped content for analysis
        formatted_content = []
        for result in scraped_results:
            formatted_content.append({
                'source': result['url'],
                'title': result['title'],
                'content': result['text_content'][:2000],  # Limit content length for GPT
                'meta_info': {
                    'description': result['meta_description'],
                    'keywords': result['meta_keywords']
                }
            })
        
        # Get AI analysis of the scraped content
        analysis = analyze_with_gpt(formatted_content, query)
        
        return {
            'success': True,
            'query': query,
            'analysis': analysis,
            'sources': formatted_content
        }
    except Exception as e:
        return {
            'success': False,
            'error': str(e)
        }

@app.route('/research', methods=['GET'])
def api_research():
    try:
        query = request.args.get('query', '')
        # Always use 5 sites for consistency
        num_sites = 5

        if not query:
            return jsonify({'error': 'Query parameter is required'}), 400

        results = research_topic(query, num_sites)
        return jsonify(results)

    except Exception as e:
        return jsonify({
            'success': False,
            'error': str(e)
        }), 500

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000)