diff --git "a/Interactive_dashboard_Final.ipynb" "b/Interactive_dashboard_Final.ipynb" new file mode 100644--- /dev/null +++ "b/Interactive_dashboard_Final.ipynb" @@ -0,0 +1,3529 @@ +{ + "cells": [ + { + "cell_type": "code", + "source": [ + "!pip install hvplot\n", + "!pip install jupyter_bokeh\n", + "!pip install panel\n", + "!pip install bokeh\n", + "!pip install holoviews" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gTZLaixGDlH0", + "outputId": "89070411-600c-42ab-ee2f-e4fe1ed379d7" + }, + "id": "gTZLaixGDlH0", + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: hvplot in /usr/local/lib/python3.10/dist-packages (0.11.2)\n", + "Requirement already satisfied: bokeh>=3.1 in /usr/local/lib/python3.10/dist-packages (from hvplot) (3.6.2)\n", + "Requirement already satisfied: colorcet>=2 in /usr/local/lib/python3.10/dist-packages (from hvplot) (3.1.0)\n", + "Requirement already satisfied: holoviews>=1.19.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (1.20.0)\n", + "Requirement already satisfied: numpy>=1.21 in /usr/local/lib/python3.10/dist-packages (from hvplot) (1.26.4)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from hvplot) (24.2)\n", + "Requirement already satisfied: pandas>=1.3 in /usr/local/lib/python3.10/dist-packages (from hvplot) (2.2.2)\n", + "Requirement already satisfied: panel>=1.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (1.5.4)\n", + "Requirement already satisfied: param<3.0,>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (2.2.0)\n", + "Requirement already satisfied: Jinja2>=2.9 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->hvplot) (3.1.4)\n", + "Requirement already satisfied: contourpy>=1.2 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->hvplot) (1.3.1)\n", + "Requirement already satisfied: pillow>=7.1.0 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->hvplot) (11.0.0)\n", + "Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->hvplot) (6.0.2)\n", + "Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->hvplot) (6.3.3)\n", + "Requirement already satisfied: xyzservices>=2021.09.1 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->hvplot) (2024.9.0)\n", + "Requirement already satisfied: pyviz-comms>=2.1 in /usr/local/lib/python3.10/dist-packages (from holoviews>=1.19.0->hvplot) (3.0.3)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.3->hvplot) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.3->hvplot) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.3->hvplot) (2024.2)\n", + "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->hvplot) (6.2.0)\n", + "Requirement already satisfied: linkify-it-py in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->hvplot) (2.0.3)\n", + "Requirement already satisfied: markdown in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->hvplot) (3.7)\n", + "Requirement already satisfied: markdown-it-py in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->hvplot) (3.0.0)\n", + "Requirement already satisfied: mdit-py-plugins in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->hvplot) (0.4.2)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->hvplot) (2.32.3)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->hvplot) (4.67.1)\n", + "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->hvplot) (4.12.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=2.9->bokeh>=3.1->hvplot) (3.0.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=1.3->hvplot) (1.17.0)\n", + "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->panel>=1.0->hvplot) (0.5.1)\n", + "Requirement already satisfied: uc-micro-py in /usr/local/lib/python3.10/dist-packages (from linkify-it-py->panel>=1.0->hvplot) (1.0.3)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py->panel>=1.0->hvplot) (0.1.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=1.0->hvplot) (3.4.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=1.0->hvplot) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=1.0->hvplot) (2.2.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=1.0->hvplot) (2024.12.14)\n", + "Requirement already satisfied: jupyter_bokeh in /usr/local/lib/python3.10/dist-packages (4.0.5)\n", + "Requirement already satisfied: bokeh==3.* in /usr/local/lib/python3.10/dist-packages (from jupyter_bokeh) (3.6.2)\n", + "Requirement already satisfied: ipywidgets==8.* in /usr/local/lib/python3.10/dist-packages (from jupyter_bokeh) (8.1.5)\n", + "Requirement already satisfied: Jinja2>=2.9 in /usr/local/lib/python3.10/dist-packages (from bokeh==3.*->jupyter_bokeh) (3.1.4)\n", + "Requirement already satisfied: contourpy>=1.2 in /usr/local/lib/python3.10/dist-packages (from bokeh==3.*->jupyter_bokeh) (1.3.1)\n", + "Requirement already satisfied: numpy>=1.16 in /usr/local/lib/python3.10/dist-packages (from bokeh==3.*->jupyter_bokeh) (1.26.4)\n", + "Requirement already satisfied: packaging>=16.8 in /usr/local/lib/python3.10/dist-packages (from bokeh==3.*->jupyter_bokeh) (24.2)\n", + "Requirement already satisfied: pandas>=1.2 in /usr/local/lib/python3.10/dist-packages (from bokeh==3.*->jupyter_bokeh) (2.2.2)\n", + "Requirement already satisfied: pillow>=7.1.0 in /usr/local/lib/python3.10/dist-packages (from bokeh==3.*->jupyter_bokeh) (11.0.0)\n", + "Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.10/dist-packages (from bokeh==3.*->jupyter_bokeh) (6.0.2)\n", + "Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.10/dist-packages (from bokeh==3.*->jupyter_bokeh) (6.3.3)\n", + "Requirement already satisfied: xyzservices>=2021.09.1 in /usr/local/lib/python3.10/dist-packages (from bokeh==3.*->jupyter_bokeh) (2024.9.0)\n", + "Requirement already satisfied: comm>=0.1.3 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==8.*->jupyter_bokeh) (0.2.2)\n", + "Requirement already satisfied: ipython>=6.1.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==8.*->jupyter_bokeh) (7.34.0)\n", + "Requirement already satisfied: traitlets>=4.3.1 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==8.*->jupyter_bokeh) (5.7.1)\n", + "Requirement already satisfied: widgetsnbextension~=4.0.12 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==8.*->jupyter_bokeh) (4.0.13)\n", + "Requirement already satisfied: jupyterlab-widgets~=3.0.12 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==8.*->jupyter_bokeh) (3.0.13)\n", + "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (75.1.0)\n", + "Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.10/dist-packages (from ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (0.19.2)\n", + "Requirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (4.4.2)\n", + "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (0.7.5)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (3.0.48)\n", + "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (2.18.0)\n", + "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (0.2.0)\n", + "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (0.1.7)\n", + "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (4.9.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=2.9->bokeh==3.*->jupyter_bokeh) (3.0.2)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2->bokeh==3.*->jupyter_bokeh) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2->bokeh==3.*->jupyter_bokeh) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2->bokeh==3.*->jupyter_bokeh) (2024.2)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (0.8.4)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=6.1.0->ipywidgets==8.*->jupyter_bokeh) (0.2.13)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=1.2->bokeh==3.*->jupyter_bokeh) (1.17.0)\n", + "Requirement already satisfied: panel in /usr/local/lib/python3.10/dist-packages (1.5.4)\n", + "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from panel) (6.2.0)\n", + "Requirement already satisfied: bokeh<3.7.0,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from panel) (3.6.2)\n", + "Requirement already satisfied: linkify-it-py in /usr/local/lib/python3.10/dist-packages (from panel) (2.0.3)\n", + "Requirement already satisfied: markdown in /usr/local/lib/python3.10/dist-packages (from panel) (3.7)\n", + "Requirement already satisfied: markdown-it-py in /usr/local/lib/python3.10/dist-packages (from panel) (3.0.0)\n", + "Requirement already satisfied: mdit-py-plugins in /usr/local/lib/python3.10/dist-packages (from panel) (0.4.2)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from panel) (24.2)\n", + "Requirement already satisfied: pandas>=1.2 in /usr/local/lib/python3.10/dist-packages (from panel) (2.2.2)\n", + "Requirement already satisfied: param<3.0,>=2.1.0 in /usr/local/lib/python3.10/dist-packages (from panel) (2.2.0)\n", + "Requirement already satisfied: pyviz-comms>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from panel) (3.0.3)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from panel) (2.32.3)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from panel) (4.67.1)\n", + "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from panel) (4.12.2)\n", + "Requirement already satisfied: Jinja2>=2.9 in /usr/local/lib/python3.10/dist-packages (from bokeh<3.7.0,>=3.5.0->panel) (3.1.4)\n", + "Requirement already satisfied: contourpy>=1.2 in /usr/local/lib/python3.10/dist-packages (from bokeh<3.7.0,>=3.5.0->panel) (1.3.1)\n", + "Requirement already satisfied: numpy>=1.16 in /usr/local/lib/python3.10/dist-packages (from bokeh<3.7.0,>=3.5.0->panel) (1.26.4)\n", + "Requirement already satisfied: pillow>=7.1.0 in /usr/local/lib/python3.10/dist-packages (from bokeh<3.7.0,>=3.5.0->panel) (11.0.0)\n", + "Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.10/dist-packages (from bokeh<3.7.0,>=3.5.0->panel) (6.0.2)\n", + "Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.10/dist-packages (from bokeh<3.7.0,>=3.5.0->panel) (6.3.3)\n", + "Requirement already satisfied: xyzservices>=2021.09.1 in /usr/local/lib/python3.10/dist-packages (from bokeh<3.7.0,>=3.5.0->panel) (2024.9.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2->panel) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2->panel) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2->panel) (2024.2)\n", + "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->panel) (0.5.1)\n", + "Requirement already satisfied: uc-micro-py in /usr/local/lib/python3.10/dist-packages (from linkify-it-py->panel) (1.0.3)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py->panel) (0.1.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->panel) (3.4.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->panel) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->panel) (2.2.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->panel) (2024.12.14)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=2.9->bokeh<3.7.0,>=3.5.0->panel) (3.0.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=1.2->panel) (1.17.0)\n", + "Requirement already satisfied: bokeh in /usr/local/lib/python3.10/dist-packages (3.6.2)\n", + "Requirement already satisfied: Jinja2>=2.9 in /usr/local/lib/python3.10/dist-packages (from bokeh) (3.1.4)\n", + "Requirement already satisfied: contourpy>=1.2 in /usr/local/lib/python3.10/dist-packages (from bokeh) (1.3.1)\n", + "Requirement already satisfied: numpy>=1.16 in /usr/local/lib/python3.10/dist-packages (from bokeh) (1.26.4)\n", + "Requirement already satisfied: packaging>=16.8 in /usr/local/lib/python3.10/dist-packages (from bokeh) (24.2)\n", + "Requirement already satisfied: pandas>=1.2 in /usr/local/lib/python3.10/dist-packages (from bokeh) (2.2.2)\n", + "Requirement already satisfied: pillow>=7.1.0 in /usr/local/lib/python3.10/dist-packages (from bokeh) (11.0.0)\n", + "Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.10/dist-packages (from bokeh) (6.0.2)\n", + "Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.10/dist-packages (from bokeh) (6.3.3)\n", + "Requirement already satisfied: xyzservices>=2021.09.1 in /usr/local/lib/python3.10/dist-packages (from bokeh) (2024.9.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=2.9->bokeh) (3.0.2)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2->bokeh) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2->bokeh) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2->bokeh) (2024.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=1.2->bokeh) (1.17.0)\n", + "Requirement already satisfied: holoviews in /usr/local/lib/python3.10/dist-packages (1.20.0)\n", + "Requirement already satisfied: bokeh>=3.1 in /usr/local/lib/python3.10/dist-packages (from holoviews) (3.6.2)\n", + "Requirement already satisfied: colorcet in /usr/local/lib/python3.10/dist-packages (from holoviews) (3.1.0)\n", + "Requirement already satisfied: numpy>=1.21 in /usr/local/lib/python3.10/dist-packages (from holoviews) (1.26.4)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from holoviews) (24.2)\n", + "Requirement already satisfied: pandas>=1.3 in /usr/local/lib/python3.10/dist-packages (from holoviews) (2.2.2)\n", + "Requirement already satisfied: panel>=1.0 in /usr/local/lib/python3.10/dist-packages (from holoviews) (1.5.4)\n", + "Requirement already satisfied: param<3.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from holoviews) (2.2.0)\n", + "Requirement already satisfied: pyviz-comms>=2.1 in /usr/local/lib/python3.10/dist-packages (from holoviews) (3.0.3)\n", + "Requirement already satisfied: Jinja2>=2.9 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->holoviews) (3.1.4)\n", + "Requirement already satisfied: contourpy>=1.2 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->holoviews) (1.3.1)\n", + "Requirement already satisfied: pillow>=7.1.0 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->holoviews) (11.0.0)\n", + "Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->holoviews) (6.0.2)\n", + "Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->holoviews) (6.3.3)\n", + "Requirement already satisfied: xyzservices>=2021.09.1 in /usr/local/lib/python3.10/dist-packages (from bokeh>=3.1->holoviews) (2024.9.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.3->holoviews) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.3->holoviews) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.3->holoviews) (2024.2)\n", + "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->holoviews) (6.2.0)\n", + "Requirement already satisfied: linkify-it-py in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->holoviews) (2.0.3)\n", + "Requirement already satisfied: markdown in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->holoviews) (3.7)\n", + "Requirement already satisfied: markdown-it-py in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->holoviews) (3.0.0)\n", + "Requirement already satisfied: mdit-py-plugins in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->holoviews) (0.4.2)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->holoviews) (2.32.3)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->holoviews) (4.67.1)\n", + "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from panel>=1.0->holoviews) (4.12.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=2.9->bokeh>=3.1->holoviews) (3.0.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=1.3->holoviews) (1.17.0)\n", + "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->panel>=1.0->holoviews) (0.5.1)\n", + "Requirement already satisfied: uc-micro-py in /usr/local/lib/python3.10/dist-packages (from linkify-it-py->panel>=1.0->holoviews) (1.0.3)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py->panel>=1.0->holoviews) (0.1.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=1.0->holoviews) (3.4.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=1.0->holoviews) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=1.0->holoviews) (2.2.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=1.0->holoviews) (2024.12.14)\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "fdc9dea9-977d-47ec-a607-c4302a010733", + "metadata": { + "id": "fdc9dea9-977d-47ec-a607-c4302a010733", + "outputId": "8240769f-ca17-43dc-8386-abf0f4a8b37c", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17 + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = false;\n", + " const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " const reloading = true;\n", + " const Bokeh = root.Bokeh;\n", + "\n", + " // Set a timeout for this load but only if we are not already initializing\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " // Don't load bokeh if it is still initializing\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " // There is nothing to load\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error(e) {\n", + " const src_el = e.srcElement\n", + " console.error(\"failed to load \" + (src_el.href || src_el.src));\n", + " }\n", + "\n", + " const skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {'tabulator': 'https://cdn.jsdelivr.net/npm/tabulator-tables@6.3.0/dist/js/tabulator.min', 'moment': 'https://cdn.jsdelivr.net/npm/luxon/build/global/luxon.min'}, 'shim': {}});\n", + " require([\"tabulator\"], function(Tabulator) {\n", + " window.Tabulator = Tabulator\n", + " on_load()\n", + " })\n", + " require([\"moment\"], function(moment) {\n", + " window.moment = moment\n", + " on_load()\n", + " })\n", + " root._bokeh_is_loading = css_urls.length + 2;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " const existing_stylesheets = []\n", + " const links = document.getElementsByTagName('link')\n", + " for (let i = 0; i < links.length; i++) {\n", + " const link = links[i]\n", + " if (link.href != null) {\n", + " existing_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (existing_stylesheets.indexOf(escaped) !== -1) {\n", + " on_load()\n", + " continue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } if (((window.Tabulator !== undefined) && (!(window.Tabulator instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/js/tabulator.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(encodeURI(urls[i]))\n", + " }\n", + " } if (((window.moment !== undefined) && (!(window.moment instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/luxon/build/global/luxon.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(encodeURI(urls[i]))\n", + " }\n", + " } var existing_scripts = []\n", + " const scripts = document.getElementsByTagName('script')\n", + " for (let i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + " existing_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (let i = 0; i < js_modules.length; i++) {\n", + " const url = js_modules[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " const url = js_exports[name];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/js/tabulator.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/luxon/build/global/luxon.min.js\"];\n", + " const js_modules = [];\n", + " const js_exports = {};\n", + " const css_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/css/tabulator_simple.min.css?v=1.5.4\"];\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " try {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " } catch(e) {\n", + " if (!reloading) {\n", + " throw e;\n", + " }\n", + " }\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + " var NewBokeh = root.Bokeh;\n", + " if (Bokeh.versions === undefined) {\n", + " Bokeh.versions = new Map();\n", + " }\n", + " if (NewBokeh.version !== Bokeh.version) {\n", + " Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + " }\n", + " root.Bokeh = Bokeh;\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " // If the timeout and bokeh was not successfully loaded we reset\n", + " // everything and try loading again\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " root._bokeh_is_loading = 0\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + " if (root.Bokeh) {\n", + " root.Bokeh = undefined;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = false;\n const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n const reloading = true;\n const Bokeh = root.Bokeh;\n\n // Set a timeout for this load but only if we are not already initializing\n if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n // Don't load bokeh if it is still initializing\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n // There is nothing to load\n run_callbacks();\n return null;\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error(e) {\n const src_el = e.srcElement\n console.error(\"failed to load \" + (src_el.href || src_el.src));\n }\n\n const skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'tabulator': 'https://cdn.jsdelivr.net/npm/tabulator-tables@6.3.0/dist/js/tabulator.min', 'moment': 'https://cdn.jsdelivr.net/npm/luxon/build/global/luxon.min'}, 'shim': {}});\n require([\"tabulator\"], function(Tabulator) {\n window.Tabulator = Tabulator\n on_load()\n })\n require([\"moment\"], function(moment) {\n window.moment = moment\n on_load()\n })\n root._bokeh_is_loading = css_urls.length + 2;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n const existing_stylesheets = []\n const links = document.getElementsByTagName('link')\n for (let i = 0; i < links.length; i++) {\n const link = links[i]\n if (link.href != null) {\n existing_stylesheets.push(link.href)\n }\n }\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const escaped = encodeURI(url)\n if (existing_stylesheets.indexOf(escaped) !== -1) {\n on_load()\n continue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window.Tabulator !== undefined) && (!(window.Tabulator instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/js/tabulator.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(encodeURI(urls[i]))\n }\n } if (((window.moment !== undefined) && (!(window.moment instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/luxon/build/global/luxon.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(encodeURI(urls[i]))\n }\n } var existing_scripts = []\n const scripts = document.getElementsByTagName('script')\n for (let i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n existing_scripts.push(script.src)\n }\n }\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (let i = 0; i < js_modules.length; i++) {\n const url = js_modules[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n const url = js_exports[name];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/js/tabulator.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/luxon/build/global/luxon.min.js\"];\n const js_modules = [];\n const js_exports = {};\n const css_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/css/tabulator_simple.min.css?v=1.5.4\"];\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (let i = 0; i < inline_js.length; i++) {\n try {\n inline_js[i].call(root, root.Bokeh);\n } catch(e) {\n if (!reloading) {\n throw e;\n }\n }\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n var NewBokeh = root.Bokeh;\n if (Bokeh.versions === undefined) {\n Bokeh.versions = new Map();\n }\n if (NewBokeh.version !== Bokeh.version) {\n Bokeh.versions.set(NewBokeh.version, NewBokeh)\n }\n root.Bokeh = Bokeh;\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n // If the timeout and bokeh was not successfully loaded we reset\n // everything and try loading again\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n root._bokeh_is_loading = 0\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n if (root.Bokeh) {\n root.Bokeh = undefined;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n", + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "application/vnd.holoviews_exec.v0+json": "" + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "314d1a3e-a4e7-4b1c-8059-37127dcaec99" + } + } + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = false;\n", + " const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " const reloading = true;\n", + " const Bokeh = root.Bokeh;\n", + "\n", + " // Set a timeout for this load but only if we are not already initializing\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " // Don't load bokeh if it is still initializing\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " // There is nothing to load\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error(e) {\n", + " const src_el = e.srcElement\n", + " console.error(\"failed to load \" + (src_el.href || src_el.src));\n", + " }\n", + "\n", + " const skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {'tabulator': 'https://cdn.jsdelivr.net/npm/tabulator-tables@6.3.0/dist/js/tabulator.min', 'moment': 'https://cdn.jsdelivr.net/npm/luxon/build/global/luxon.min'}, 'shim': {}});\n", + " require([\"tabulator\"], function(Tabulator) {\n", + " window.Tabulator = Tabulator\n", + " on_load()\n", + " })\n", + " require([\"moment\"], function(moment) {\n", + " window.moment = moment\n", + " on_load()\n", + " })\n", + " root._bokeh_is_loading = css_urls.length + 2;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " const existing_stylesheets = []\n", + " const links = document.getElementsByTagName('link')\n", + " for (let i = 0; i < links.length; i++) {\n", + " const link = links[i]\n", + " if (link.href != null) {\n", + " existing_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (existing_stylesheets.indexOf(escaped) !== -1) {\n", + " on_load()\n", + " continue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } if (((window.Tabulator !== undefined) && (!(window.Tabulator instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/js/tabulator.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(encodeURI(urls[i]))\n", + " }\n", + " } if (((window.moment !== undefined) && (!(window.moment instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/luxon/build/global/luxon.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(encodeURI(urls[i]))\n", + " }\n", + " } var existing_scripts = []\n", + " const scripts = document.getElementsByTagName('script')\n", + " for (let i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + " existing_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (let i = 0; i < js_modules.length; i++) {\n", + " const url = js_modules[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " const url = js_exports[name];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/js/tabulator.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/luxon/build/global/luxon.min.js\"];\n", + " const js_modules = [];\n", + " const js_exports = {};\n", + " const css_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/css/tabulator_simple.min.css?v=1.5.4\"];\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " try {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " } catch(e) {\n", + " if (!reloading) {\n", + " throw e;\n", + " }\n", + " }\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + " var NewBokeh = root.Bokeh;\n", + " if (Bokeh.versions === undefined) {\n", + " Bokeh.versions = new Map();\n", + " }\n", + " if (NewBokeh.version !== Bokeh.version) {\n", + " Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + " }\n", + " root.Bokeh = Bokeh;\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " // If the timeout and bokeh was not successfully loaded we reset\n", + " // everything and try loading again\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " root._bokeh_is_loading = 0\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + " if (root.Bokeh) {\n", + " root.Bokeh = undefined;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = false;\n const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n const reloading = true;\n const Bokeh = root.Bokeh;\n\n // Set a timeout for this load but only if we are not already initializing\n if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n // Don't load bokeh if it is still initializing\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n // There is nothing to load\n run_callbacks();\n return null;\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error(e) {\n const src_el = e.srcElement\n console.error(\"failed to load \" + (src_el.href || src_el.src));\n }\n\n const skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'tabulator': 'https://cdn.jsdelivr.net/npm/tabulator-tables@6.3.0/dist/js/tabulator.min', 'moment': 'https://cdn.jsdelivr.net/npm/luxon/build/global/luxon.min'}, 'shim': {}});\n require([\"tabulator\"], function(Tabulator) {\n window.Tabulator = Tabulator\n on_load()\n })\n require([\"moment\"], function(moment) {\n window.moment = moment\n on_load()\n })\n root._bokeh_is_loading = css_urls.length + 2;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n const existing_stylesheets = []\n const links = document.getElementsByTagName('link')\n for (let i = 0; i < links.length; i++) {\n const link = links[i]\n if (link.href != null) {\n existing_stylesheets.push(link.href)\n }\n }\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const escaped = encodeURI(url)\n if (existing_stylesheets.indexOf(escaped) !== -1) {\n on_load()\n continue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window.Tabulator !== undefined) && (!(window.Tabulator instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/js/tabulator.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(encodeURI(urls[i]))\n }\n } if (((window.moment !== undefined) && (!(window.moment instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/luxon/build/global/luxon.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(encodeURI(urls[i]))\n }\n } var existing_scripts = []\n const scripts = document.getElementsByTagName('script')\n for (let i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n existing_scripts.push(script.src)\n }\n }\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (let i = 0; i < js_modules.length; i++) {\n const url = js_modules[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n const url = js_exports[name];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/js/tabulator.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/luxon/build/global/luxon.min.js\"];\n const js_modules = [];\n const js_exports = {};\n const css_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/datatabulator/tabulator-tables@6.3.0/dist/css/tabulator_simple.min.css?v=1.5.4\"];\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (let i = 0; i < inline_js.length; i++) {\n try {\n inline_js[i].call(root, root.Bokeh);\n } catch(e) {\n if (!reloading) {\n throw e;\n }\n }\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n var NewBokeh = root.Bokeh;\n if (Bokeh.versions === undefined) {\n Bokeh.versions = new Map();\n }\n if (NewBokeh.version !== Bokeh.version) {\n Bokeh.versions.set(NewBokeh.version, NewBokeh)\n }\n root.Bokeh = Bokeh;\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n // If the timeout and bokeh was not successfully loaded we reset\n // everything and try loading again\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n root._bokeh_is_loading = 0\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n if (root.Bokeh) {\n root.Bokeh = undefined;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n", + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ] + }, + "metadata": {} + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import panel as pn\n", + "pn.extension('tabulator')\n", + "import hvplot.pandas" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "!gdown 'https://drive.google.com/uc?export=download&id=1L42Fjkh8-cPIwswMHK5GtyecYdF-_Xjz'\n", + "\n", + "df = pd.read_csv('owid-covid-data.csv')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YMvQVkGRA4aW", + "outputId": "d749c7e5-4e94-413d-8b63-d6f4db66235c" + }, + "id": "YMvQVkGRA4aW", + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading...\n", + "From: https://drive.google.com/uc?export=download&id=1L42Fjkh8-cPIwswMHK5GtyecYdF-_Xjz\n", + "To: /content/owid-covid-data.csv\n", + "100% 93.9M/93.9M [00:00<00:00, 227MB/s]\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "58f973fa-e01c-4b6b-ba6a-532a62b2e1e8", + "metadata": { + "id": "58f973fa-e01c-4b6b-ba6a-532a62b2e1e8" + }, + "outputs": [], + "source": [ + "# # cache data to improve dashboard performance\n", + "# if 'data' not in pn.state.cache.keys():\n", + "\n", + "# df = pd.read_csv('https://raw.githubusercontent.com/owid/co2-data/master/owid-covid-data.csv')\n", + "\n", + "# pn.state.cache['data'] = df.copy()\n", + "\n", + "# else:\n", + "\n", + "# df = pn.state.cache['data']" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "28c34f25-8c33-4b36-9597-a876d2e9c02a", + "metadata": { + "id": "28c34f25-8c33-4b36-9597-a876d2e9c02a", + "outputId": "f6f45e25-132a-4dd8-807f-23996bb6e55d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 617 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " iso_code continent location date total_cases new_cases \\\n", + "0 AFG Asia Afghanistan 2020-01-03 NaN 0.0 \n", + "1 AFG Asia Afghanistan 2020-01-04 NaN 0.0 \n", + "2 AFG Asia Afghanistan 2020-01-05 NaN 0.0 \n", + "3 AFG Asia Afghanistan 2020-01-06 NaN 0.0 \n", + "4 AFG Asia Afghanistan 2020-01-07 NaN 0.0 \n", + "... ... ... ... ... ... ... \n", + "358833 ZWE Africa Zimbabwe 2023-11-18 265890.0 0.0 \n", + "358834 ZWE Africa Zimbabwe 2023-11-19 265890.0 0.0 \n", + "358835 ZWE Africa Zimbabwe 2023-11-20 265890.0 0.0 \n", + "358836 ZWE Africa Zimbabwe 2023-11-21 265890.0 0.0 \n", + "358837 ZWE Africa Zimbabwe 2023-11-22 265890.0 0.0 \n", + "\n", + " new_cases_smoothed total_deaths new_deaths new_deaths_smoothed \\\n", + "0 NaN NaN 0.0 NaN \n", + "1 NaN NaN 0.0 NaN \n", + "2 NaN NaN 0.0 NaN \n", + "3 NaN NaN 0.0 NaN \n", + "4 NaN NaN 0.0 NaN \n", + "... ... ... ... ... \n", + "358833 0.0 5725.0 0.0 0.0 \n", + "358834 0.0 5725.0 0.0 0.0 \n", + "358835 0.0 5725.0 0.0 0.0 \n", + "358836 0.0 5725.0 0.0 0.0 \n", + "358837 0.0 5725.0 0.0 0.0 \n", + "\n", + " ... male_smokers handwashing_facilities hospital_beds_per_thousand \\\n", + "0 ... NaN 37.746 0.5 \n", + "1 ... NaN 37.746 0.5 \n", + "2 ... NaN 37.746 0.5 \n", + "3 ... NaN 37.746 0.5 \n", + "4 ... NaN 37.746 0.5 \n", + "... ... ... ... ... \n", + "358833 ... 30.7 36.791 1.7 \n", + "358834 ... 30.7 36.791 1.7 \n", + "358835 ... 30.7 36.791 1.7 \n", + "358836 ... 30.7 36.791 1.7 \n", + "358837 ... 30.7 36.791 1.7 \n", + "\n", + " life_expectancy human_development_index population \\\n", + "0 64.83 0.511 41128772.0 \n", + "1 64.83 0.511 41128772.0 \n", + "2 64.83 0.511 41128772.0 \n", + "3 64.83 0.511 41128772.0 \n", + "4 64.83 0.511 41128772.0 \n", + "... ... ... ... \n", + "358833 61.49 0.571 16320539.0 \n", + "358834 61.49 0.571 16320539.0 \n", + "358835 61.49 0.571 16320539.0 \n", + "358836 61.49 0.571 16320539.0 \n", + "358837 61.49 0.571 16320539.0 \n", + "\n", + " excess_mortality_cumulative_absolute excess_mortality_cumulative \\\n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", + "... ... ... \n", + "358833 NaN NaN \n", + "358834 NaN NaN \n", + "358835 NaN NaN \n", + "358836 NaN NaN \n", + "358837 NaN NaN \n", + "\n", + " excess_mortality excess_mortality_cumulative_per_million \n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", + "... ... ... \n", + "358833 NaN NaN \n", + "358834 NaN NaN \n", + "358835 NaN NaN \n", + "358836 NaN NaN \n", + "358837 NaN NaN \n", + "\n", + "[358838 rows x 67 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iso_codecontinentlocationdatetotal_casesnew_casesnew_cases_smoothedtotal_deathsnew_deathsnew_deaths_smoothed...male_smokershandwashing_facilitieshospital_beds_per_thousandlife_expectancyhuman_development_indexpopulationexcess_mortality_cumulative_absoluteexcess_mortality_cumulativeexcess_mortalityexcess_mortality_cumulative_per_million
0AFGAsiaAfghanistan2020-01-03NaN0.0NaNNaN0.0NaN...NaN37.7460.564.830.51141128772.0NaNNaNNaNNaN
1AFGAsiaAfghanistan2020-01-04NaN0.0NaNNaN0.0NaN...NaN37.7460.564.830.51141128772.0NaNNaNNaNNaN
2AFGAsiaAfghanistan2020-01-05NaN0.0NaNNaN0.0NaN...NaN37.7460.564.830.51141128772.0NaNNaNNaNNaN
3AFGAsiaAfghanistan2020-01-06NaN0.0NaNNaN0.0NaN...NaN37.7460.564.830.51141128772.0NaNNaNNaNNaN
4AFGAsiaAfghanistan2020-01-07NaN0.0NaNNaN0.0NaN...NaN37.7460.564.830.51141128772.0NaNNaNNaNNaN
..................................................................
358833ZWEAfricaZimbabwe2023-11-18265890.00.00.05725.00.00.0...30.736.7911.761.490.57116320539.0NaNNaNNaNNaN
358834ZWEAfricaZimbabwe2023-11-19265890.00.00.05725.00.00.0...30.736.7911.761.490.57116320539.0NaNNaNNaNNaN
358835ZWEAfricaZimbabwe2023-11-20265890.00.00.05725.00.00.0...30.736.7911.761.490.57116320539.0NaNNaNNaNNaN
358836ZWEAfricaZimbabwe2023-11-21265890.00.00.05725.00.00.0...30.736.7911.761.490.57116320539.0NaNNaNNaNNaN
358837ZWEAfricaZimbabwe2023-11-22265890.00.00.05725.00.00.0...30.736.7911.761.490.57116320539.0NaNNaNNaNNaN
\n", + "

358838 rows × 67 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df" + } + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "markdown", + "id": "bf78b9c7-2ceb-410a-ba9c-e668d41587db", + "metadata": { + "id": "bf78b9c7-2ceb-410a-ba9c-e668d41587db" + }, + "source": [ + "## (0) Some minor data preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "81ded706-a096-4b08-8358-519af91555aa", + "metadata": { + "id": "81ded706-a096-4b08-8358-519af91555aa", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "5e7774aa-0c68-4d07-c0ba-c6321ca6f020" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "['Asia' 'Europe' 'Africa' 'Oceania' 'North America' 'South America']\n" + ] + } + ], + "source": [ + "# Fill NAs with 0s and create GDP per capita column\n", + "df = df.dropna(subset=['continent'])\n", + "print(df['continent'].unique())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b81a227b-996c-4eec-8dd0-4968831b9eb9", + "metadata": { + "id": "b81a227b-996c-4eec-8dd0-4968831b9eb9", + "outputId": "e9b7e6ec-1d8b-4100-957d-2fc3a1ffe199", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 62 + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + " const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " const reloading = false;\n", + " const Bokeh = root.Bokeh;\n", + "\n", + " // Set a timeout for this load but only if we are not already initializing\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " // Don't load bokeh if it is still initializing\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " // There is nothing to load\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error(e) {\n", + " const src_el = e.srcElement\n", + " console.error(\"failed to load \" + (src_el.href || src_el.src));\n", + " }\n", + "\n", + " const skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " const existing_stylesheets = []\n", + " const links = document.getElementsByTagName('link')\n", + " for (let i = 0; i < links.length; i++) {\n", + " const link = links[i]\n", + " if (link.href != null) {\n", + " existing_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (existing_stylesheets.indexOf(escaped) !== -1) {\n", + " on_load()\n", + " continue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " const scripts = document.getElementsByTagName('script')\n", + " for (let i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + " existing_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (let i = 0; i < js_modules.length; i++) {\n", + " const url = js_modules[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " const url = js_exports[name];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.6.2.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/panel.min.js\"];\n", + " const js_modules = [];\n", + " const js_exports = {};\n", + " const css_urls = [];\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " try {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " } catch(e) {\n", + " if (!reloading) {\n", + " throw e;\n", + " }\n", + " }\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + " var NewBokeh = root.Bokeh;\n", + " if (Bokeh.versions === undefined) {\n", + " Bokeh.versions = new Map();\n", + " }\n", + " if (NewBokeh.version !== Bokeh.version) {\n", + " Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + " }\n", + " root.Bokeh = Bokeh;\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " // If the timeout and bokeh was not successfully loaded we reset\n", + " // everything and try loading again\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " root._bokeh_is_loading = 0\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + " if (root.Bokeh) {\n", + " root.Bokeh = undefined;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n const reloading = false;\n const Bokeh = root.Bokeh;\n\n // Set a timeout for this load but only if we are not already initializing\n if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n // Don't load bokeh if it is still initializing\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n // There is nothing to load\n run_callbacks();\n return null;\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error(e) {\n const src_el = e.srcElement\n console.error(\"failed to load \" + (src_el.href || src_el.src));\n }\n\n const skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n const existing_stylesheets = []\n const links = document.getElementsByTagName('link')\n for (let i = 0; i < links.length; i++) {\n const link = links[i]\n if (link.href != null) {\n existing_stylesheets.push(link.href)\n }\n }\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const escaped = encodeURI(url)\n if (existing_stylesheets.indexOf(escaped) !== -1) {\n on_load()\n continue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n const scripts = document.getElementsByTagName('script')\n for (let i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n existing_scripts.push(script.src)\n }\n }\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (let i = 0; i < js_modules.length; i++) {\n const url = js_modules[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n const url = js_exports[name];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.6.2.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/panel.min.js\"];\n const js_modules = [];\n const js_exports = {};\n const css_urls = [];\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (let i = 0; i < inline_js.length; i++) {\n try {\n inline_js[i].call(root, root.Bokeh);\n } catch(e) {\n if (!reloading) {\n throw e;\n }\n }\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n var NewBokeh = root.Bokeh;\n if (Bokeh.versions === undefined) {\n Bokeh.versions = new Map();\n }\n if (NewBokeh.version !== Bokeh.version) {\n Bokeh.versions.set(NewBokeh.version, NewBokeh)\n }\n root.Bokeh = Bokeh;\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n // If the timeout and bokeh was not successfully loaded we reset\n // everything and try loading again\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n root._bokeh_is_loading = 0\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n if (root.Bokeh) {\n root.Bokeh = undefined;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n", + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": {}, + "metadata": {} + }, + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "application/vnd.holoviews_exec.v0+json": "", + "text/plain": [ + "IntSlider(end=2023, name='date', start=2020, value=2020)" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "a7eba149-a966-4d9f-a14e-97de37c2d841" + } + }, + "execution_count": 9 + } + ], + "source": [ + "# Define Panel widgets\n", + "year_slider = pn.widgets.IntSlider(name='date', start=2020, end=2023)\n", + "year_slider" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5131fd1d-f9a9-48b2-9168-769435d830fc", + "metadata": { + "id": "5131fd1d-f9a9-48b2-9168-769435d830fc" + }, + "outputs": [], + "source": [ + "# Radio buttons for CO2 measures\n", + "yaxis_co2 = pn.widgets.RadioButtonGroup(\n", + " name='Y axis',\n", + " options=['co2', 'co2_per_capita',],\n", + " button_type='success'\n", + ")" + ] + }, + { + "source": [ + "# %%\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "!gdown 'https://drive.google.com/uc?export=download&id=1L42Fjkh8-cPIwswMHK5GtyecYdF-_Xjz'\n", + "\n", + "df = pd.read_csv('owid-covid-data.csv')\n", + "\n", + "# Convert 'date' column to datetime\n", + "df['date'] = pd.to_datetime(df['date'])\n", + "\n", + "\n", + "df\n", + "# %% [markdown]\n", + "# ## (0) Some minor data preprocessing\n", + "# %%\n", + "# Fill NAs with 0s and create GDP per capita column\n", + "df = df.dropna(subset=['continent'])\n", + "print(df['continent'].unique())\n", + "# %%\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from ipywidgets import interact, widgets\n", + "\n", + "# Ensure 'date' column is in datetime format\n", + "# df.loc[:, 'date'] = pd.to_datetime(df['date'])\n", + "\n", + "# Extract unique values for continents and countries\n", + "continents = df['continent'].dropna().unique() # Handle potential NaN values\n", + "countries = df['location'].unique()\n", + "years = [2020, 2021, 2022, 2023] # Limit years for simplicity\n", + "\n", + "# Create a function to filter countries based on the selected continent\n", + "def get_countries_by_continent(continent):\n", + " if continent:\n", + " return df[df['continent'] == continent]['location'].unique()\n", + " else:\n", + " return []\n", + "\n", + "# Define the plotting function\n", + "def plot_data(continent, country, year):\n", + " # Filter the data based on user selection\n", + " filtered_data = df[(df['continent'] == continent) &\n", + " (df['location'] == country) &\n", + " (df['date'].dt.year == year)]\n", + "\n", + " # Check if there's data to plot\n", + " if filtered_data.empty:\n", + " print(f\"No data available for {country} in {year}.\")\n", + " return\n", + "\n", + " # Set up the figure\n", + " fig, axes = plt.subplots(2, 2, figsize=(16, 12))\n", + "\n", + " # Plot 1: Total Cases Over Time\n", + " axes[0, 0].plot(filtered_data['date'], filtered_data['total_cases'], label='Total Cases', color='blue', linewidth=2)\n", + " axes[0, 0].set_title(f'Total Cases in {country} ({year})', fontsize=14)\n", + " axes[0, 0].set_xlabel('Date', fontsize=12)\n", + " axes[0, 0].set_ylabel('Total Cases', fontsize=12)\n", + " axes[0, 0].grid(True, linestyle='--', alpha=0.6)\n", + "\n", + " # Plot 2: Total Deaths Over Time\n", + " axes[0, 1].plot(filtered_data['date'], filtered_data['total_deaths'], label='Total Deaths', color='red', linewidth=2)\n", + " axes[0, 1].set_title(f'Total Deaths in {country} ({year})', fontsize=14)\n", + " axes[0, 1].set_xlabel('Date', fontsize=12)\n", + " axes[0, 1].set_ylabel('Total Deaths', fontsize=12)\n", + " axes[0, 1].grid(True, linestyle='--', alpha=0.6)\n", + "\n", + " # Plot 3: Total Vaccinations Over Time\n", + " axes[1, 0].plot(filtered_data['date'], filtered_data['total_vaccinations'], label='Total Vaccinations', color='green', linewidth=2)\n", + " axes[1, 0].set_title(f'Total Vaccinations in {country} ({year})', fontsize=14)\n", + " axes[1, 0].set_xlabel('Date', fontsize=12)\n", + " axes[1, 0].set_ylabel('Total Vaccinations', fontsize=12)\n", + " axes[1, 0].grid(True, linestyle='--', alpha=0.6)\n", + "\n", + " # Plot 4: New Cases Over Time\n", + " axes[1, 1].plot(filtered_data['date'], filtered_data['new_cases'], label='New Cases', color='orange', linewidth=2)\n", + " axes[1, 1].set_title(f'New Cases in {country} ({year})', fontsize=14)\n", + " axes[1, 1].set_xlabel('Date', fontsize=12)\n", + " axes[1, 1].set_ylabel('New Cases', fontsize=12)\n", + " axes[1, 1].grid(True, linestyle='--', alpha=0.6)\n", + "\n", + " # Add a main title\n", + " plt.suptitle('Covid19 Dashboard', fontsize=20, fontweight='bold', y=1.02)\n", + "\n", + " # Adjust layout\n", + " for ax in axes.flat:\n", + " ax.legend(fontsize=10)\n", + " ax.tick_params(axis='x', rotation=45)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Create interactive widgets for continent and year\n", + "continent_widget = widgets.Dropdown(options=continents, description='Continent:')\n", + "year_widget = widgets.IntSlider(\n", + " min=2020,\n", + " max=2023,\n", + " step=1,\n", + " value=2020,\n", + " description='Year:',\n", + " continuous_update=False\n", + ")\n", + "\n", + "# Create the country widget with initial options based on the selected continent\n", + "country_widget = widgets.Dropdown(description='Country:')\n", + "\n", + "# Update the countries dropdown when a continent is selected\n", + "def update_country_options(continent):\n", + " country_widget.options = get_countries_by_continent(continent)\n", + "\n", + "# Link the continent widget to the update function\n", + "continent_widget.observe(lambda change: update_country_options(change.new), names='value')\n", + "\n", + "# Set initial country options\n", + "update_country_options(continent_widget.value)\n", + "\n", + "# Create the interactive plot\n", + "interact(\n", + " plot_data,\n", + " continent=continent_widget,\n", + " country=country_widget,\n", + " year=year_widget\n", + ");" + ], + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 868, + "referenced_widgets": [ + "b363ab52ddd24ab197cc14e5ddf6e009", + "33a3afbb96aa4aa5972b5c9b1ca0bde3", + "23087712a74944039223604bf35173bd", + "dd1168000a4a45bfb7d30a1488b43ead", + "5f6d90654c0a4948983866d136dcd1a0", + "25c2d7b6b0f84705aea6a8d6e44f6796", + "452d5233a205470a85d450752e819d38", + "dda75eb338d34e448f19f5706a6fc216", + "8ab564b1e00249fcad47340f7aa0b784", + "5f1c6e2623854631b39a2f26feed2835", + "0d415df42f2647d5a74ff0638b04a314", + "1dd5d6a9249a491ca134dff9b65b0c09", + "7e77076ee6fe4609a5428242beed0bf5" + ] + }, + "id": "bNPTFH7DuRdl", + "outputId": "6f263895-c4bf-4af9-d9dd-560af8d10361" + }, + "id": "bNPTFH7DuRdl", + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading...\n", + "From: https://drive.google.com/uc?export=download&id=1L42Fjkh8-cPIwswMHK5GtyecYdF-_Xjz\n", + "To: /content/owid-covid-data.csv\n", + "100% 93.9M/93.9M [00:00<00:00, 224MB/s]\n", + "['Asia' 'Europe' 'Africa' 'Oceania' 'North America' 'South America']\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "interactive(children=(Dropdown(description='Continent:', options=('Asia', 'Europe', 'Africa', 'Oceania', 'Nort…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "b363ab52ddd24ab197cc14e5ddf6e009" + } + }, + "metadata": {} + } + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.9" + }, + "colab": { + "provenance": [] + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "b363ab52ddd24ab197cc14e5ddf6e009": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "2.0.0", + "state": { + "_dom_classes": [ + "widget-interact" + ], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_33a3afbb96aa4aa5972b5c9b1ca0bde3", + "IPY_MODEL_23087712a74944039223604bf35173bd", + "IPY_MODEL_dd1168000a4a45bfb7d30a1488b43ead", + "IPY_MODEL_5f6d90654c0a4948983866d136dcd1a0" + ], + "layout": "IPY_MODEL_25c2d7b6b0f84705aea6a8d6e44f6796", + "tabbable": null, + "tooltip": null + } + }, + "33a3afbb96aa4aa5972b5c9b1ca0bde3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DropdownModel", + "model_module_version": "2.0.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "DropdownModel", + "_options_labels": [ + "Asia", + "Europe", + "Africa", + "Oceania", + "North America", + "South America" + ], + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "DropdownView", + "description": "Continent:", + "description_allow_html": false, + "disabled": false, + "index": 0, + "layout": "IPY_MODEL_452d5233a205470a85d450752e819d38", + "style": "IPY_MODEL_dda75eb338d34e448f19f5706a6fc216", + "tabbable": null, + "tooltip": null + } + }, + "23087712a74944039223604bf35173bd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DropdownModel", + "model_module_version": "2.0.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "DropdownModel", + "_options_labels": [ + "Afghanistan", + "Armenia", + "Azerbaijan", + "Bahrain", + "Bangladesh", + "Bhutan", + "Brunei", + "Cambodia", + "China", + "Georgia", + "Hong Kong", + "India", + "Indonesia", + "Iran", + "Iraq", + "Israel", + "Japan", + "Jordan", + "Kazakhstan", + "Kuwait", + "Kyrgyzstan", + "Laos", + "Lebanon", + "Macao", + "Malaysia", + "Maldives", + "Mongolia", + "Myanmar", + "Nepal", + "North Korea", + "Northern Cyprus", + "Oman", + "Pakistan", + "Palestine", + "Philippines", + "Qatar", + "Saudi Arabia", + "Singapore", + "South Korea", + "Sri Lanka", + "Syria", + "Taiwan", + "Tajikistan", + "Thailand", + "Timor", + "Turkey", + "Turkmenistan", + "United Arab Emirates", + "Uzbekistan", + "Vietnam", + "Yemen" + ], + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "DropdownView", + "description": "Country:", + "description_allow_html": false, + "disabled": false, + "index": 43, + "layout": "IPY_MODEL_8ab564b1e00249fcad47340f7aa0b784", + "style": "IPY_MODEL_5f1c6e2623854631b39a2f26feed2835", + "tabbable": null, + "tooltip": null + } + }, + "dd1168000a4a45bfb7d30a1488b43ead": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntSliderModel", + "model_module_version": "2.0.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "IntSliderModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "IntSliderView", + "behavior": "drag-tap", + "continuous_update": false, + "description": "Year:", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_0d415df42f2647d5a74ff0638b04a314", + "max": 2023, + "min": 2020, + "orientation": "horizontal", + "readout": true, + "readout_format": "d", + "step": 1, + "style": "IPY_MODEL_1dd5d6a9249a491ca134dff9b65b0c09", + "tabbable": null, + "tooltip": null, + "value": 2021 + } + }, + "5f6d90654c0a4948983866d136dcd1a0": { + "model_module": "@jupyter-widgets/output", + "model_name": "OutputModel", + "model_module_version": "1.0.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7e77076ee6fe4609a5428242beed0bf5", + "msg_id": "", + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAATNCAYAAADrH71qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdsG8HvTe0KAEEoIvYdQpEuTEqqAIApIEwWkS30BpVjoKEWUF5QifnRpSg0l0nsLoUgPSEKQkAak7c73x7y7ybKbZAPJ7pzd+3dducyenZ09Z+8Z3MkzM0clSZIEIiIiIiIiIiIiIiIiBbOzdAeIiIiIiIiIiIiIiIhywoIGEREREREREREREREpHgsaRERERERERERERESkeCxoEBERERERERERERGR4rGgQUREREREREREREREiseCBhERERERERERERERKR4LGkREREREREREREREpHgsaBARERERERERERERkeKxoEFERERERERERERERIrHggYRERER2QyVSqX3U6pUqdde17179wzW16xZszzrK5lXXue5atUqg/VNmzYtz/prK/r162fwOYaFhVm6W0RERERkIQ6W7gARERERKdONGzewfft2hIWF4e+//8bTp0+RlJQEDw8PBAQEIDg4GC1btsS7776LAgUKWLq7ipaUlISzZ8/i1KlTup9Hjx7pLRMYGIh79+6ZvM47d+5g2bJlOHToEG7fvo2EhAQUKFAAgYGBaNu2LQYMGICSJUu+cd/DwsLQvHlzg3aVSgVHR0e4uLjAx8cHRYoUQdmyZfHWW2+hU6dOKFeu3Bu/NxERERERUWYsaBARERGRnjt37mD8+PHYunUrNBqNwfNxcXGIi4tDeHg4fvvtN7i5uWHhwoX45JNPLNBbMXTs2DHPzipXq9WYMmUKZs2aZZBPTEwMYmJicObMGcydOxfffvstPv/88zx531dJkoTU1FSkpqYiISEBkZGROHPmDNavX4/x48ejffv2+Oabb1C9evV8eX8iIiIiIrI9LGgQERERkc4ff/yBPn36IC4uzuTXvHjxAleuXMm/TuWhkSNH6j329fU1y/tKkpRn6/r000+xcuXKHJd7+fIlRo8ejcTEREyZMiXP3t8UGo0Gf/zxB/bv34/ly5ejV69eZn1/IiIiIiKyTixoEBEREREA4NChQ+jatSvS0tIMnvPx8UHTpk1RtGhRvHz5Evfu3cOpU6eQnJxsgZ6+vgULFli6C7Czs0PlypURERGR69du3LjRaDGjYcOGqFKlCm7evIm//vpL77lp06ahRYsWaNSo0Wv32RhtcSgxMREPHz7EiRMnkJiYqLfMy5cv8dFHHwEAixpERERERPTGWNAgIiIiIvz777/o1q2bQTHDwcEBM2bMwMiRI+Hk5KT33MuXL7F27VrMmjXLnF0VUrNmzdCqVSvUr18fderUgZeXF1QqVa7XM3v2bIO2r7/+Gl988YXu8YIFC/RuMyVJEsaOHYsTJ068Xuez8GpxKCUlBcuWLcOECRPw8uVLvec+/fRT1KxZE1WqVMnTPhARERERkW2xs3QHiIiIiMjyZs2ahdjYWIP29evXY9y4cQbFDABwdXXFgAEDcOXKFd1Z+MbExcXh+++/R7t27RAQEAA3Nze4ubkhICAAHTp0wKJFiwzO7Afk2xaVLFkSKpVK91O4cGGkp6dn+V7ly5fXW97DwwNJSUm65zM/p1KpUKpUqSzX9fLlS8ycORM1atSAu7s7fH190ahRIyxfvtzo3CLZmTZtGiZPnowWLVrAy8srV6/VevLkCc6fP6/X5urqinHjxum1DR8+HAULFtRrO3ny5GtdEZIbzs7OGD58OA4ePGi0+GXstlepqanYu3cvvv32W3Tp0gXBwcEICAiAu7s7nJycUKhQIbz11lsYPHiwwZUnxty5cweTJk1Co0aNUKRIETg7O8PV1RUBAQGoWbMmunfvjpkzZ+LYsWO5yvDx48cYN24cKlWqBDc3N90VS+vWrTN5HZmdOXMGvXr1QkBAAFxcXFC8eHH07t0bly9fNun1t2/f1hunk5MTvL29Ub58efTq1QubNm2CWq3O8vV5+bn369fPYL8KCwuDWq3GsmXL0LhxYxQqVAh2dnbo16+fwetPnjyJ7t27o2jRonBxcUGpUqUwaNAg3Lhxw6TPgoiIiIhsjERERERENi0lJUXy8PCQAOj99OrV643XvXLlSsnT09Ng3a/++Pj4SOvXrzd4/aRJkwyW3bNnj9H3Onv2rMGyffv21Vvm1ecDAwONruvhw4dSpUqVsuxv48aNpUuXLhm0N23a1OTPxtS+ZDe+8uXLG122Tp06BsvOnz/f5L5ldujQIaOfQXamTZtmsLxKpZIiIyP1lgsPD89x28j806FDBykuLs7oe/7yyy+So6Ojyet68OCB3uvv3r1rNM/Q0FDJ19c3y/WMHDnSaH9WrlxpsOzUqVOluXPnSvb29kbX5ejoKC1fvjzLzzU1NVUaOXJklq/P/FOpUiXp4sWLRteTl5973759DZbfsWOH9Pbbb+e4P86ZM0eys7Mz+p6urq7S2rVrja7/0KFDWX5GRERERGTdeIUGERERkY07fvy43lUMWiNGjHij9c6ePRv9+/c3evXFq+Li4vDhhx/ixx9/1Gvv27evwbIbNmwwug5j7cbOCM9JSkoKQkJCcP369SyXOXLkCHr27Jnrdb8JY1emPH/+3Oiyxj7zs2fP5nmfsjJ06FDY2ekfakiShP3797/Rev/880+jc3H8/fffGDx4sNH5X97EjRs38O677xq9eklr4cKF2Ldvn0nr27RpE8aNG5fl1RNpaWkYOHAgdu/ebfCcRqNBly5dsHDhwmyvvtC6fv06GjZsmCe5Z/W5Z2XIkCE4evRotsv89ttvGD9+fJZXyrx8+RJ9+vTJ81ulEREREZHYOIcGERERkY07ffq0QZuXlxfeeuut117nsWPHMHHiRIP2gIAAtGrVChqNBnv37kVUVJTe8yNHjsTbb7+N6tWrAwAqVKiABg0a6P1Rc+vWrVi6dKnBbY02btyo97hUqVJo2rRprvs+Z84co7dnql69Oho2bIjHjx9j165d+X4Lp1cFBAQYtEVFReHmzZsoX768ru3hw4e4ffu2wbL379/P1/5lVqhQIVSrVs3gFkqnT59G//79DZZ3cXFBjRo1ULhwYRQqVAgeHh5ITEzE1atXcebMGUiSpFt2586dOHz4MJo0aaJr27hxo0Exo3z58mjYsCE8PDyQkJCAmzdvIjw8PMsikDHR0dG68bRv3x6pqanYsmULUlJS9Jb74Ycf0Lp16xzXd/XqVQBAzZo1Ua9ePd22lHl9kiRh4MCBuH37tt42Pnv2bOzcudNgnbVq1ULdunXx77//YteuXXjx4oXuuRcvXqBr1664ceMGXFxcDF77pp97Vh4+fAgAKFmyJJo3bw57e3tERETo5o2Jj483WjB1c3ND+/btUaBAARw+fBjXr1/H33//neP7EREREZHtYEGDiIiIyMbFxMQYtJUuXdrgDPvcmD59ut4fQwGgTZs22Lp1q+4Pq0lJSWjTpg2OHTumWyY9PR3ffPONXnGiX79+egWNuLg47N27Fx07dtS1nTx50uAP9n369Mn1xNvp6ekGV4kA8hUHixcv1q3v/PnzaNKkSa7+OP6mihUrhqpVq+oVUiRJQq9evfDTTz+hcuXKuHnzJoYNG2b0SoX4+Hiz9RWQC0qvFjSePHmi97hYsWLYu3cvGjduDFdXV6Pr2bp1K9577z2Dtsx/WI+MjNR7vl69ejh27Bjs7e312tPS0nDy5Els2rQJzs7OJo2jWrVq+Ouvv+Dr6wtAvloh87YHyFfsmGrcuHGYM2eO7rGxbenhw4fYvHmz7iqg58+fY+7cuQbrmjp1KqZNm6Z7fPPmTTRq1Ejvc46MjMSKFSswZMgQXVtefe7ZGThwIH744Qc4Ojrq2rRXgq1ZswbPnj3TW97X1xfHjh1DpUqVAABqtRr9+vXDb7/9ZtL7EREREZFtYEGDiIiIyMYZ+0O3p6fnG63v4MGDem0qlQpLly7VO0vcw8MDS5YsQY0aNfSW3bVrF9LS0nR/CP3ggw8wcuRIJCcn65ZZv3693h+VX73dlEqlMnq7qpxcuHBBd1a+lo+PD+bOnatXHKlVqxaGDBli9I/M+WnSpEkGt/45c+aMSVfTpKam5le3jDK2DSUkJOg99vX11V3ZcPXqVVy4cAF3795FUlISUlJSIEmSQWEMgMHk6K++V1JSEhISElCgQAG9dkdHRzRu3BiNGzc2eRwzZ87UFTMAoEOHDihevDj++ecfXVtcXByePXtm8H6vKlq0KL799lu9tqy2pd27d+sKGocOHTIoAJQrV85govXy5ctj8uTJGDVqlF77tm3b9AoaefW5Z6VChQpYsmQJHBz0Dzc9PDx0Y3vV2LFjdcUMALC3t8eiRYuwadMmgytiiIiIiMh2saBBREREZOO8vb0N2ozNqWGq8+fPG9zjv2rVqggMDDRYNjg42OCPw8+fP8fVq1cRHBys61/nzp2xfv163TI7duzAy5cv4erqCkmSsGnTJr31Nm7cGGXKlMl13y9evGjQltVZ7G3atDF7QaNnz544cuQIli5dmuvX5vTH9rxmbB4PY9va5s2b8cUXX+DGjRsmr/vff//Ve9yiRQt89913uscRERHw9/dH1apVUbFiRVSsWBFVqlRBo0aNULx4cZPfx9vbG+3btzdoL1q0qN42C8jjzekzbtGihd4VC1rGtqXM2+KZM2eMvsbYVVTt27c3KGgYe31efO5Z6dmzp0ExIzNj+1lISIhBW4ECBVC3bt1cXQFDRERERNaNk4ITERER2Tg/Pz+Dtrt37xo9Q9sUr95WCDA+/0N2z716G6xXr7ZISkrSzSdw5MgRgz8uv85k4ADw9OlTg7YSJUoYXTar9vz2008/4YcffkDhwoWNPu/n52fwB21AngfCnIzN4/FqnxcvXoz3338/V39UB6A3TwQAtGvXDp07d9ZrS01NxYULF7B+/XpMnz4dH3zwAUqUKIF69eoZnYvCmICAAKO3LTM2H0VWk1u/uj5jjG1LmYsHudmnjLXHxcXpXaGTV597VrRz4GRFhP2MiIiIiJSJBQ0iIiIiG1e3bl2Dtvj4eJw7d84CvTGuVatWKFasmF6b9jZTr95uys3NDd26dTNb3yxh6NChuH//Pnbv3o0ZM2Zg7NixmD59Onbs2IHIyEjUrFnT4DW1atUyW/9iYmJw7do1g/bM29q///6LCRMmvNb6jRXbfv/9dyxdutTgFmavOn36NDp27GgwibwxBQsWNNr+6twcIsnrz90YHx+f11o/EREREVFOWNAgIiIisnENGzbU3ds+s8WLF7/W+oxdOfDgwYMslzf23KtXjdjb2+Ojjz7Sa9u5cyfi4+OxefNmvfauXbu+9hwgxv6A/fDhQ6PLZtVuLq6urmjTpg0mTpyIuXPnYsqUKejYsSOcnZ2xfft2g+Xffvtts/Vt8eLFBlcsqFQqtGjRQvd43759ePnypd4yfn5+2LhxI2JiYqBWqyFJkt7cKdmxs7PDoEGDcOHCBcTExCA0NBRLlizBqFGjDIp2kiThyy+/fM3Rvb6s9gNj21LmK2pys08Za/fx8YGTkxOAvP/cjTF2VUtmIu1nRERERKQsLGgQERER2TgnJycMGjTIoP3XX3/Ftm3bcnx9SkqK3tUctWrVMjiDPSIiAvfv3zd47eXLlw1uF+Xu7o4qVaoYLPvqbaRevnyJzz//3OD2VK97uykARs/uP3LkiMEfgAFg7969r/0++enUqVMGuZUsWRItW7Y0y/sfO3YMs2fPNmh/77339G6HFBkZabDM+PHj8f7776Nw4cK6+SFOnTqV6z4ULlwYLVu2xJAhQ/D999/j1KlTBpOp//3334iLi8v1ut/EgQMHkJaWZtBubFvKvC3WqVPH4Pk9e/YYvc3Vrl27DNoyvz4/P3dTGdvP9u3bZ9AWFxeH06dP51s/iIiIiEg8LGgQERERESZMmGB0QuPu3bvju+++07v/vlZKSgpWrVqFoKAgrFmzRtfu7e2Nd955R29ZSZIwePBgvbO+nz9/jqFDhxqst127dkYnTq5cubLBH3ZXrlyp9zgwMBDNmzfPYpQ5q1mzJooUKaLXFhcXh//85z96t9u5ePEifvzxx9d+nzcxdepUXLlyxehz+/fvR6dOnQz+0D169Oh8v01ScnIyFi5ciFatWhn80d7FxQVfffWVXpv2ioHMLl26pPc4MjISgwcPzvG9t2/fjsmTJ+Py5ctGn9doNEYntE5JSclx3XkpKioKX3zxhV5bVttS27Ztdb83b97cYP+8desWvv76a722mzdv4ptvvjFYV+b5RfLyc39dmcemNW/ePPz999+6x2q1GqNGjTJ7RkRERESkbA6W7gARERERWV7hwoWxefNmtGnTRu+P0WlpaRgzZgy++eYbNG3aFEWLFkVycjLu3buHU6dOZTlJ8NSpU7F//369IsCePXtQoUIFtG7dGhqNBnv37sWjR4/0Xufg4GDwB9/M+vXrhzNnzmT5fO/evXO83U12HBwcMGTIEEydOlWvfdGiRfjrr7/QoEEDxMTEYOfOnbn6Q+vatWtzPNM8NjbWYDLvNm3aoE2bNnpt//3vf/HVV1+hTJkyqF27NgoXLowXL17g7NmzRgsdjRs3xvDhw03uq6m0fX3+/DkePHiA48ePIzEx0eiyy5cvN7jqpnbt2gbLrVmzBtevX0etWrUQHR2N0NBQkyaifvLkCWbMmIEZM2agcOHCCAoKQsmSJeHh4YHExEScOHFC74/lgHwbpqwmVs9Pc+bMQWhoKOrVq5fltlS8eHG9eWDc3d0xbtw4TJo0SW+5adOmYceOHahbty6ePn2KnTt3GnxeJUuWxMcff6x7nJef++vq3bs3vvzyS70rZJ4+fYpatWqhQ4cO8PHxweHDh43Ow0JERERENk4iIiIiIvqfHTt2SN7e3hKAXP2MHDnSYF2zZs3K9XqWLFmSbf+ePn0qOTs7Z/n6W7duZfv6V5cPDAw0WObly5dS5cqVc+xrQECAQVvTpk2Nvm/fvn1z/VkAkKZOnWqwriJFipj8+urVq0tRUVHZfiY5OXTo0Gv1HYDk7u4u/d///Z/R9arVaik4ODjHdYSEhOSY2/Lly3PdtwkTJuit4+7duybn2bRpU4Nl7969q7fMypUrDZYpWbJkjv1SqVTSn3/+afCe6enpUvv27XM1Rjc3N+nMmTP59rlLkvFt+9ChQ0Y/t8xWr15t0mdRokSJ11o/EREREVkn3nKKiIiIiHQ6duyIc+fOoUuXLrp76efEzc0N1apVM2ifMGECVqxYYdIE3T4+Pli3bh2GDBmS7XK+vr7o2LGj0efefvttlC1b1qQ+Z8fFxQV79+5FhQoVslwmODjYYDJyJbGzs0Pfvn1x+PBh+Pv7m/397e3t0aVLF5w+fRo9e/Y0uoydnR02btyI4sWLZ7meBg0aYP369Tm+X26vyunZsyemT5+eq9fkhf79+2Py5MlZ9tfBwQE//fQT2rdvb/Ccvb09tmzZgpEjR5p0+7BKlSrh+PHjeOutt/Ta8/JzfxN9+vTBjBkzsv0sFi9erDeRPBERERERbzlFRERERHrKli2LLVu24MaNG9i6dSv++usv3LhxA0+fPsWLFy/g4eGBEiVKIDg4GK1bt8a7774LHx8fo+vq378/unTpghUrViA0NBTh4eF4+vQpAKBQoUKoXr06QkJC0L9/f5MKHwDQt29fo8WEN5kM/FUBAQG4ePEivv/+e6xfvx63b9+Gg4MDKlSogB49emDYsGEGt8syl23btiE0NBSHDx/G/fv38e+//yIpKQm+vr66yb979OiBoKCgfO2HSqWCg4MDXF1d4ePjA39/f5QtWxZ16tRBly5dUKpUqRzXUaFCBVy4cAFz5szB9u3bcf/+fbi7u6NChQro2bMnPvvsM6Pzqbzq448/RnBwMA4ePIgzZ87g+vXr+Oeff5CYmAiVSgVPT0+ULl0a9erVQ8+ePdGoUaM8+ARezzfffIOQkBAsXrwYx44dw7///ouCBQuiefPmGD9+PIKDg7N8rZOTExYsWIDhw4fjl19+QVhYGG7duoW4uDi4uLjAz88PdevWRefOndG1a9csCx959bm/qYkTJ6JZs2aYP38+jh49imfPnsHPzw9NmzbF6NGjUatWrTzdr4mIiIhIfCpJynRjYyIiIiIiIiIiIiIiIgXiLaeIiIiIiIiIiIiIiEjxWNAgIiIiIiIiIiIiIiLFY0GDiIiIiIiIiIiIiIgUjwUNIiIiIiIiIiIiIiJSPBY0iIiIiIiIiIiIiIhI8VjQICIiIiIiIiIiIiIixWNBg4iIiIiIiIiIiIiIFI8FDSIiIiIiIiIiIiIiUjwWNIiIiIiIiIiIiIiISPFY0CAiIiIiIiIiIiIiIsVjQYOIiIiIiIiIiIiIiBSPBQ0iIiIiIiIiIiIiIlI8FjSIiIiIiIiIiIiIiEjxWNAgIiIiIiIiIiIiIiLFY0GDiIiIiIiIiIiIiIgUjwUNIiIiIiIiIiIiIiJSPBY0iIiIiIiIiIiIiIhI8VjQICIiIiIiIiIiIiIixWNBg4iIiIiIiIiIiIiIFI8FDSIiIiIiIiIiIiIiUjwWNIiIiIiIiIiIiIiISPFY0CAiIiIiIiIiIiIiIsVjQYOIiIiIiIiIiIiIiBSPBQ0iIiIiIiIiIiIiIlI8FjSIiIiIiIiIiIiIiEjxWNAgIiIiIiIiIiIiIiLFY0GDiIiIiIiIiIiIiIgUjwUNIiIiIiIiIiIiIiJSPBY0iIiIiIiIiIiIiIhI8VjQICIiIiIiIiIiIiIixWNBg4iIiIiIiIiIiIiIFI8FDSIiIiIiIiIiIiIiUjwWNIiIiIiIiIiIiIiISPFY0CAiIiIiIiIiIiIiIsVjQYOIiIiIiIiIiIiIiBSPBQ0iIiIiIiIiIiIiIlI8FjSIiIiIiIiIiIiIiEjxWNAgIiIiIiIiIiIiIiLFY0GDiIiIiIiIiIiIiIgUjwUNIiIiIiIiIiIiIiJSPBY0iIiIiIiIiIiIiIhI8VjQICIiIiIiIiIiIiIixWNBg4iIiIiIiIiIiIiIFI8FDSIiIiIiIiIiIiIiUjwWNIiIiIiIiIiIiIiISPFY0CAiIiIiIiIiIiIiIsVjQYOIiIiIiIiIiIiIiBSPBQ0iIiIiIiIiIiIiIlI8FjSIiIiIiIiIiIiIiEjxWNAgIiIiIiIiIiIiIiLFY0GDiIiIiIiIiIiIiIgUjwUNIiIiIiIiIiIiIiJSPBY0iIiIiIiIiIiIiIhI8VjQICIiIiIiIiIiIiIixWNBg4iIiIiIiIiIiIiIFI8FDSIiIiIiIiIiIiIiUjwWNIiIiIiIiIiIiIiISPFY0CAiIiIiIiIiIiIiIsVjQYOIiIiIiIiIiIiIiBSPBQ0iIiIiIiIiIiIiIlI8FjSIyCaoVCo0a9bM0t0QQlhYGFQqFaZNm2bprgAAVq1aBZVKhVWrVuXL+u/duweVSoV+/frptffr1w8qlQr37t3Ll/d9Ha+zHT969Aju7u6YMWNG/nTKgr744gt4enri8ePHlu4KEREREQDbOe4w9zh5jCLjMYry8RiFKP+xoEFEb0SlUuXqx1RK+aJ24MAB9OzZE6VKlYKrqyvc3d1RuXJlDBo0CKdOnbJo30Sj/VJu6k+pUqUs3WWrMHnyZLi5uWHEiBG6tufPn+O3335D9+7dUaFCBbi6usLHxwdNmzbFunXrslyXRqPB4sWLERQUBFdXVxQuXBg9evTAnTt3DJa9efMmZsyYgSZNmqBYsWJwcnJCQEAA+vTpg+vXrxtd/+HDhzF27Fg0b94c3t7eRg/iMhszZgzs7OwwdepU0z8QIiIiEpI1Hndo/0if+cfDwwMBAQFo27YtZs2ahUePHpm9X4ByjsfyG49RLIPHKET0Jhws3QEiEpux/0kvWLAA8fHxQv8P/OXLl/j444+xfv16uLm5oWXLlqhQoQIA4O+//8b//d//YdmyZfj111/Ru3dvC/c2b9WtWxfXrl1DoUKF8nS9Pj4+RreJ6dOnw9vbG6NGjTJY3hyKFy+Oa9euwdvb2yzvZ043b97Er7/+ismTJ8PDw0PXfuTIEfTu3RsFCxZEixYt0LVrV8TExGDLli3o2bMnjh07hh9++MFgfYMGDcLPP/+MqlWrYsSIEXj06BE2btyIffv24eTJkyhfvrxu2S+//BIbNmxAtWrV0KlTJ3h5eSE8PBxr1qzB5s2bsWfPHjRp0kRv/StWrMDq1avh5uaGkiVLIiEhIdvxFShQAJ988gkWLlyIiRMnIjAw8A0/MSIiIlIqaz3uAIDatWujQ4cOAIAXL14gOjoax48fx549ezB9+nTMmTMHw4cPt3AvLYvHKNaDxyhE9MYkIqI8FhgYKL3pPy99+/aVAEh3797Nkz4BkJo2bWry8j169JAASK1atZKio6MNnn/27Jk0fvx4adGiRXnSP1sGQAoMDMzy+ZUrV0oApJUrV5qtT5KU99tgXsjtdjx27FgJgPT333/rtV+4cEFas2aNlJKSotceHR2t239PnTql99zBgwclAFKTJk30Xrdr1y4JgNS6dWu95VeuXCmdP3/eoE/r1q2TAEhVqlQxeO7MmTPSlStXpPT0dOnEiRMSAKlv377ZjvH8+fMSAOmLL77IdjkiIiKyPqIfdxw6dEgCIA0aNMjo89u2bZMKFiwoAZB++eWXPOmfqXL6XHL7vVQ0PEYxHY9RDPEYhSh/8ZZTRGQ2//77L0aNGoXSpUvD2dkZfn5+6N69O65cuaK3XKlSpbB69WoAQOnSpXWX92a+L+fWrVvRo0cPlCtXDm5ubvD29kbjxo3x+++/v3E/Dx06hHXr1qFChQrYtm0bihQpYrCMj48PZs+ejYEDB+razp07h2HDhqFatWrw9vaGq6srgoKCMGvWLKSlpRms4+bNm+jfv7/u8/D19UVwcDBGjRoFSZL0lk1MTMTUqVNRtWpV3aW3ISEhOHr0qMF6o6KiMHLkSJQvX163bOXKlTF48GDEx8fnOP6s7k9bqlQplCpVCklJSRg5ciSKFSsGZ2dnVK9eHZs3b85xvXlh3759aNiwIdzc3FCwYEH07dsXT58+NVhuxYoV6NSpE0qVKgUXFxf4+voiJCQEhw4dMlg2q/vTGpOamorFixcjJCQEAQEBuu34vffew4ULFwyWz3xvXVP7DgA///wzqlWrBhcXFwQEBGD8+PFITk7O+QPKRKPRYPXq1ahRo4beWUkAUKNGDXz00UdwcnLSay9SpAgGDRoEQL60OrPly5cDAL7++mu917Vt2xbNmjXDvn37EBkZqWvv168fatasadCvDz/8EBUqVMDVq1fx77//6j331ltvoWrVqrC3tzd5nDVr1kS5cuXy7f7FREREJB5Rjjty0qlTJ9337AkTJuD58+d6z0uShBUrVqBRo0bw8vKCm5sb3nrrLaxYscJgXY8ePcLUqVNRv359+Pn5wdnZGaVKlcKQIUMQExOjt6wpn4vW48eP0bdvXxQqVAiurq6oX78+wsLCDJbjMQqPUQAeoxBR3uAtp4jILJ48eYIGDRrg9u3baNasGT788EPcvXsXmzdvxs6dO7F37168/fbbAIBRo0Zh1apVuHTpEkaOHKm7rDfz/UonTpwIJycnvP322yhatCiePHmCHTt2oFu3bli0aNEbXZL9yy+/AADGjh0LNze3bJd1dnbW/b58+XL88ccfaNKkCdq1a4cXL14gLCwMEydOxJkzZ/QOeh49eoS6devi+fPnaN++PT744AM8f/4cN2/exI8//oh58+bBwUH+Jzo2NhZNmjRBREQEGjVqhMGDByMhIQHbt29H8+bNsWnTJnTu3BmAfIl6o0aNcO/ePbRu3RpdunRBamoq7t69izVr1mDs2LFvdNlyWloaWrdujWfPnqFr16548eIF1q9fj+7du2PPnj1o3br1a687Jzt27MDOnTvRsWNHNGzYEIcPH8avv/6K27dvGxR2hg4diuDgYLRs2RKFCxfGP//8g23btqFly5bYsmULOnXq9Fp9iI2NxahRo9C4cWO0a9cOBQoUwJ07d7Bjxw7s3r0bhw8fRp06dd6o719//TWmTJmCIkWK4NNPP4WjoyM2bNiAa9eu5aqv4eHhePLkCbp27Zqr1zk6OgKAbvvTCgsLg7u7Oxo1amTwmpCQEISFheGvv/4y6RZsWb3H62rQoAHWrFmDv//+W3drOCIiIrJNIh13mKJZs2Zo3Lgxjhw5goMHD6Jjx44A5GJGr169sG7dOpQvXx49e/aEk5MTQkNDMWDAAFy9ehXz5s3Trefw4cOYP38+WrRogXr16sHR0REXLlzATz/9hL179+L8+fO64wRTPhcAiIuLw9tvvw1vb2/07t0bMTEx2LBhA0JCQnDu3DlUq1YNAI9RtHiMwmMUIsojFr5ChIiskLFLv/v37y8BkCZOnKjXvnPnTgmAVK5cOUmtVuvac7qU9vbt2wZtiYmJUlBQkOTt7S09f/5c7znk4jLYUqVKSQCkW7dumbS81v3796X09HS9No1GI3388ccSAOno0aO69kWLFkkApAULFhis5+nTp3qPe/bsKQGQli9frtf++PFjKSAgQCpcuLD08uVLSZIkaceOHRIAadSoUQbrTUxMlJKTk3Mch/bS96lTp+q1a3Pt1KmT3uW8+/fvlwBIISEhOa7bGJh4ObeDg4PeZ5ieni41a9ZMAiCdOHFC7zV37twxWM+jR4+kYsWKSeXLl9drv3v3rtHLho1tg8nJydLDhw8N1n3lyhXJw8NDatmy5Rv1/ebNm5KDg4NUvHhx6fHjx7r2+Ph4qWLFirnajpcsWWJ0u8lOenq6FBQUJKlUKik8PFzXnpSUJAGQqlWrZvR1mzdvlgBIX375ZY7vcerUKQmAVKdOnWyXM/VybkmSpIULF0oApBUrVuS4LBEREVkP0Y87crrllNaXX35p8F1r2bJlEgCpf//+Umpqqq49JSVF6tixowRAOnv2rK798ePHUmJiosG6V69eLQGQvvnmG712U245BUAaMmSI3uf5888/G4yJxygyHqPwGIWI8gZvOUVE+S41NRXr1q1DwYIF8cUXX+g9165dO7Rq1Qq3bt3CsWPHTF5nmTJlDNo8PDzQr18/xMfH48yZM6/d3+joaABAiRIlcvW6kiVLGlyGqlKpMHToUADA/v37DV7j6upq0Obr66v7/d9//8WGDRvwzjvv4JNPPtFbzs/PD+PGjcOTJ08M1m1svR4eHnpXlLyu77//Xu9y3hYtWiAwMPCNPnNT9OzZU+/MG3t7e/Tt2xcADN67dOnSBq8vWrQounbtips3b+L+/fuv1QdnZ2cUL17coL1q1apo3rw5Dh8+bPT2Yqb2fe3atUhPT8fo0aPh5+ena/fy8jLYd3Ly8OFDADB6y7SsfPnllwgPD0f//v11Z9QB0N0GIKsz57y8vPSWy0p8fDz69u0LOzs7zJkzx+R+5UQ7Ru2YiYiIyDaJdtxhqmLFigGA3q1wfvjhB7i7u2PJkiW6M8sBwMnJCd9++y0AYN26dbp2Pz8/vQmYtXr37g0vLy+jxyo5cXd3x+zZs2Fnl/Gnpb59+8LBwcHo58JjFB6j8BiFiPICbzmVyeHDhzF37lycO3cOUVFR2Lp1q+42LqaSJAnz58/HsmXLcP/+fRQqVAhDhgzB5MmT86fTRAK4fv06kpOT0bx5c6O3cGrevDlCQ0Nx8eJFNG7c2KR1xsTEYNasWdi9ezfu37+Ply9f6j3/6NGjPOl7bqSmpuKHH37A+vXrcf36dSQlJenNhZG5Tx07dsTEiRMxdOhQHDhwAG3atEHTpk0NDpjOnDkDtVqNlJQUg/vFAvI8HID8GXfo0AFNmjRB0aJFMWvWLFy6dAkdOnRA06ZNUblyZahUqjceo4+Pj9Ev4iVKlMCJEyfeeP3ZqV27ttH3BeTL3TO7c+cOZs6ciYMHD+Kff/5BSkqK3vOPHj1CYGDga/Xj4sWLmDNnDo4ePYro6GiDg4N///0XRYsWfa2+X7p0CQCM7gem7hta2nvfam8RkJOlS5di5syZqFmzJhYuXJir9zLFy5cv0aVLF1y/fh3ffvut0Xswvy5tEfDV+90SERGRbbGV444XL14gPDwcxYoVw+zZsw2e134/vX79ul77li1b8N///hfnz5/Hs2fPoFardc+9zjgqVKhgUCRxcHBAkSJF9L7j8hhFxmMUHqMQUd5gQSOT58+fIzg4GB9//DHee++911rHyJEjsW/fPsybNw9BQUGIjY1FbGxsHveUSCwJCQkAsj4LQ/vFSrtcTmJjY1GnTh1ERkaiUaNGaNmyJXx8fGBvb4+LFy9i+/btBl8Oc8Pf3x/37t3DP//8Y/SMrKx069YNf/zxBypUqIAPPvgAfn5+cHR0RFxcHBYuXKjXp1KlSuHkyZOYNm0adu3ahY0bNwIAKlWqhK+++grvv/++bqwAcOzYsWzPJNNOEOjt7Y2TJ09iypQp+OOPP7Br1y4AQEBAAP7zn/9gyJAhufswXpHV2S8ODg7QaDRvtO6caM+wefV9AegdjN26dQt169ZFQkICmjdvjo4dO8LLywt2dna6e6i+7vZx/PhxvPPOOwCA1q1bo3z58vDw8IBKpcK2bdtw6dIlo+s2te/as4cyn/mklZuzmICMM+BMmajv559/xpAhQxAUFITQ0FCDA1Nt7lmd3aTdd7PaPpKTk9GpUyccOnQIEydOxKRJk0wehym0f1jIac4bIiIism6iHXeYSltsKFy4MADg2bNnkCQJ//zzD6ZPn57l6zJPIj5//nyMHTsWhQsXRuvWrVGiRAnd98UFCxa81jiMfccF5O+5mb/j8hiFxyhaPEYhorzAgkYmbdu2Rdu2bbN8PiUlBZMnT8a6desQFxeHatWqYfbs2boK7rVr1/DTTz/hypUrqFixIgDjlxQS2RrtF6XHjx8bfV57i6esvhC/6pdffkFkZCS+/vprg0tcZ82ahe3bt79Bb6GbsO7AgQMmFzTOnDmDP/74AyEhIdi5c6feradOnjxp9GySatWqYfPmzUhLS8O5c+ewe/duLFq0CB988AGKFSuGRo0a6T6TMWPG6E3ql52SJUti1apV0Gg0uHz5Mvbt24dFixZh6NChKFCgAHr06GHSekT1/fff49mzZ1izZg0++ugjvecGDx6Mv/7667XX/e233yIlJQVHjhzRTSapdfLkSd3ZS69L+2U7JibG4OysrPafrGgPeHMqqi9fvhyDBg1ClSpVcODAARQsWNBgGXd3dxQtWhR3796FWq02uLWa9kqh8uXLG7z25cuX6NSpE0JDQzF+/HjMmDEjV+MwhXaM2jETERGRbRLtuMNUYWFhAKCb2Fnb/9q1a+Ps2bM5vj49PR1ff/01ihYtiosXL+r9YVqSpDy9zU5WeIzCYxSAxyhElDc4h0YuDBs2DCdOnMD69etx+fJlvP/++2jTpo3uH8k//vgDZcqUwZ9//onSpUujVKlS+OSTT3iFBtm8SpUqwcXFBWfOnMGLFy8Mntd+Qa9Ro4auTftlJPOZIVq3b98GAHTq1MnguSNHjrxxfwcMGABAPovp1UvKX6U900Xbp/bt2xt8kcqpT46Ojqhfvz6mT5+ORYsWQZIk/PnnnwDkgxaVSvVal0rb2dmhRo0aGD9+vO7+uTt27Mj1ekST1fYhSVKu7pec1bp9fX0NDhRevHiB8+fPv9G6ASA4OBiA8W0mt9t2UFAQAODGjRtZLqM9UKhcuTIOHjyY7Zftpk2b4vnz50Y/w7179wKQbyeQWeYDhbFjxxq9JUJe0I5RO2YiIiKyTaIdd5jir7/+wpEjR+Dn56c7C9/T0xOVK1fGtWvXDG5rZMy///6L+Ph4NGjQwOAs+7Nnzxo95snuc3kTPEbhMQrAYxQiejMsaJgoMjISK1euxKZNm9C4cWOULVsWY8eOxdtvv42VK1cCkO+HeP/+fWzatAm//vorVq1ahXPnzqFbt24W7j2RZTk5OaFHjx74999/MXPmTL3n9uzZg71796JcuXJ6E5Jp7zf54MEDg/Vpzwo5evSoXvvatWt1ly+/iebNm6NHjx64ceMG3nvvPcTExBgsk5CQgEmTJmHZsmXZ9ikiIsJgzABw7tw5o5e6a89wcXFxASDf/qp79+44fvw45s6dqzcnh9apU6d0B2wRERFGz5J5db3WLKssZs2ahStXrrzxup89e4aIiAhdm1qtxtixY/HkyZM3WjcgT8xnb2+P7777Tm+7S0hIwDfffJOrdTVu3Bh2dnY4deqU0ed//vlnDBo0CJUqVcLBgweNXkKe2cCBAwHIk/Klpqbq2nfv3o2wsDC0bt1a74wt7SXcoaGhGD16NObOnZur/ufGqVOn4ODggIYNG+bbexAREZHyiXbckZM//vgDXbt2BQDMnj1b79Y1I0aMwIsXL/Dpp5/q3VpK6+7du7h37x4A+VZBrq6uOH/+vF6h59mzZxg+fLjR987uc8ktHqPwGEWLxyhElBd4yykThYeHQ61Wo0KFCnrtKSkpukvfNBoNUlJS8Ouvv+qW++WXX1C7dm3cuHFDdxsqIls0e/Zs/PXXX/jmm29w/Phx1KtXD/fu3cOmTZvg5uaGlStXws4uo8b6zjvvYN68eRg4cCC6du0Kd3d3BAYGonfv3ujduzdmz56N4cOH49ChQwgMDMSlS5dw4MABvPfee9iyZcsb9/eXX36BJElYv349SpcujdatW6NChQqQJAk3b97EgQMHkJiYiDVr1gAA6tati7p162Ljxo2IiopC/fr1ERkZiR07dqB9+/bYvHmz3vrXrFmD//73v2jSpAnKli0LLy8vXL16Fbt27YKvry/69++vW/bHH3/EjRs3MH78eKxZswYNGjSAj48PHjx4gLNnz+LmzZuIioqCm5sbQkNDMW7cODRq1AgVKlRAwYIFcefOHezYsQMuLi4YOnToG382Sjd48GCsXLkSXbt2Rffu3VGwYEGcPHkS58+fR/v27bFz587XXvfw4cOxb98+vP322+jevTtcXFwQFhaGf/75B82aNdOd9fe6ypUrhylTpmDq1KmoXr06unfvDgcHB/z++++oXr16tmcyvapAgQJo2rQpjh49iuTkZL0DxYMHD2LgwIGQJAlNmjTBTz/9ZPD6GjVqoHPnzrrHzZs3xyeffIKff/4ZtWrVQvv27REVFYUNGzbA19cXixcv1nv94MGDERoaCn9/f3h6ehqd1L5fv34oVaqU7vHRo0fx888/A4Du4Ovo0aPo168fAKBQoUIGt15LSkrCyZMn0apVK7i7u5v8+RAREZF1Eu24A5CvktB+V0pOTkZUVBSOHz+OW7duwdXVFUuWLNF9H9IaNGgQTp48idWrV+PYsWNo2bIlihUrhsePH+P69es4deoU1q5di1KlSsHOzg5DhgzB/PnzERwcjI4dOyIhIQG7d+9GYGAgihUrZtCn7D6X3OIxCo9RtHiMQkR5QiKjAEhbt27VPV6/fr1kb28vXb9+Xbp586beT1RUlCRJkjRlyhTJwcFBbz0vXryQAEj79u0zZ/eJLCowMFAy9s/LkydPpBEjRkiBgYGSo6OjVKhQIalbt25SeHi40fXMmTNHKl++vOTo6CgBkJo2bap77uLFi1Lr1q2lAgUKSJ6enlLTpk2l/fv3SytXrpQASCtXrtRb16uvN1VoaKjUo0cPKTAwUHJxcZFcXFyk8uXLS5988ol06tQpvWVjYmKkjz/+WCpWrJjk4uIiBQUFSUuWLJHu3LkjAZD69u2rW/bkyZPSoEGDpGrVqkk+Pj6Sq6urVL58eWnYsGHS/fv3Dfrx4sULac6cOVLt2rUld3d3ydXVVSpdurTUuXNn6ddff5XS0tIkSZKkq1evSiNHjpRq1qwpFSxYUHJ2dpbKlCkj9e3bV4qIiDBpzIcOHZIASFOnTtVrDwwMlAIDA42+pmnTpkYzNwWALNcrSVKWmWbX10OHDkmNGjWSPD09JR8fH6ldu3bSuXPnpKlTp0oApEOHDumWvXv3rkE+kiRJffv2lQBId+/e1WvfvHmzVKtWLcnNzU0qVKiQ1L17d+n27dtGl3+dvkuSJC1fvlyqUqWK5OTkJJUoUUIaO3as7v8nudmON2zYIAGQNmzYoNeu7Vd2P69+HpIkSWq1Wlq4cKFUtWpVydnZWSpYsKD0wQcfSLdu3TJYVrtNZPeTOQdT+mVsO1m1apUEQNq2bZvJnwsRERFZB9GPO7TfBzP/uLm5SSVKlJBCQkKkWbNmSY8ePcp2HRs2bJBatmwpFShQQHJ0dJSKFy8uNWvWTJo/f7705MkT3XKpqanSt99+K5UvX15ydnaWSpYsKY0ZM0ZKTEzM8nt+dp9LduN8dX08Rslo5zEKj1GI6M2pJMnI/UsIKpUKW7du1VV+//77b1SsWBGHDx9G48aNjb5m3759CAkJwa1bt1C2bFkAwKVLl1CjRg3cuHHD4OoOIiKi/JSWloaKFSuibNmyCA0NtXR38kXjxo3x+PFjXLt2zWD+GiIiIiIiUhYeoxDRm+IcGpkkJSXh4sWLuHjxIgD5npMXL15EZGQkKlSogF69eqFPnz7YsmUL7t69i9OnT2PmzJm6SwNbtmyJWrVq4eOPP8aFCxdw7tw5DBo0CK1atWIxg4iIzM7R0REzZ87E/v37cfz4cUt3J88dOHAAR48exezZs3mgQEREREQkAB6jENGb4hwamZw9exbNmzfXPR49ejQAoG/fvli1ahVWrlyJb775BmPGjME///yDQoUKoX79+ujQoQMAwM7ODn/88QeGDx+OJk2awN3dHW3btsX8+fMtMh4iIqIPPvgAkZGRePr0qaW7kufi4+Mxb948dOnSxdJdISIiIiIiE/EYhYjeBG85RUREREREREREREREisdbThERERERERERERERkeKxoEFERERERERERERERIpn83NoaDQaPHr0CJ6enlCpVJbuDhERERGRRUiShMTERBQrVgx2djzvyVx4PEJEREREZPrxiM0XNB49eoSAgABLd4OIiIiISBEePHiAEiVKWLobNoPHI0REREREGXI6HrH5goanpycA+YPy8vKySB/UajWuX7+OSpUqwd7e3iJ9oKwxH7EwL/EwMzExN7EwL7FYKq+EhAQEBATovh+TeVj6eIT/PigfMxIL8xIL8xITcxML8xKLJfMy9XhEJUmSZKY+KVJCQgK8vb0RHx9vsYIGEREREZGl8XuxZfBzJyIiIiIy/Xsxb46rAJIkISEhATZeW1Is5iMW5iUeZiYm5iYW5iUW5kXmxO1N+ZiRWJiXWJiXmJibWJiXWETIiwUNBdBoNLhz5w40Go2lu0JGMB+xMC/xMDMxMTexMC+xMC8yJ25vyseMxMK8xMK8xMTcxMK8xCJCXixoEBERERERERERERGR4tn8pOCmUqvVSEtLy7d1S5KE5ORkTo6jIE5OTrCzY82PiIiIiCwvv45HeCyifMYycnR0ZF5ERERkk1jQyIEkSYiOjkZcXFy+voe9vT3u378PlUqVb+9DuWNnZ4fSpUvD3t4eLi4ulu4O5QLzEg8zExNzEwvzEgvzIq38Ph7hsYjyZZWRj48P/P39mZsC8d9wsTAvMTE3sTAvsSg9L5Wk5Bk+zCCn2dOjoqIQFxcHPz8/uLm58cuijdBoNHj06BEcHR1RsmRJ5k5ERERWL6fvxZQ/eDxCuSVJEl68eIGYmBj4+PigaNGilu4SERER0Rsz9XiEV2hkQ61W6w4eChYsmG/vI0kS1Go17O3teYCiIIULF8ajR4+QmpqKpKQkFChQgLegEoBGo8GzZ8+Yl0CYmZiYm1iYl1iYF2mZ43iExyLKZywjV1dXAEBMTAz8/Px4+ykF4b/hYmFeYmJuYmFeYhEhL2X2SiG096h1c3PL9/dKTU3N9/eg3HFycgIApKen48GDB7Dxi5mEIUkS8xIMMxMTcxML8xIL8yItcx2P8FhE+YxlpN0u8muuR3o9/DdcLMxLTMxNLMxLLCLkxYKGCXimkm1i7kRERESkBPxeSsZwuyAiIiJbxIIGEREREREREREREREpHgsaCqHUe5LlhkqlwrZt2yzdjXzh6elp6S5QLjAv8TAzMTE3sTAvsTAvMicei5jHqlWr4OPj81qvtYaMbAn/DRcL8xITcxML8xKL0vPityIFUKlUcHFxybNLhlUqVbY/06ZNy/K19+7dg0qlwsWLF/OkL6+Kjo7G8OHDUaZMGTg7OyMgIAAdO3bEgQMH8uX98oK9vT3Kli3LifYEwbzEw8zExNzEwrzEwrzInGzlWKRfv366Pjg6OqJIkSJo1aoVVqxYAY1Gk+fvV6pUKSxYsCBP1pXXGVH+4r/hYmFeYmJuYmFeYhEhLxY0FECSJKSlpeXZZCtRUVG6nwULFsDLy0uvbezYsXnyPrl179491K5dGwcPHsTcuXMRHh6OPXv2oHnz5hg6dKhF+mQKjUaD6OjofDnQobzHvMTDzMTE3MTCvMTCvMicbOVYBADatGmDqKgo3Lt3D7t370bz5s0xcuRIdOjQAenp6RbrV07yOiPKX/w3XCzMS0zMTSzMSywi5MWChkKkpaXl2br8/f11P97e3lCpVLrHfn5++O6771CiRAk4OzujRo0a2LNnj+61pUuXBgDUrFkTKpUKzZo1AwCcOXMGrVq1QqFCheDt7Y2mTZvi/PnzuerXkCFDoFKpcPr0aXTt2hUVKlRA1apVMXr0aJw8eVK33HfffYegoCC4u7sjICAAQ4YMQVJSku75+/fvo2PHjihQoADc3d1RtWpV7Nq1S/f8lStX0LZtW3h4eKBIkSLo3bs3/v33X93zmzdvRlBQEFxdXVGwYEG0bNkSz58/z7LfkiQhOjqaBxCCYF7iYWZiYm5iYV5iYV5kbrZwLAIAzs7O8Pf3R/HixVGrVi1MmjQJ27dvx+7du7Fq1SrdcnFxcfjkk09QuHBheHl54Z133sGlS5d0z9++fRudOnVCkSJF4OHhgTp16mD//v2655s1a4b79+/j888/110VktnevXtRuXJleHh46IosWmFhYahbty7c3d3h4+ODRo0a4f79+3maEeUv/hsuFuYlJuYmFuYlFhHyYkHDxixcuBDz58/HvHnzcPnyZYSEhODdd9/FzZs3AQCnT58GAOzfvx9RUVHYsmULACAxMRF9+/bF0aNHcfLkSZQvXx7t2rVDYmKiSe8bGxuLPXv2YOjQoXB3dzd4PvO9ZO3s7LBo0SJERERg9erVOHjwIMaPH697fujQoUhJScHhw4cRHh6O2bNnw8PDA4B88PHOO++gZs2aOHv2LPbs2YPHjx+je/fuAOQzxnr06IGPP/4Y165dQ1hYGN577z1F76RERERERNbAUsci2XnnnXcQHBysey8AeP/99xETE4Pdu3fj3LlzqFWrFlq0aIHY2FgAQFJSEtq1a4cDBw7gwoULaNOmDTp27IjIyEgAwJYtW1CiRAl89dVXuitTtF68eIF58+ZhzZo1OHz4MCIjI3VXraSnp6Nz585o2rQpLl++jBMnTmDgwIG81RQRERFRJg6W7oCI3noLiI7O23VKkgty+p7q7w+cPftm7zNv3jxMmDABH374IQBg9uzZOHToEBYsWIAlS5agcOHCAICCBQvC399f97p33nlHbz3Lli2Dj48P/vrrL3To0CHH97116xYkSUKlSpVyXHbUqFG630uVKoVvvvkGgwcPxo8//ggAiIyMRNeuXREUFAQAKFOmjG75H374ATVr1sSMGTN0bStWrEBAQAD+/vtvJCUlIT09He+99x4CAwMBQLceIiIiIkvjORaUo3w4GHGRJJjjYMRSxyI5qVSpEi5fvgwAOHr0KE6fPo2YmBg4Ozvr+r1t2zZs3rwZAwcORHBwMIKDg3Wv//rrr7F161bs2LEDw4YNg6+vL+zt7eHp6ak3DkC+Gmbp0qUoW7YsAGDYsGH46quvAAAJCQmIj49Hhw4ddM9XrlwZkiTh5cuXbzxOIiIiImvAgsZriI4G/vknL9eo+t9P/kpISMCjR4/QqFEjvfZGjRrpXUJtzOPHj/HFF18gLCwMMTExUKvVePHihe4spJzk5gqI/fv3Y+bMmbh+/ToSEhKQnp6O5ORkvHjxAm5ubhgxYgQ+++wz7Nu3Dy1btkTXrl1RvXp1AMClS5dw6NAh3RUbmd2+fRutW7dGixYtEBQUhJCQELRu3RrdunVDgQIFsuyPSqWCr68vz4wSBPMSDzMTE3MTC/NSNo0GOHkS2LJF/vnzT+ZF2cjjgxHzHIlY9lgkJ5Ik6fa3S5cuISkpCQULFtRb5uXLl7h9+zYA+QqNadOmYefOnYiKikJ6ejpevnxpUn/c3Nx0xQoAKFq0KGJiYgAAvr6+6NevH0JCQtCqVSu0bNkS3bt3h7+/v6In5iR9/H+uWJiXmJibWJiXAO7dA/btA/btg11qKnx/+EHRebGg8RpeOcnG6t8XAPr27YunT59i4cKFCAwMhLOzMxo0aIDU1FSTXl++fHmoVCpcv3492+Xu3buHDh064LPPPsO3334LX19fHD16FAMGDEBqairc3NzwySefICQkBDt37sS+ffswc+ZMzJ8/H8OHD0dSUhI6duyI2bNnG6y7aNGisLe3R2hoKI4fP459+/Zh8eLFmDx5Mk6dOqW7Z++r7OzsULJkSZPGSZbHvMTDzMTE3MTCvJTn2TPgr7+AvXuBbdv0T7jfvt0OEycyL8qCDR6MvOmxSE6uXbumOxZISkpC0aJFERYWZrCc9ja5Y8eORWhoKObNm4dy5crB1dUV3bp1M6k/jo6Oeo9VKpXeyV8rV67EiBEjsGfPHmzYsAFffPEFQkNDUb9+/dcfIJkV/58rFuYlJuYmFualMJIE/P03cPhwxk+mkzJUDg4o6eMD2Cl3pgoWNF7Dm9726VWSJCE1NRVOTk75Wv3y8vJCsWLFcOzYMTRt2lTXfuzYMdStWxcA4OTkBABQq9V6rz127Bh+/PFHtGvXDgDw4MEDvYm2c+Lr64uQkBAsWbIEI0aMMJhHIy4uDj4+Pjh37hw0Gg3mz58Pu//tOBs3bjRYX0BAAAYPHozBgwdj4sSJWL58OYYPH45atWrh999/R6lSpeDgYHzzVqlUaNSoERo1aoQpU6YgMDAQW7duxejRo40ur9FoEBkZiRIlSuj6RMql0Wjw8OFD5iUQZiYm5iYW5mV5L17IxwqhocChQ8DFi8ZvL2VvDzx6JCEy8gHzIuPy+GDEFo5FsnPw4EGEh4fj888/BwDUqlUL0dHRcHBwQKlSpYy+5tixY+jXrx+6dOkCQC6C3Lt3T28ZJycng3GYqmbNmqhZsyYmTpyIBg0a4P/+7/9Qs2bNfM+I8gb/nysW5iUm5iYW5mVhGg0QHq5fwPjf1aHGSF5eeHz4MPzatVNsXsrslQ163S+7uTVu3DjMnj0bGzZswI0bN/Cf//wHFy9exMiRIwEAfn5+cHV11U2mHR8fD0C+wmLNmjW4du0aTp06hV69esHV1TVX771kyRKo1WrUrVsXv//+O27evIlr165h0aJFaNCgAQCgXLlySEtLw+LFi3Hnzh2sWbMGS5cu1VvPqFGjsHfvXty9exfnz5/HoUOHULlyZQDyhOGxsbHo0aMHzpw5g9u3b2Pv3r3o378/1Go1Tp06hRkzZuDs2bOIjIzEli1b8OTJE93rjZEkCbGxsZw4XBDMSzzMTEzMTSzMy/w0GvnvzjNnAu+8AxQoALRtC3z3HXDhgn4xw8UFePddYNUq4PFjYMECDfMis7KFYxEASElJQXR0NP755x+cP38eM2bMQKdOndChQwf06dMHANCyZUs0aNAAnTt3xr59+3Dv3j0cP34ckydPxtn/FZPKly+PLVu24OLFi7h06RJ69uwJjUaj916lSpXC4cOH8c8//5hcfLl79y4mTpyIEydO4P79+9i3bx9u3ryJypUrmy0jenP8f65YmJeYmJtYmJcFvHwJ/PknMGAAUKQIUKMGMGIEsHmzYTHD1VU+YPnqK+DUKWiiohBdooSi8+IVGjZmxIgRiI+Px5gxYxATE4MqVapgx44dKF++PADAwcEBixYtwldffYUpU6agcePGCAsLwy+//IKBAweiVq1aCAgIwIwZMzB27NhcvXeZMmVw/vx5fPvttxgzZgyioqJQuHBh1K5dGz/99BMAIDg4GN999x1mz56NiRMnokmTJpg5c6buAAOQD7iGDh2Khw8fwsvLC23atMH3338PALqzviZMmIDWrVsjJSUFgYGBaNOmDezs7ODl5YXDhw9jwYIFSEhIQGBgIObPn4+2bdvm0SdMREREturBA92tZ7F/PxAba3w5lQoIDgaaN8/4yTz9F/9uSdbKksciALBnzx4ULVoUDg4OKFCgAIKDg7Fo0SL07dtXdwaiSqXCrl27MHnyZPTv3x9PnjyBv78/mjRpgiJFigAAvvvuO3z88cdo2LAhChUqhAkTJiAhIUHvvb766isMGjQIZcuWRUpKikl/FHBzc8P169exevVqPH36FEWLFsXQoUMxaNAgpKSk5Hq8REREZEMePwZ27gR27JAPSF6+NL6clxfw9ttAkybyT+3awP+ukgUgxMGISlJyucUMEhIS4O3tjfj4eHh5eek9l5ycjLt376J06dJwcXHJtz5IkoSXL1/C1dWVlxAriDb/kiVL4ubNmwgKCuJkfAJQq9UIDw9nXgJhZmJibmJhXvnjxYuMeTD27QOuXct62VKlgFatgNat5QLGK/MN67FUXtl9L6b8Y+njER6LKF9WGZnreJVyh//PFQvzEhNzEwvzyieSBFy/DmzfLhcxTp40fk9bd3f5QKRZM7mAUb26fJ/bLFgyL1OPR3iFhkK8OjkcKYdKpYK/vz8P8ATBvMTDzMTE3MTCvPLOjRvyiU979si3n83qpGlvb/nK7Vat5J+yZeUrM0zBvMjceCyifMxIHPw3XCzMS0zMTSzMKw+lpwPHjskFjB07gFu3jC/n5wd07Cjf17ZVK/m2UiYSIS8WNBRApVLxC6qC2dnZwd/f39LdIBMxL/EwMzExN7Ewrzdz7x6wYQOwbh1w6ZLxZezsgPr15SswWrcG6tQBHF7zmzbzInPisYjyMSOx8N9wsTAvMTE3sTCvPHDyJLB0qVzEePbM+DJVqgCdOslFjLp15QOU1yBCXixoKIAkSUhJSYGzs7Oiq1+2Sq1W4/bt2yhVqhQvjROAWq3GvXv3mJdAmJmYmJtYmFfuRUcDGzcC69cDJ04YX6ZkSSAkBGjTRr4aw8cnb96beZE58VhE+ZiRWPhvuFiYl5iYm1iY12vQaICzZzPmxLh40XAZe3ugcWO5gNGxI1CuXJ68tQh5saChEBqNxtJdoGwkJiZauguUC8xLPMxMTMxNLMwrZ7GxwJYt8pUYYWHyccSr6tYFuncH2rUDKlUy/TZSucW8yJx4LKJ8zEgs/DdcLMxLTMxNLMzLBJIEXL4MrFghn1UVE2O4jKcn0LatXMRo2xbw9c2Xrig9LxY0iIiIiMhmpaXJJz2tWiVP7p2WZrhMUBDw4YfyT5kyZu8iERERERFZo8uX5cn5jh+Xf548Mb5c7drA0KFAjx6Ai4t5+6hALGiYgGfD2CZJkizdBSIiIsonUVHA8uXAf/8LPHpk+HzZsvLxwocfAlWrmr9/RJnxeISM4XZBREQkoIcP5VtJ/fqrXMQwxsVFvrdt+/bylRglSpi3jwrHgkY2nJycYGdnh0ePHqFw4cJwcnLKl3uWSpIEjUaD5ORk3hNVISRJwpMnT6BSqeDk5ISAgABmIwiVSsW8BMPMxMTcxMK8ZJIEHD0KLFkC/P47kJ6u/3zx4sAHH8iFjNq18+92UjlhXqRljuMRHoso36sZSZKE1NRUPHnyBHZ2dnBycrJ0FykT/hsuFuYlJuYmFub1P1evAlOmyAcixhQoADRoIN/btlevvJugL5dEyEsl2fhp6AkJCfD29kZ8fDy8vLwMnk9NTUVUVBRevHhhgd6RJalUKpQoUQIeHh6W7goRERG9gbg4YM0aYOlS+TgiMzs7eQ69IUOAli3lx7Yqp+/FlD94PEKvy83NDUWLFmVBg4iISKmePZPva7tyJbBvn+HzVasCAwfKByKVKtn2wQhMPx7hFRo5cHJyQsmSJZGeng61Wp0v76FWq3H//n0EBgYqdvZ4W+To6Ah7e3uo1WrcvHkT5cuXZz4CYF7iYWZiYm5iscW8JAk4dgz4+Wdg40bg5Uv95wsXBj79FBg0CChZ0jJ9zIot5kVZy+/jER6LKJ+xjOzt7eHg4KDosydtFf8NFwvzEhNzE4tN5aXRAOfPA7t3y3NjnDwpt2Xm7w8MHgx06ADUqmW5y8KzIEJeLGiYQKVSwdHREY6OjvmyfrVajdTUVLi4uCh2Q7F1ycnJlu4C5QLzEg8zExNzE4ut5JWYKM+NsWwZcOOG4fONG8tFjG7dAGdn8/fPVLaSF5kmP49HeCyifMxIPPw3XCzMS0zMTSxWn9e1a8AvvwC//QY8fmx8mdKl5Ym9P/sMcHMzb/9ySel5saBBRERERMJLSQG+/x6YOxeIjdV/zscH+Ogj+UQoTvBNRERERERvLClJvhT8l1+ynty7cmV5Uu/27YFmzWz+llJ5hQUNIiIiIhKWJMlXdI8ebXhFRrNmwCefAO+9B7i6WqR7RERERERkLSQJOH1aLmKsWycXNTJzcgLatJEn9g4JAUqVskg3rR0LGgpgZ2eHMmXKwI5VOkViPmJhXuJhZmJibmKxxrwkCfjzT+Crr4CzZzPa7eyAXr2AiRPlE6JEZI15kXJxe1M+ZiQW5iUW5iUm5iYWq8jr5k3gjz/kyb2vXDF8vlo1+Uyqjz4CChY0f//ykAh5saChACqVKtuZ28mymI9YmJd4mJmYmJtYrCkvSQJ27JALGefP6z/XoAHw009AcLBl+pZXrCkvUj5ub8rHjMTCvMTCvMTE3MQiZF6SBFy6BGzaBGzeDPz9t+EyHh5Ajx7AgAFA3bqKm9z7dYmQl3JLLTZErVYjPDwcarXa0l0hI5iPWJiXeJiZmJibWKwhL40G2LIFqFkT6NxZv5hRo4b83NGj4hczAOvIi8TB7U35mJFYmJdYmJeYmJtYhMpLkoA1a4AKFeQDjxkzDIsZDRsCK1YAUVHAsmVAvXpWU8wAxMiLV2gohJI3EmI+omFe4mFmYmJuYhE1L40G+P134OuvgfBw/edq1QKmTgU6drSqYwgA4uZFYuL2pnzMSCzMSyzMS0zMTSxC5HXhAjB9OrB9u367SgW8/TbQoQPw7rtApUqW6Z8ZKT0vFjSIiIiISJHOnQOGDJHn3cusTh25kNGunfUVMoiIiIiIyIyOHgXGjgVOndJvb9oU+OADoEsXwN/fMn0jo1jQICIiIiJFefEC+PJLYMEC+QoNrXr15EJGmzYsZBARERER0Ru4cweYPBlYv16/vXBhYOlS4L33LNMvypFKkiTJ0p2wpISEBHh7eyM+Pt5iE55IkoTk5GS4uLhAxaNzxWE+YmFe4mFmYmJuYhEpr7Aw4JNPgNu3M9qqVAG++w5o3do2ChmWyksJ34ttkaU/d5H+fbBVzEgszEsszEtMzE0sisvryRPgm2+An34C0tIy2qtVA4YPlyf69vS0XP8szJJ5mfq9mFdoKISTk5Olu0DZYD5iYV7iYWZiYm5iUXpe8fHAf/4jnwyl5ewMTJsGjBkDODparGsWofS8yLpwe1M+ZiQW5iUW5iUm5iYWi+el0QB//AFs3izPkZGYmPFcoUJygeOTTwB7e8v1UUEsnlcO7CzdAQI0Gg3Cw8OhyXxPBVIM5iMW5iUeZiYm5iYWJeclScCWLUDlyvrFjEaNgEuX5CKHrRUzlJwXWR9ub8rHjMTCvMTCvMTE3MRi8byOHQPq1wc6dwZ++y2jmOHmBnzxhXxp+KBBLGb8j8XzMgGv0CAiIiIii7h7F/j8c/kkKS13d2DmTGDoUMCOp94QEREREdHruH8fGD8e2LhRv93LC+jZE5gyBSha1DJ9ozfCggYRERERmVVCgjzp96u3rW3fHvjxR6BkScv1jYiIiIiIBPb8OTBrFjBvHpCcnNFerRrw7bdAmzaAwm+pRNnjeW9EREREZDZHjgDBwcCiRRnFjCJFgA0b5NvasphBOZk5cybq1KkDT09P+Pn5oXPnzrhx44beMsnJyRg6dCgKFiwIDw8PdO3aFY8fP9ZbJjIyEu3bt4ebmxv8/Pwwbtw4pKen6y0TFhaGWrVqwdnZGeXKlcOqVasM+rNkyRKUKlUKLi4uqFevHk6fPp3nYyYiIiKiHGg0wJo1QIUK8pwY2mJGoULyvW0vXgTefZfFDCugkiRJsnQnLMnU2dPzkyRJ0Gg0sLOzM/vs8ZQz5iMW5iUeZiYm5iYWJeSVkgJMnQrMmSPPmwHIt60dPRoYOxbw9rZItxTJUnkp4XuxKdq0aYMPP/wQderUQXp6OiZNmoQrV67g6tWrcHd3BwB89tln2LlzJ1atWgVvb28MGzYMdnZ2OHbsGABArVajRo0a8Pf3x9y5cxEVFYU+ffrg008/xYwZMwAAd+/eRbVq1TB48GB88sknOHDgAEaNGoWdO3ciJCQEALBhwwb06dMHS5cuRb169bBgwQJs2rQJN27cgJ+fn0njsfTnroR/Hyh7zEgszEsszEtMzE0sZskrLEw+qDh3LqPNwQEYMUK+NNzHJ3/e1wpZcv8y9XsxCxoKOHCTJAnJyclwcXHhP8QKxHzEwrzEw8zExNzEYum8IiKAXr3kSb61GjcGfv0VKFXK7N1RPEvlpYTvxa/jyZMn8PPzw19//YUmTZogPj4ehQsXxtq1a9GtWzcAwPXr11G5cmWcOHEC9evXx+7du9GhQwc8evQIRYoUAQAsXboUEyZMwJMnT+Dk5IQJEyZg586duHLliu69PvzwQ8TFxWHPnj0AgHr16qFOnTr44YcfAMiTKAYEBGD48OH4z3/+Y1L/Lf25W/rfB8oZMxIL8xIL8xITcxNLvuZ17RowYYJ8qXdmHTvKt5yqUCFv388GWHL/MvV7MW85pQAajQY3btxQ9Ozxtoz5iIV5iYeZiYm5icVSeWk0wIIFQO3aGcUMR0dg9mzg0CEWM7LC/St34uPjAQC+vr4AgHPnziEtLQ0tW7bULVOpUiWULFkSJ06cAACcOHECQUFBumIGAISEhCAhIQERERG6ZTKvQ7uMdh2pqak4d+6c3jJ2dnZo2bKlbhkRcHtTPmYkFuYlFuYlJuYmlnzJ6/Fj4LPPgKAg/WJG9erAvn3Ajh0sZrwmEfYvTgpORERERHkuMhL4+GPgwIGMtqpVgd9+A2rUsFi3yMpoNBqMGjUKjRo1QrVq1QAA0dHRcHJygs8rtxYoUqQIoqOjdctkLmZon9c+l90yCQkJePnyJZ49ewa1Wm10mevXr2fZ55SUFKSkpOgeJyQkAJBvg6VWqwEAKpUKdnZ20Gg0yHxBvbZdu1xO7dpbBRhrB+TPT61WQ5IkqNVqvfbM7O3tdbcfeLX91T5m1W7OMZnSLtKYMmdkLWOyxpy0fdTmpf2xhjHl1C7ymLQ5vbq8yGOyxpyy2s8AWM2YMvfR2sYEIMv9LNdjSkoCvvsOqrlzoUpKylh/8eKQvvoK0kcfAfb2UP3vlknMKfdjevV7hznH9OrzWWFBg4iIiIjyjCQBP/8MjBkDJCZmtH/+OTBjBuDiYrm+kfUZOnQorly5gqNHj1q6KyabOXMmpk+fbtAeEREBDw8PAPLVJiVLlsTDhw8RGxurW8bf3x/+/v64d+8eEjPtYAEBAShYsCBu3ryJZO0EmADKlCkDLy8vXL16Ve8AsWLFinByckJ4eDgkSUJsbCwiIiJQvXp1pKam6k2ybm9vj6CgICQmJuLOnTu6dhcXF1SqVAnPnj3DgwcPdO2enp4oW7YsYmJidMUhc48ps6CgIOHHFBERoctIpVJZxZisMSftmLT7lEajQVpamlWMyRpz0qpSpQrUarVu/7KGMVljTq+OSZIkPHv2DACsZkyA9eWkHVOVKlWQlpamt5/lekw+PigZFgbNf/4Dh8ePde0ad3fYTZyIu506ISE9Hbh6lTm94Zhu376t+97h6upq1jElZSpSZYdzaCjgXsFqtRpXr15FlSpVYG9vb5E+UNaYj1iYl3iYmZiYm1jMlVdkJPDpp/JV3lrFiwOrVwMtWuTb21odS+1fSvhenBvDhg3D9u3bcfjwYZQuXVrXfvDgQbRo0QLPnj3Tu0ojMDAQo0aNwueff44pU6Zgx44duHjxou75u3fvokyZMjh//jxq1qyJJk2aoFatWliwYIFumZUrV2LUqFGIj49Hamoq3NzcsHnzZnTu3Fm3TN++fREXF4ft27cb7bexKzQCAgIQGxur+9zNfYXGtWvXULlyZTg6OuraM7PmsxBFGFNaWpouI3t7e6sYkzXmlPnM8WvXrqFq1aq6/og+ppzaRR6TJEm4evUqKlWqpPf/XJHHZI05ZbWfVatWTdcf0ceUuY/WklNmERERRvczk8Z04wbsBg+G6sgR3TKSvT2kTz8FpkyBXdGizCkPx/Tq9w5zjikhIQG+vr6cFDwnoh24ERERESlNVldl9O8PfPcd8Mqdf0ihRPleLEkShg8fjq1btyIsLAzly5fXe147Kfi6devQtWtXAMCNGzdQqVIlg0nBo6Ki4OfnBwBYtmwZxo0bh5iYGDg7O2PChAnYtWuX3lltPXv2RGxsrN6k4HXr1sXixYsByAeGJUuWxLBhw4SZFJyIiIhIkVJTgTlzgK+/ln/XevddeVK+SpUs1zfKF5wUXCCSJCEhIcGg0kXKwHzEwrzEw8zExNzEkp95RUYCbdoAAwdmFDOKFwd27gRWrGAx43Vw/8re0KFD8dtvv2Ht2rXw9PREdHQ0oqOj8fLlSwCAt7c3BgwYgNGjR+PQoUM4d+4c+vfvjwYNGqB+/foAgNatW6NKlSro3bs3Ll26hL179+KLL77A0KFD4ezsDAAYPHgw7ty5g/Hjx+P69ev48ccfsXHjRnz++ee6vowePRrLly/H6tWrce3aNXz22Wd4/vw5+vfvb/4P5jVxe1M+ZiQW5iUW5iUm5iaW18rr5Emgdm3gyy8zihllygChocD27Sxm5CMR9i9FFTRmzpyJOnXqwNPTE35+fujcubPe/byysmnTJlSqVAkuLi4ICgrCrl27zNDbvKPRaHDnzh2jl2SR5TEfsTAv8TAzMTE3seRXXr/9BlSrpn+Lqf79gStXgHbt8vStbAr3r+z99NNPiI+PR7NmzVC0aFHdz4YNG3TLfP/99+jQoQO6du2KJk2awN/fH1u2bNE9b29vjz///BP29vZo0KABPvroI/Tp0wdfffWVbpnSpUtj586dCA0NRXBwMObPn4+ff/4ZISEhumU++OADzJs3D1OmTEGNGjVw8eJF7Nmzx2CicCXj9qZ8zEgszEsszEtMzE0sJuclScD+/UCXLkDDhvJBBQDY2wPjxwPh4UDLlvnfYRsnwv6lqEnB//rrLwwdOhR16tRBeno6Jk2ahNatW+Pq1atwd3c3+prjx4+jR48emDlzJjp06IC1a9eic+fOOH/+PKpVq2bmERARERFZv+fPgeHDgZUrM9qKFweWLWMhg/KfKWeLubi4YMmSJViyZEmWywQGBuZ4IlSzZs1w4cKFbJcZNmwYhg0blmOfiIiIiCgLFy8Co0cDhw7pt9eqJd/btmZNi3SLlElRBQ3tvWi1Vq1aBT8/P5w7dw5NmjQx+pqFCxeiTZs2GDduHADg66+/RmhoKH744QcsXbo03/tMREREZEuuXAG6dweuXcto69MHWLiQt5ciIiIiIqJc0GjkeTK++ALIPGF0sWLA2LHyWVQOivrzNSmAom459ar4+HgAgK+vb5bLnDhxAi1fudwoJCQEJ06cyNe+5TUXFxdLd4GywXzEwrzEw8zExNzE8qZ5SRKwfDlQp05GMcPdHVizBli9msWMvMb9i8yJ25vyMSOxMC+xMC8xMTexGM0rPh5o3x6YODGjmFGmDLBuHXDvHvD55yxmWIjS9y+VpNAZPjQaDd59913ExcXh6NGjWS7n5OSE1atXo0ePHrq2H3/8EdOnT8fjx48Nlk9JSUFKSorucUJCAgICAhAbG6ubPV2lUsHOzg4ajUbvknZtuzpzxTCbdjs7O6hUKqPt2jGa0m5vbw9Jkoy2v9rHrNo5Jo6JY+KYOCaOiWPimF53TElJKnz2mR3WrctYLjhYwrp1EipXFnNM1pjTm44pISEBvr6+iI+P130vpvyXkJAAb29vfu5ERERkO+7cATp2BK5elR+rVMCkSfIk4M7Olu0bWYyp34sVW+YaOnQorly5km0x43XMnDkT06dPN2iPiIiAh4cHAPmKkJIlS+Lhw4eIjY3VLePv7w9/f3/cu3cPiYmJuvaAgAAULFgQN2/eRHJysq69TJky8PLywtWrV/UOICtWrAgnJyeEh4cDkO8DnJqailq1aiE9PV1vInR7e3sEBQUhMTERd+7c0bW7uLigUqVKePbsGR48eKBr9/T0RNmyZRETE4Po6Ghdu7nHpBUUFITU1FShx3T58mWkpqbCyckJKpXKKsZkjTlxfxJ3TCkpKQgPD9ftY9YwJmvM6dUx2dnZoXjx4nBwcMDdu3etYkzWmJN2TAkJCbh+/bpuP8vNmG7ccMHEiWVx927Ghb3duz/B6NGPUKBAEQDMKa/HpP1/mZeXFypXrmy2MSUlJYFsj0ajwbNnz1CgQAFdwY2UhRmJhXmJhXmJibmJxSCv9euBQYOAhAR5gYIFgQ0bgBYtLNtRAiDG/qXIKzSGDRuG7du34/DhwyhdunS2y5YsWRKjR4/GqFGjdG1Tp07Ftm3bcOnSJYPllXiFhlqtRkREBIKCgnRn22WmhDP2cjumnNpFGlNaWhoiIiJQtWpV2NvbW8WYrDEn7k/ijkmtViM8PFy3j1nDmIy1W9uY1Go1rl69imrVqkGlUlnFmLR9tKactH1MT083up9lNyaNRsIvv6gwapQKyclyxl5eEpYt06BbN8uPyRpz0o5J+/+yqlWrwsnJiVdoWDlLX6Gh/f+w9rsTKQ8zEgvzEgvzEhNzE4suLw8P2I8dC2zfnvFkhQrAzp1AuXKW6yDpseT+JeQVGpIkYfjw4di6dSvCwsJyLGYAQIMGDXDgwAG9gkZoaCgaNGhgdHlnZ2c4G7l0yd7e3iCkrKpQWYX5Ju0qlUr3Y2z5rNqz6mNu2/NjTDm1izQmbV8zLyP6mExtF3FM3J9y7qOSxpQ5q1dzFHVMWbVzTBxTXvUxt+1Z7WdZ9fHFCzsMGgSsXZvRVqsWsHGjCmXLGq6fOeX9mDL/bq4x8Q8CRERERJQfvENDYTdtGvDiRUZjz57Ajz8C3t6W6hYJSlEFjaFDh2Lt2rXYvn07PD09dZfQe3t7w9XVFQDQp08fFC9eHDNnzgQAjBw5Ek2bNsX8+fPRvn17rF+/HmfPnsWyZcssNg4iIiIiUV2+DHTvDmS6IxKGDgXmz+ftbImIiIiIKBeSk6GaNg2lZ8/OaPP3B777DvjwQ3nuDKJcUtSNsH766SfEx8ejWbNmKFq0qO5nw4YNumUiIyMRFRWle9ywYUOsXbsWy5YtQ3BwMDZv3oxt27ahWrVqlhjCa/P09LR0FygbzEcszEs8zExMzE0spuS1ahVQr15GMcPTU76d7Q8/sJhhbty/yJy4vSkfMxIL8xIL8xITc1M4tVqeK6NKFdhlLmb06SMfbPTowWKGgil9/1LkHBrmZOl71hIRERFZmkYD/Oc/wNy5GW01agCbNvF2traE34stg587ERERWZXTp4F+/YBr1zLa7O2BWbOAMWNYyKAsmfq9WFFXaNgqjUaD6Ohog8khSRmYj1iYl3iYmZiYm1iyy+v5c6BbN/1ixuDBwIkTLGZYCvcvMidub8rHjMTCvMTCvMTE3BRs/37gnXf0ihlSixb498ABaEaPZjFDACLsXyxoKIAkSYiOjoaNXyyjWMxHLMxLPMxMTMxNLFnl9egR0LQpsHWr/NjeXp6X76efABcXC3SUAHD/IvPi9qZ8zEgszEsszEtMzE2BNBrg+++B9u3lM6YAoE4dYP9+aPbswUNvb+YlCBH2L0VNCk5ERERE5nHmDNC5s1zUAOT5MjZtAkJCLNotIiIiIiISydOnwPvvA4cOZbR16iTPoeHiIs+nQZSHeIUGERERkY1ZuxZo0iSjmFGyJHD8OIsZRERERESUC/fvA2+/rV/M+PxzYPNmXvJN+YYFDQVQqVTw9fWFiveRUyTmIxbmJR5mJibmJhZtXpKkwqRJQK9eQHKy/Nzbb8tXa1SrZtk+UgbuX2RO3N6UjxmJhXmJhXmJibkpQHo6sHgxUL06cP263FakiFzY+O47wCHjpkDMSywi5KWSlHxDLDMwdfZ0IiIiIpElJsqFjD/+yGgbMECeM8PJyXL9IuXg92LL4OdOREREQrl9G+jdGzhxIqOtQgVgzx6gdGnL9YuEZ+r3Yl6hoQAajQaRkZGKnj3eljEfsTAv8TAzMTE3sdy8qcFbb6Xqihl2dsDChcDy5SxmKBH3LzInbm/Kx4zEwrzEwrzExNwsJCoKmDABCA7WL2YMGCA/zqKYwbzEIkJeLGgogCRJiI2NVfTs8baM+YiFeYmHmYmJuYnjwAGgfn0V/v5brlz4+MgnT40YASj4KmKbxv2LzInbm/IxI7EwL7EwLzExNzNLTga+/RYoWxaYMwd4/lxuL1sWOHoU+PlnwNc3y5czL7GIkJdDzosQERERkWgkCfjhB3lOPrVarlxUqiRh+3YVKlSwcOeIiIiIiEj5rl8HunYFrl7NaHNyAgYOBGbOBDw8LNc3slm8QoOIiIjIykgSMHasfBWGWi23NW4cj2PHNCxmEBERERFRzjZtAurWzShm2NsDw4cD9+7JE4KzmEEWwis0FEClUsHf31/Rs8fbMuYjFuYlHmYmJuamXGo1MGgQ8MsvGW0TJkgYPvwlfHw8LdcxMhn3LzInbm/Kx4zEwrzEwrzExNzyWWKiXLhYvTqjrVo1YO1aICgo16tjXmIRIS+VpOQbYpmBqbOnExERESldairw0UfyyVSAPEfGsmXAJ59Ytl8kBn4vtgx+7kRERKQYt24BnTrp32KqZ0/5oMLd3XL9Iptg6vdi3nJKAdRqNW7fvg219p4QpCjMRyzMSzzMTEzMTXlevgQ6d84oZjg6AuvXy8UM5iUW5kXmxO1N+ZiRWJiXWJiXmJhbPtm7F6hTJ6OY4ekJ/Por8Ntvb1TMYF5iESEv3nJKIRITEy3dBcoG8xEL8xIPMxMTc1OO58+Bd98FDh6UH7u4AFu2AG3bZizDvMTCvMicuL0pHzMSC/MSC/MSE3PLQxoNMG8eMHGi/DsAVK4MbN8OlC+fJ2/BvMSi9LxY0CAiIiISWEIC0K4dcOyY/NjDA9i5E2jSxLL9IiIiIiIihYuKAvr1A/bty2jr1AlYs0a+QoNIgXjLKSIiIiJBxcYCLVtmFDO8vYHQUBYziIiIiIgoB3/+CVSvrl/MmDpVvtSbxQxSMF6hoQAqlQoBAQGKnj3eljEfsTAv8TAzMTE3y7txA+jQQZ63DwAKFpSPRWrVMlyWeYmFeZE5cXtTPmYkFuYlFuYlJub2hl6+BMaOBX78MaOtaFF5voyWLfP87ZiXWETISyVJkmTpTliSqbOnExERESnF/v3A++8DcXHy4yJF5CszgoIs2i0SHL8XWwY/dyIiIjKbv/8G3nsPiIjIaOvUCfj5Z6BQIcv1iwimfy/mLacUQK1W4/r164qePd6WMR+xMC/xMDMxMTfL+e9/gTZtMooZQUHAqVPZFzOYl1iYF5kTtzflY0ZiYV5iYV5iYm6v6dgxoEGDjGKGqyvw00/A1q35WsxgXmIRIS8WNBQiOTnZ0l2gbDAfsTAv8TAzMTE385Ik4IsvgMGDAe13yw4d5OOSwMCcX8+8xMK8yJy4vSkfMxIL8xIL8xITc8ulvXuBFi3kSfgAoGpV4Nw5+eDCDLcWYl5iUXpeLGgQERERKZxGIx9rfPttRtuYMcC2bZyvj4iIiIiIsrF3r3xbqZQU+XHLlvJZUZUrW7ZfRK+Jk4ITERERKZhGAwwaJN/WFpBPoFq4EBg+3LL9IiIiIiIihTt3DujSJaOY0bUrsHYt4ORk2X4RvQEWNBTAzs4OZcqUgZ0dL5hRIuYjFuYlHmYmJuZmHq8WM+ztgd9+Az78MHfrYV5iYV5kTtzelI8ZiYV5iYV5iYm5meiff4B33wVevpQfd+0KrFsHODqatRvMSywi5MWChgKoVKpsZ24ny2I+YmFe4mFmYmJu+c9YMWPtWqB799yvi3mJhXmROXF7Uz5mJBbmJRbmJSbmZoK7d4G2bYFHj+THjRoB//d/Zi9mAMxLNCLkpdxSiw1Rq9UIDw9X9Ozxtoz5iIV5iYeZiYm55a+8LGYAzEs0zIvMidub8jEjsTAvsTAvMTG3HJw9C9SvD9y4IT8uVQrYuhVwdrZId5iXWETIiwUNhVDyRkLMRzTMSzzMTEzMLX/kdTFDi3mJhXmROXF7Uz5mJBbmJRbmJSbmloVdu4CmTYGYGPlx5cpAWBhQuLBFu8W8xKL0vFjQICIiIlKI9HSgX7+8L2YQEREREZEVe/4cGDMG6NgRePFCbmvcGDh6FAgMtGzfiPIY59AgIiIiUoDUVKBXL2DzZvkxixlERERERJSjW7eAdu2Amzcz2t5/H/j1V8DFxXL9IsonKkmSJEt3wpISEhLg7e2N+Ph4i014IkkSkpOT4eLiApVKZZE+UNaYj1iYl3iYmZiYW95KTpaPOf78U37s5ARs3Ah06pQ362deYrFUXkr4XmyLLP25898H5WNGYmFeYmFeYmJumZw+DXToADx5Ij92cQGmTgXGjwfslHFjHuYlFkvmZer3Yl6hoRBOTk6W7gJlg/mIhXmJh5mJibnljefPgc6dgf375ccuLsC2bUBISN6+D/MSC/Mic+L2pnzMSCzMSyzMS0zMDfJ9aocOlS/1BoCqVeXJv8uXt2y/jGBeYlF6Xsoo1dk4jUaD8PBwaDQaS3eFjGA+YmFe4mFmYmJueSMxEWjbNqOY4e4O7N6d98UM5iUW5kXmxO1N+ZiRWJiXWJiXmJgb5KswPv00o5jRpAlw5IgiixnMSywi5MWCBhEREZEFJCfLt5Q6ckR+7O0NhIYCzZpZtFtERERERKRk69YBX32V8XjoUPlAokABy/WJyIx4yykiIiIiM1OrgY8+Ag4dkh8XKCBfpVGrlmX7RURERERECnbuHPDxxxmP584Fxo61XH+ILIBXaBARERGZkSTJJ1H9/rv82M0N2LWLxQwiIiIiIspGVJR8iXdysvy4f39gzBjL9onIAlSSJEmW7oQlmTp7en6SJAkajQZ2dnZmnz2ecsZ8xMK8xMPMxMTcXt+UKcDXX8u/OzgAf/wBtGmTv+/JvMRiqbyU8L3YFln6c+e/D8rHjMTCvMTCvMRkk7m9eAG0aAGcPCk/btgQOHgQcHa2bL9MYJN5CcySeZn6vZhXaChEqnYSH1Ik5iMW5iUeZiYm5pZ7ixdnFDMAYPXq/C9maDEvsTAvMidub8rHjMTCvMTCvMRkU7klJwOdO2cUMwICgC1bhChmaNlUXlZA6XmxoKEAGo0GN27cUPTs8baM+YiFeYmHmYmJueXe+vXAyJEZjxcuBHr2NM97My+xMC8yJ25vyseMxMK8xMK8xGRTuaWmAt26yZN+A4CXF7B9O1CkiGX7lQs2lZcVECEvFjSIiIiI8tmhQ0CfPvL8GQAweTIwYoRl+0RERERERAqWlgZ8+CGwc6f82N0d2L0bqFnTsv0isjAWNIiIiIjyUXi4fIV4Wpr8+JNP9G87RUREREREpEetBnr3BrZulR+7usqFjYYNLdsvIgVgQUMh7O3tLd0FygbzEQvzEg8zExNzy9nDh0DbtkBCgvy4Qwfgp58AS8yFx7zEwrzInLi9KR8zEgvzEgvzEpNV56bRAB9/DGzYID92dgZ27ACaNrVsv96AVedlhZSel0qStDc/sE2mzp5ORERElBvPngFNmgBXrsiP69SRbz3l7m7ZfhFlhd+LLYOfOxEREekkJgJ9+2ZcmeHoKP/evr1l+0VkBqZ+L+YVGgogSRISEhJg47UlxWI+YmFe4mFmYmJu2YuLA1q1yihmlC0L/Pmn5YoZzEsszIvMidub8jEjsTAvsTAvMVltbg8fAo0aZRQz7O3lqzQEL2ZYbV5WSoS8WNBQAI1Ggzt37ih69nhbxnzEwrzEw8zExNyyFh8PtG4NnDsnP/bzk+fu8/OzXJ+Yl1iYF5kTtzflY0ZiYV5iYV5issrc/v5bLmaEh8uPvb3lM6K6dLFsv/KAVeZlxUTIy8HSHSAiIiKyFgkJQJs2wJkz8uPCheXbTJUvb9l+ERERERGRQkVFyfNjREfLj8uUAXbtAipWtGy/iBSKBQ0iIiKiPPDiBdCuHXDypPy4UCHg4EGgShXL9ouIiIiIiBQqPR348MOMYkb16sDevYC/v2X7RaRgLGgohIuLi6W7QNlgPmJhXuJhZmJibhnS0oBu3YBjx+THBQsCBw4A1apZtl+ZMS+xMC8yJ25vyseMxMK8xMK8xGQ1uU2cCBw+LP9evDiwf798mbeVsZq8bITS81JJSp7hwwxMnT2diIiIyBiNBujdG1i7Vn7s6QmEhQG1alm0W0S5xu/FlsHPnYiIyEYtXQp89pn8u4MD8NdfQMOGlu0TkQWZ+r2Yk4IrgEajwdOnTxU92YotYz5iYV7iYWZiYm4ySQJGjMgoZri4AH/8obxiBvMSC/Mic+L2pnzMSCzMSyzMS0xWkdvu3cDQoRmPFy602mKGVeRlQ0TIiwUNBZAkCQ8ePICNXyyjWMxHLMxLPMxMTMxN9u23wJIl8u/29sCGDfJ8fkrDvMTCvMicuL0pHzMSC/MSC/MSk/C5RUYCvXrJl3oDwLhxwJAhlu1TPhI+LxsjQl4saBARERG9hl9/Bb78MuPxihXAu+9arj9ERERERKRwaWnABx8Az57Jjzt3BmbNsmiXiETDggYRERFRLh04AAwYkPF49mygTx/L9YeIiIiIiAQwaRJw8qT8e6lSwMqVgB3/PEuUG9xjFMLT09PSXaBsMB+xMC/xMDMx2Wpu4eHAe+8B6eny488+k68SVzpbzUtUzIvMidub8jEjsTAvsTAvMQmZ2x9/APPmyb87OgIbNwI+PhbtkrkImZcNU3peKknJN8QyA1NnTyciIiL65x+gfn3g4UP5cceOwJYtgIODZftFlBf4vdgy+LkTERHZgGvXgEaNMm41tXAhMGKEZftEpDCmfi/mFRoKoNFoEB0drejZ420Z8xEL8xIPMxOTLeaWkAC0a5dRzKhTB1i3Toxihi3mJTLmRebE7U35mJFYmJdYmJeYhMvt/n2gVauMYkaXLsDw4ZbtkxkJl5eNEyEvFjQUQJIkREdHK3r2eFvGfMTCvMTDzMRka7m9eCHP13f5svy4dGn5inF3d4t2y2S2lpfomBeZE7c35WNGYmFeYmFeYhIqt+fPgbZt5Uu9AaBWLWDVKkClsmi3zEmovEiIvFjQICIiIspGcrJ8EtWhQ/JjX19g926gSBHL9ouIiIiIiBRuxAj5dlMAULEisGcPwFtMEr0RFjSIiIiIspCSAnTtCuzbJz/29AR27ZKPRYiIiIiIiLK0bh2wYoX8u7s7sGMHULiwZftEZAVY0FAAlUoFX19fqGzocjORMB+xMC/xMDMx2UJuaWnABx/IBQxAPgbZsweoV8+y/XodtpCXNWFeZE7c3pSPGYmFeYmFeYlJiNxu3wYGDcp4/OOPQIUKluuPBQmRF+mIkJdKUvINsczA1NnTiYiIyHZoNEDv3sDatfJjV1e5mNGkiWX7RZSf+L3YMvi5ExERWZnUVODtt4EzZ+THH30ErFlj2T4RCcDU78W8QkMBNBoNIiMjFT17vC1jPmJhXuJhZmKy5twkCRg5MqOY4ewsTwAucjHDmvOyRsyLzInbm/IxI7EwL7EwLzEpPrcvvsgoZpQrJ1+dYcMUnxfpESEvFjQUQJIkxMbGKnr2eFvGfMTCvMTDzMRkzblNmwb88IP8u709sHEj0KKFRbv0xqw5L2vEvMicuL0pHzMSC/MSC/MSk6Jz27sXmDtX/t3REVi/Xp6Iz4YpOi8yIEJeLGgQERER/c+iRcBXX2U8XrkSePddy/WHiIiIiIgEER0N9OmT8XjWLKB2bcv1h8hKsaBBREREBODPP4FRozIeL1woz6NBRERERESULY1GLmbExMiP27bVP7ggojzDgoYCqFQq+Pv7K3r2eFvGfMTCvMTDzMRkbblduQL06CHPnwEAkycDI0ZYtk95ydrysnbMi8yJ25vyMSOxMC+xMC8xKTK3efOA0FD5d39/YNUqwI5/dgUUmhdlSYS8VJKSb4hlBqbOnk5ERETW6ckToG5d4N49+XG3bsCGDTz+INvD78WWwc+diIhIcJcvA2+9BaSlASqVXNgQfRI+Igsw9XsxD9UVQK1W4/bt21Cr1ZbuChnBfMTCvMTDzMRkLbmlpgJdu2YUM2rXBlavtr5ihrXkZSuYF5kTtzflY0ZiYV5iYV5iUlRuaWlAv37yfwFg/HgWM16hqLwoRyLkZWWH6+JKTEy0dBcoG8xHLMxLPMxMTKLnplbLc2QcOSI/LloU2L4dcHOzbL/yi+h52RrmRebE7U35mJFYmJdYmJeYFJPbnDnAhQvy71WrAtOnW7Y/CqWYvMgkSs+LBQ0iIiKyOZIEDBsGbNwoP3Z1lYsZxYtbtl9ERERERCSIK1cyChh2dsDKlYCzs2X7RGQDWNAgIiIimzN1KrB0qfy7gwOweTNQp45l+0RERERERIJITze81RQPKIjMggUNBVCpVAgICFD07PG2jPmIhXmJh5mJSeTcFi4Evv464/GqVUC7dhbrjlmInJctYl5kTtzelI8ZiYV5iYV5iUkRuU2ZApw7J/9eubJ8xhQZpYi8yGQi5KWSJEmydCcsydTZ04mIiEh8v/0mz5uhtXAhMGKE5fpDpCT8XmwZ/NyJiIgE89//AoMHy7/b2QHHjgH161u2T0RWwNTvxbxCQwHUajWuX7+u6NnjbRnzEQvzEg8zE5OIue3cCfTvn/H4yy9tp5ghYl62jHmROXF7Uz5mJBbmJRbmJSaL5rZvHzBkSMbj779nMSMH3M/EIkJeLGgoRHJysqW7QNlgPmJhXuJhZmISKbejR4Fu3eRb3QLAZ59lzN9nK0TKi5gXmRe3N+VjRmJhXmJhXmKySG737gE9egAajfx47FjbOUPqDXE/E4vS82JBg4iIiKzalStAhw6A9jvZBx8AixcDCr4lKBERERERKcnLl8B77wGxsfLjjh2B2bMt2yciG8WCBhEREVmtZ8+Azp2B+Hj5cevWwK+/Avb2Fu0WEb2hw4cPo2PHjihWrBhUKhW2bdum93y/fv2gUqn0ftq0aaO3TGxsLHr16gUvLy/4+PhgwIABSEpK0lvm8uXLaNy4MVxcXBAQEIA5c+YY9GXTpk2oVKkSXFxcEBQUhF27duX5eImIiMiCJEmeM+PCBflxuXLyQYUd/6xKZAnc8xTAzs4OZcqUgR3/IVQk5iMW5iUeZiYmEXLTaICPPgJu35Yf16oFbNkCODlZtl+WIEJelIF55ez58+cIDg7GkiVLslymTZs2iIqK0v2sW7dO7/levXohIiICoaGh+PPPP3H48GEMHDhQ93xCQgJat26NwMBAnDt3DnPnzsW0adOwbNky3TLHjx9Hjx49MGDAAFy4cAGdO3dG586dceXKlbwfdD7h9qZ8zEgszEsszEtMZs9t6VK5gAEAbm7A1q2Aj4953tsKcD8Tiwh5qSRJkizdCUsydfZ0IiIiEsuUKcDXX8u/FywInDsHBAZatk9ESibq92KVSoWtW7eic+fOurZ+/fohLi7O4MoNrWvXrqFKlSo4c+YM3nrrLQDAnj170K5dOzx8+BDFihXDTz/9hMmTJyM6OhpO/6uE/uc//8G2bdtw/fp1AMAHH3yA58+f488//9Stu379+qhRowaWLl1qUv9F/dyJiIhswqNHQPnywIsX8uP16+V72BJRnjP1e7FySy02RK1WIzw8XNGzx9sy5iMW5iUeZiYmpee2fXtGMcPOTj7usOVihtLzIn3MK2+EhYXBz88PFStWxGeffYanT5/qnjtx4gR8fHx0xQwAaNmyJezs7HDq1CndMk2aNNEVMwAgJCQEN27cwLNnz3TLtGzZUu99Q0JCcOLEifwcWp7i9qZ8zEgszEsszEtMZs1t6tSMYsbgwSxmvAbuZ2IRIS8HS3eAZEreSIj5iIZ5iYeZiUmpud2+DfTpk/F41izglb832iSl5kXGMa8306ZNG7z33nsoXbo0bt++jUmTJqFt27Y4ceIE7O3tER0dDT8/P73XODg4wNfXF9HR0QCA6OholC5dWm+ZIkWK6J4rUKAAoqOjdW2Zl9Guw5iUlBSkpKToHickJACQM9fmrlKpYGdnB41Gg8wX1GvbX90+smq3s7ODSqUy2g4AGo0GarUa6enpUKvVeu2Z2dvbQ5Iko+2v9jGrdnOOyZR2kcaUOSNrGZM15qTtozYvSZKy7LtoY8qpXeQxSZKkt39Zw5isMaes9jMA+Tuma9cgrVgBFQDJywuaadOg0miYUy7HBCDL/UzUMVljTtoxvfq9w5xjMvUYiAUNIiIishopKfJJU//7+yDefx8YO9ayfSIi8/vwww91vwcFBaF69eooW7YswsLC0KJFCwv2DJg5cyamT59u0B4REQEPDw8AgK+vL0qWLImHDx8iNjZWt4y/vz/8/f1x7949JCYm6toDAgJQsGBB3Lx5E8nJybr2MmXKwMvLC1evXtU7QKxYsSKcnJwQHh4OSZIQGxuLiIgIVK9eHampqbhx44ZuWXt7ewQFBSExMRF37tzRtbu4uKBSpUp49uwZHjx4oGv39PRE2bJlERMTo1fYMeeYMgsKChJ+TBEREbqMVCqVVYzJGnPSjkm7T2k0GqSlpVnFmKwxJ60qVapArVbr9i9rGJM15vTqmCRJ0l0tma9jmjQJqv/90Teqb1/EREUhwMGBOeVyTFWqVEFaWprefib6mKwxJ+2Ybt++rfve4erqatYxJSUlwRScQ0MB96zVXsoTFBQEe3t7i/SBssZ8xMK8xMPMxKTU3D7/HFiwQP69XDl53gzekl65eZFxlspLCd+LX4exOTSMKVy4ML755hsMGjQIK1aswJgxY3R/DAHkMwddXFywadMmdOnSBX369EFCQoLePByHDh3CO++8g9jYWBQoUAAlS5bE6NGjMWrUKN0yU6dOxbZt23Dp0iWj/TB2hUZAQABiY2N1n7u5r9CIiIhA1apV4ejoqGvPzJrPQhRhTNo/AlWtWhX29vZWMSZrzCnzmeMRERG6f8OtYUw5tYs8JkmSEB4ertu/rGFM1phTVvtZ9erVdf3J8zFduAC7OnUAAFLx4tBcvw64ujKn1xgTAFy+fNnofibqmKwxJ+2YXv3eYc4xJSQkwNfXN8fjEUVdoXH48GHMnTsX586dQ1RUVI4HJmFhYWjevLlBe1RUFPz9/fOxp3nLzs4OFStW1G1QpCzMRyzMSzzMTExKzG3HjoxihpMTsHEjixlaSsyLssa88t7Dhw/x9OlTFC1aFADQoEEDxMXF4dy5c6hduzYA4ODBg9BoNKhXr55umcmTJyMtLU33h/7Q0FBUrFgRBQoU0C1z4MABvYJGaGgoGjRokGVfnJ2d4ezsbNCuPWDMLKttIKtC1+u029nZoVKlSnB0dNQ7O/lVKpXKaHtWfcxte16OydR2Ucbk6OhokFFWy4syJmvMSduu3afs7e2z7LtoYzKlXdQxSZJkdP8CxB1Tdu3WMibtfqb9Q26+jEk7IR8A1aRJsP/fVZRv2ndT2q0lJ63s9jNRxwRYX06APCZj3zvMNSZTT+ZS1FHS8+fPERwcjCVLluTqdTdu3EBUVJTu59X74Yog82SDpDzMRyzMSzzMTExKyi0yEujXL+Pxd98BNWtarDuKpKS8KGfMK3tJSUm4ePEiLl68CAC4e/cuLl68iMjISCQlJWHcuHE4efIk7t27hwMHDqBTp04oV64cQkJCAACVK1dGmzZt8Omnn+L06dM4duwYhg0bhg8//BDFihUDAPTs2RNOTk4YMGAAIiIisGHDBixcuBCjR4/W9WPkyJHYs2cP5s+fj+vXr2PatGk4e/Yshg0bZvbP5E1we1M+ZiQW5iUW5iWmfM3t7Fn5bCkAKF4cGDAg/97LRnA/E4vS81JUQaNt27b45ptv0KVLl1y9zs/PT3cvLn9/f+HOZtNoNAgPDzd6SRZZHvMRC/MSDzMTk5JyS0gA3n0X0N455r33gCFDLNsnpVFSXpQz5pWzs2fPombNmqj5v8rl6NGjUbNmTUyZMgX29va4fPky3n33XVSoUAEDBgxA7dq1ceTIEb0rI/7v//4PlSpVQosWLdCuXTu8/fbbWLZsme55b29v7Nu3D3fv3kXt2rUxZswYTJkyBQMHDtQt07BhQ6xduxbLli1DcHAwNm/ejG3btqFatWrm+zDeELc35WNGYmFeYmFeYsrX3NLTgcGDMx5PmgQYubKSTMf9TCwi5KWoW069rho1aiAlJQXVqlXDtGnT0KhRI0t3iYiIiMwgLQ3o3h3Q3qq+TBngl1+AV65kJiIr06xZM4P7+Ga2d+/eHNfh6+uLtWvXZrtM9erVceTIkWyXef/99/H+++/n+H5EREQkgPnz5Yn4AKBKFV6dQaRAQhc0ihYtiqVLl+Ktt95CSkoKfv75ZzRr1gynTp1CrVq1jL7G2CR8gDyhkHYCEktMGiZJku7HliaaEWFM2ny0z1vDmKwxJ+5P4o5Jm1Xm14g+JmPt1jYm7Wtfzc6cY5IkYMgQFfbulftXoACwY4canp6A9mW2nlPmMRnbz0QfkzXmpNFo9L57mHNMrz5PREREZFOuXgWmTpV/t7MDVqzg1RlECiR0QaNixYqoWLGi7nHDhg1x+/ZtfP/991izZo3R18ycORPTp083aI+IiIDH/yb48fX1RcmSJfHw4UPExsbqltHe0urevXtITEzUtQcEBKBgwYK4efMmkpOTde1lypSBl5cXrl69qneAWLFiRTg5OSE8PByA/Meg2NhYaDQapKWl4caNG7pl7e3tERQUhMTERNy5c0fX7uLigkqVKuHZs2d48OCBrt3T0xNly5ZFTEwMoqOjde3mHpNWUFAQUlNThR5TREQEYmNjERERAZVKZRVjssacuD+JO6aUlBS9fcwaxmSNOb06Ju3kYElJSbh3755FxvTjj174+Wf5XvdOThK2bVNBo7mK8HDm9OqYkpKS9PYzaxiTNeakHZP2/2W3bt1ClSpVzDampKQkEBEREdmk1FSgVy9AexL0qFFAvXoW7RIRGaeSsrtW24JUKhW2bt2Kzp075+p148aNw9GjR3HixAmjzxu7QiMgIACxsbHw8vLSvbc5z9jTno3n4OAAlUplc2chKn1MarUaGo1Gt5w1jMkac+L+JO6YJElCenq67rXWMCZj7dY2JkmSoFKpoFKpTOp7Xo9p3z41QkLsde3/938SevZkTlmNSaPRGN3PRB6TNeakHZP2v3Z2dnBwcDDbmBISEuDr64v4+Hjd92LKfwkJCfD29rbY5555e9P++0DKwozEwrzEwrzElC+5TZwIzJol/16lijwxuKtr3qzbxnE/E4sl8zL1e7HQV2gYc/HiRRQtWjTL552dnfUmA9Syt7eHvb29Xpv2gNPYsnnZLkkS0tLS4OjoqDs7+VVZtWfVx9y25/WYTGkXaUyZ88lueZHGZGq7aGPi/mRaH5U2JrVabbCPiT4ma8wpc7skSUhOToaLi4vR/uTnmGJjgY8/zmj/5hugZ09Vlsvntt2actLS/sH91f1M9DFZY07awob2/2XZ9TGvx5TV82T9UlNT4eLiYuluUDaYkViYl1iYl5jyNLfDh4HZs+XfHR2B335jMSOPcT8Ti9LzMn60YyFJSUm4ePEiLl68CAC4e/cuLl68iMjISADAxIkT0adPH93yCxYswPbt23Hr1i1cuXIFo0aNwsGDBzF06FBLdP+1aTQa3Lhxw+BMPVIG5iMW5iUeZiYmS+Umz5sB/POP/LhFC/lkKsoe9zOxMC8yJ25vyseMxMK8xMK8xJSnucXHA336yAcagHy2VM2ab75e0uF+JhYR8lLUFRpnz55F8+bNdY9Hjx4NAOjbty9WrVqFqKgoXXEDkKtFY8aMwT///AM3NzdUr14d+/fv11sHERERWY+1a4ENG+TffXyAVavk+fqIiIiIiIhybexY4P59+femTYExYyzbHyLKkaIKGs2aNTO4P3Bmq1at0ns8fvx4jB8/Pp97RUREREoQGQlkvghz6VKgRAnL9YeIiIiIiAR29SqwYoX8u5cXsHo1wFtwEikez2lUCN6zWNmYj1iYl3iYmZjMmZtaLV8JHh8vP/7oI+CDD8z29laB+5lYmBeZE7c35WNGYmFeYmFeYsqT3KZMAbS31Zk8GQgMfPN1klHcz8Si9LxUUnaXRNgAU2dPJyIiIsuZOxfQXpRZsiRw+TLg7W3ZPhFZG34vtgx+7kRERBZw7hzw1lvy7/7+wO3bgJubZftEZONM/V7MKzQUQJIkJCQkZHu7LbIc5iMW5iUeZiYmc+Z26ZJ8whQAqFTAr7+ymJFb3M/EwrzInLi9KR8zEgvzEgvzElOe5Pbddxm/f/klixn5iPuZWETIiwUNBdBoNLhz546iZ4+3ZcxHLMxLPMxMTObKLTkZ6NULSEuTH48dK8/VR7nD/UwszIvMidub8jEjsTAvsTAvMb1xbvHxwJYt8u8FCwIDBuRd58gA9zOxiJAXCxpERESkWJMmARER8u/BwcDXX1u2P0REREREJLhNm+QzpwCgRw/A2dmy/SGiXGFBg4iIiBTpwAHg++/l352dgd9+47EGERERERG9odWrM37v29dy/SCi18KChkK4uLhYuguUDeYjFuYlHmYmpvzM7dkz/WOLmTOBatXy7e1sAvczsTAvMidub8rHjMTCvMTCvMT02rndugUcPSr/XqUKULt23nWKssT9TCxKz0slKXmGDzMwdfZ0IiIiMg9Jkq/83rBBftyiBbBvH2DH0zCI8hW/F1sGP3ciIiIzGjwY+O9/5d9nzwbGj7dsf4hIx9TvxfzTgAJoNBo8ffpU0ZOt2DLmIxbmJR5mJqb8zG358oxiho8PsGoVixlvivuZWJgXmRO3N+VjRmJhXmJhXmJ67dwiI4EVK+TfPT2BTz7J+86RAe5nYhEhL/55QAEkScKDBw9g4xfLKBbzEQvzEg8zE1N+5XbhAjBiRMbjZcuAEiXy9C1sEvczsTAvMidub8rHjMTCvMTCvMT02rnNnAmkpcm/jxgB+PrmfefIAPczsYiQFwsaREREpAjx8cD77wMpKfLjYcPkx0RERERERG8kKgr45Rf5dw8P4PPPLdsfInptLGgQERGRxUkSMGAAcPu2/Pitt4B58yzbJyIiIiIishJLl2ZcnTF0KFCwoGX7Q0SvjQUNhfD09LR0FygbzEcszEs8zExMeZnb4sXA77/Lv/v4ABs3As7OebZ6Avcz0TAvMidub8rHjMTCvMTCvMSUq9xSUjImAre3ly8FJ7PifiYWpeelkpR8QywzMHX2dCIiIsofp04BjRtnnDC1fTvw7ruW7RORLeL3Ysvg505ERJTPfvsN6N1b/v399+Wzp4hIcUz9XswrNBRAo9EgOjpa0bPH2zLmIxbmJR5mJqa8yu3ZM6B794xixtixLGbkB+5nYrGFvFJTU/H8+XNLd4NgG9ub6JiRWJiXWJiXmHKd2+LFGb+PGJE/naIscT8Tiwh5saChAJIkITo6WtGzx9sy5iMW5iUeZiamvMpt1CggMlL+vWFDYMaMN+8bGeJ+JhZrymv9+vX4/JVJN6dPnw4PDw/4+PigS5cuSEpKslDvCLCu7c1aMSOxMC+xMC8x5Sq3CxeA06fl34ODgUaN8rdzZID7mVhEyIsFDSIiIrKInTuBX3+Vf/f2BtavBxwdLdsnIspb8+fP17sS4/jx45g+fTpCQkLw+eefY8+ePfj2228t2EMiIiKyasuWZfw+eDCgUlmuL0SUJxws3QEiIiKyPXFxwMCBGY+/+w4ICLBYd4gon9y+fRt9+/bVPV67di38/f2xdetWODg4QKPR4Pfff8fMmTMt2EsiIiL6f/buOzyK6m3j+D27SQglhdBLKKGHIh1BpSiIgoiCiCAWEEEUpPiqYAFRERUVwQL8QGmKKBZQEESwoIIISAlBkBI6oaVS0nbP+8e4m4QUNiHZmWf2/lxXLmcL5Ey+s3GHszNjSRcuAJ9+qi+XLg0MHGjseIioSPAIDRPQNA1hYWHQOEtsSuwjC3vJw2YyXWu3ceOAkyf15e7dgcGDi3BwlANfZ7JYqVdqaioCAwPdt9euXYvbb78dfn7656oiIyNx/Phxo4ZHsNb2ZlVsJAt7ycJeMnnc7bPPgORkfXngQCCfiwxT8eHrTBYJvYpsQuPSpUv4+OOPMWvWLBw5cqSo/lqfYLPZUKNGDdhsnF8yI/aRhb3kYTOZrqXb6tXA/Pn6clAQMHcuj/wubnydyWKlXrVr18a6desAAFu3bsWBAwdw2223uR8/ffo0ypQpY9TwCNba3qyKjWRhL1nYSyaPu2U93VTWw8PJq/g6k0VCr0KN7JFHHkGTJk3ct9PS0nD99ddj6NCheOKJJ9C8eXNs3769yAZpdU6nE0ePHjX11eN9GfvIwl7ysJlMhe2WmMhTTRmBrzNZrNRr+PDh+OKLL9CsWTPceuutqF69Ou644w7343/88QcaN25s4AjJStubVbGRLOwlC3vJ5FG3v/8Gtm7Vl1u2BFq39s7gKAe+zmSR0KtQExo///wz+vTp4769ZMkS7N69G59++il2796NypUrY/LkyUU2SKtTSiEuLs7UV4/3ZewjC3vJw2YyFbbb//0f4Dq7TLduwCOPFMPgKAe+zmSxUq9Ro0Zhzpw5qFOnDnr37o21a9eiZMmSAIC4uDjExsbi/vvvN3iUvs1K25tVsZEs7CULe8nkUbc5czKXhw8v/kFRnvg6k0VCr0JdFDw2Nha1atVy316+fDlat26NAQMGAAAeffRRTJs2rUgGSERERNbw44/AvHn6cpkyPNUUka949NFH8eijj+a4PywsDFtdn5wkIiIiKirJycCSJfpymTLAf/9eSUTWUKgjNEqXLo2EhAQAQEZGBn755Rd0797d/XhQUBASExOLZIBEREQkX0oKMGJE5u233gJq1jRuPEREREREZFELFwIXLujLAwfqF+4jIsso1BEaLVu2xNy5c9GlSxd8++23SE5ORq9evdyPHzx4EJUqVSqyQVqdpmmoXLmyqa8e78vYRxb2kofNZCpot2nTgIMH9eWOHXlNPm/j60wWq/X64Ycf8NFHH+HQoUOIj4/Pcfi6pmk46PoFQV5nte3NithIFvaShb1kyrdbSgrw+uuZt7N+qooMwdeZLBJ6aaoQJ8TaunUrunfvjoSEBCilcM899+CLL75wP96gQQO0adMGn3zySZEOtjgkJSUhJCQEiYmJCA4ONno4RERElnPoENC4sb5vYbcDO3fqt4nIXIrjffG0adMwfvx4VKpUCW3btkXZsmVzfd78+fOL5PtJxP0RIiKiIvT++8CoUfrynXcCK1YYOx4i8pin74sLdYRG69atsXfvXmzcuBGhoaHo1KmT+7GEhAQ8/vjj2e6j/DkcDhw+fBi1atWC3W43ejh0BfaRhb3kYTOZPO3mdAJDhuiTGQAwZgwnM4zA15ksVuo1Y8YM3Hzzzfj+++/h7+9v9HAoF1ba3qyKjWRhL1nYS6Y8u6WkAFOnZt5+6SWvj41y4utMFgm9CjWhAQAVKlRA7969c9wfGhqK0aNHX9OgfFFycrLRQ6B8sI8s7CUPm8nkSbd33wV+/VVfrlkTmDSpeMdEeePrTBar9IqPj8c999zDyQyTs8r2ZmVsJAt7ycJeMuXa7fPPgZMn9eXevYEWLbw7KMoTX2eymL1XoS4KDuizNUuXLsXw4cNx9913IyoqCgCQmJiIr7/+GqdPny6yQRIREZE80dHAc8/py5qmX5uP1+Mj8i1t27bFvn37jB4GERER+YL3389cfuYZ48ZBRMWqUBMaCQkJuOGGGzBw4EB89tln+Pbbb3H27FkAQJkyZfDkk09ixowZRTpQIiIikiMtDXjgASA1Vb89dizAs1ES+Z4PP/wQX3/9NZYsWWL0UIiIiMjK/voL2LpVX27ZEmjf3tjxEFGxKdQpp8aPH4/o6Gj88MMPaNGiBSpWrOh+zG6345577sH333+P1157rcgGamWapiE8PNzUV4/3ZewjC3vJw2YyXa3bK68A27fry5GRwJQpXhwc5cDXmSySezVr1izHfRkZGXjggQcwYsQIVK9ePce5eDVNw86dO701RLqC5O3NV7CRLOwlC3vJlGu3rEdnjBypHyJOpsDXmSwSehVqQmP58uUYNWoUunXrhvPnz+d4vH79+liwYMG1js1n2Gw2lCtXzuhhUB7YRxb2kofNZMqv259/Aq7PNPj5AYsXA4GBXhwc5cDXmSySe4WFheXY+SlXrhzq1atn0IjoaiRvb76CjWRhL1nYS6Yc3RISgC++0JfDwoD77jNkXJQ7vs5kkdCrUBMaiYmJqF27dp6Pp6enIyMjo9CD8jUOhwP79+9HvXr1THv1eF/GPrKwlzxsJlNe3S5eBB58EHA69duTJulHfJOx+DqTRXKvX375xeghUAFJ3t58BRvJwl6ysJdMObp99VXmuW4HDQJKljR2gJQNX2eySOhVqGto1KlTB3///Xeej69duxaRkZGFHpQvSklJMXoIlA/2kYW95GEzmXLrNmECsH+/vty2LTB+vJcHRXni60wWq/RatGgRDh8+nOfjR44cwaJFi7w3IMqVVbY3K2MjWdhLFvaSKVu3Tz7JXB40yPuDoavi60wWs/cq1ITG0KFD8fHHH+Pzzz+HUgqAfn6t1NRUPP/881izZg2GDx9epAMlIiIic9u6NfPUtSVLAosW6aecIiLfNXjwYGzcuDHPx//8808MHjzYiyMiIiIiSzl+HPj1V325Xj2gdWtjx0NExa5Q/8wwevRoREdHY8CAAQgNDQUADBw4EOfPn0dGRgaGDx+ORx55pCjHSURERCbmcACPPQb89zkHvPQS0KCBoUMiIhNwffgpLxcvXoQfZz6JiIiosD77LHMnZNAgXgycyAcUau9B0zTMnTsXDz30EL788kvs378fTqcTderUwb333ouOHTsW9TgtzWazISIiAjZboQ6YoWLGPrKwlzxsJtOV3WbPBrZt0x9r3BgYO9bAwVEOfJ3JIr3Xrl27sGPHDvft3377Ldfr6yUkJGD27NmoX7++F0dHV5K+vfkCNpKFvWRhL5mydfv008wHBg40blCUJ77OZJHQS1NX+9iUxSUlJSEkJASJiYkIDg42ejhERETinDoFNGwIJCXpt3/7DbjxRmPHREQFV1TviydPnozJkycD0D8Ild/uRmhoKBYtWoQ77rij0N9POu6PEBERFdLu3UDTpvpyu3bAn38aOx4iuiaevi8usqmWS5cu4eOPP8asWbNw5MiRovprfYLD4UBUVBQcDofRQ6FcsI8s7CUPm8mUtdtTT2VOZgwezMkMM+LrTBbpvYYNG4YtW7bgr7/+glIKL7/8MrZs2ZLta+vWrfjnn39w5swZn57MMAPp25svYCNZ2EsW9pLJ1c25eHHmnfffb9yAKF98nckioVehTjn1yCOPYPPmzdi9ezcAIC0tDddff737dkhICH766Se0aNGi6EZqcWbeSIh9pGEvedhMJofDgbVr9dPWAkBYGPDmm8aOifLG15kskntVqVIFVapUAQD8/PPPaNSoESpWrGjwqCg/krc3X8FGsrCXLOwlkyM9HdrSpfoNux3o39/YAVG++DqTxey9CnWExs8//4w+ffq4by9ZsgS7d+/Gp59+it27d6Ny5cruw8yJiIjImi5dsmHEiMy3Em+8AZQvb+CAiMh0OnXqxMkMIiIiKnKld+yAdvSofqNbN4DvN4h8RqGO0IiNjUWtWrXct5cvX47WrVtjwIABAIBHH30U06ZNK5IBEhERkTnNnFkFR45oAIDOnYEhQ4wdDxGZU2xsLD766CP8/fffSExMhNPpzPa4pmlYv369QaMjIiIiicp+/33mjUGDjBsIEXldoSY0SpcujYSEBABARkYGfvnlF4waNcr9eFBQEBITE4tkgL7AZrOhQYMGpr56vC9jH1nYSx42k2njRhs+/7wCAKBkSWDePIAJzYuvM1ms1GvXrl3o3LkzLl++jAYNGiAqKgqRkZFISEjAiRMnUKdOHYSHhxs9TJ9mpe3NqthIFvaShb1ksqWlody6dfqN0qWB3r2NHRDli68zWST0KtTIWrZsiblz52L79u2YMmUKkpOT0atXL/fjBw8eRKVKlYpskL4gICDA6CFQPthHFvaSh81kuXwZGDo08/aUKUCdOsaNhzzD15ksVuk1fvx4lClTBvv27cO6deuglMKMGTNw7NgxfP7554iPj8frr79u9DB9nlW2NytjI1nYSxb2Eui776C5Pkjdty9Qpoyx46Gr4utMFrP3KtSExpQpU3DmzBm0bt0akydPRt++fdG2bVv349988w1uuOGGIhuk1TmdTkRFReU4/J7MgX1kYS952EyeyZOBf//VTzXVrp3Ck08aPCC6Kr7OZLFSrz/++APDhw9HjRo13J/ycq1Xv379cP/99+Ppp582cog+z0rbm1WxkSzsJQt7CbV4cebyAw8YNw7yCF9nskjoVahTTrVu3Rp79+7Fxo0bERoaik6dOrkfS0hIwOOPP57tPiIiIrKGbduAt97Sl/39nZg7V8Futxs7KCIyLafT6T5yOzQ0FHa7HXFxce7HmzZtio8++sio4REREZE0Z88Ca9YAAFS1atC6dDF4QETkbYWa0ACAChUqoHcu56gLDQ3F6NGjr2lQREREZD5pafqFvx0O/fajj55GZGRFYwdFRKZWu3ZtxMTEANDPx1u7dm2sW7cO9957LwC4PyBFRERE5JGlS6FlZAAA1MCB0PjhKiKfU+gJDZfk5GQkJibmehhKjRo1rvWvJyIiIpN44w1g1y59+brrFB5++DQATmgQUd5uvfVWLFu2DFOmTAEAjBgxAk899RQOHToEpRR++eUXPPXUUwaPkoiIiMRYtMi9qAYNMnAgRGQUTSmlCvMHZ82ahXfeeQeHDh3K8zkO10c4TSwpKQkhISFITExEcHCwIWNQSsHpdMJms0HTNEPGQHljH1nYSx42kyE6GmjRAkhPB+x2YPNmhebN2U0Kvs5kMapXcbwvjo+Px6FDh9CsWTP4+/tDKYUpU6bgq6++gt1uxx133IHnnnvO9BceLE5G74/w94P5sZEs7CULewnzzz9AZCQAQLVsCWzdym4C8HUmi5G9PH1fXKiLgs+ePRtPPPEE6tati1dffRVKKYwZMwbjx49H5cqVcd111/FcuAWUlpZm9BAoH+wjC3vJw2bm5nAAjzyiT2YAwNNPAy1bsps07CWLVXqVLVsWrVq1gr+/PwBA0zS88MIL2L59O7Zu3YqXXnrJpyczzMIq25uVsZEs7CULewmS5WLg6QMGGDgQKii+zmQxe69CTWi899576N69O1avXo1hw4YBAHr27IkpU6Zgz549SE5Oxvnz54t0oFbmdDqxb98+U1893pexjyzsJQ+bmd+HHwKbN+vLDRoAkyaxmzTsJYtVe506dQo7d+7ExYsXjR4KZWHV7c1K2EgW9pKFvQRxOIBPPgEAKLsd/7ZsyW5C8HUmi4RehZrQOHjwIHr16gUA7k9buWZuQkJCMHToUHz44YdFNEQiIiIyypkzwIsvZt6eNw8IDDRuPEQkz4oVK9CwYUNUr14dLVu2xOb/ZkjPnTuHFi1aYPny5cYOkIiIiMxv6VLg2DF9uXt3ZISFGTseIjJMoSY0QkJCkJGRAQAIDg5GqVKlcMz1SwVAUFAQYmNji2aEREREZJjnngMSE/Xlhx8GbrzR0OEQkTDfffcd+vTpg/Lly2PSpEnIevm+8uXLo1q1apg/f76BIyQiIiLTcziAV19133SOG2fgYIjIaIWa0GjSpAl27tzpvn399ddj1qxZOHHiBI4dO4Y5c+agfv36RTZIX2C3240eAuWDfWRhL3nYzJz++gtwXRIrOBh4/fXsj7ObLOwli1V6vfzyy+jYsSN+//13PPHEEzkeb9++PbZv327AyCgrq2xvVsZGsrCXLOwlwLJlwN69+nLHjkDnzuwmDHvJYvZefoX5Q4MGDcLs2bORmpqKEiVKYPLkyejatStq1KgBQD8N1VdffVWkA7Uyu92Opk2bGj0MygP7yMJe8rCZOTmdwMiRmbdffhmoVCnzNrvJwl6yWKnX7t278c477+T5eKVKlXDmzBkvjoiuZKXtzarYSBb2koW9hMj6yaqJE9lNGPaSRUKvQh2hMXjwYGzevBklSpQAANxwww2Ijo7GO++8gxkzZmDXrl3o2bNnkQ7UypRSSEpKynYIPpkH+8jCXvKwmTnNnw9s2aIvN24MPP549sfZTRb2ksVKvUqVKpXvRcAPHTqEcuXKeXFEdCUrbW9WxUaysJcs7CXArl2A6ywxbdoAN9/MbsKwlywSehVqQiM3ERERGD16NEaOHMnTTRWQ0+nEoUOHTH31eF/GPrKwlzxsZj7JycCECZm333sP8PfP/hx2k4W9ZLFSry5dumDhwoXu6+9lFRsbi7lz5+LWW281YGTkYqXtzarYSBb2koW9BFi8OHP54YcBTWM3YdhLFgm9PJ7QSElJwWOPPYb33nsv3+fNnDkTI0aMQHp6+jUPjoiIiLxvxgzg7Fl9uV8/oEsXY8dDRHJNmTIFx48fR5s2bTBnzhxomoYffvgBL7zwApo2bQqlFCZNmmT0MImIiMiMHA5gyRJ92d8f6N/f2PEQkSl4PKHxv//9DwsWLLjqqaR69uyJ+fPnY968edc8OCIiIvKuuDhg2jR92W4HXn3V2PEQkWwNGjTA77//jnLlyuHFF1+EUgrTpk3Da6+9hqZNm+K3335DrVq1jB4mERERmdHPPwMnT+rLPXoAPE0lEaEAFwX/4osv0LdvX0REROT7vDp16qBfv3747LPPMGLEiGseoK8IDAw0egiUD/aRhb3kYTPzePNNIClJXx48GMjvLJLsJgt7yWKlXo0bN8a6desQHx+PAwcOwOl0IiIiAhUqVDB6aPQfK21vVsVGsrCXLOxlYllPNzVoULaH2E0W9pLF7L005eEVPkJCQvD66697NEkxa9YsTJgwAQkJCdc6vmKXlJSEkJAQJCYmIjg42OjhEBERGebUKaBOHeDyZaBECWD/fiA83OhREZG38H2xMfhzJyIiysXFi0ClSvp/Q0KA2FjA5P/ISkTXxtP3xR6fciotLQ0BAQEePTcgIACpqame/tU+z+l04vz586a+2IovYx9Z2EseNjOPKVP0yQwAePzx/Ccz2E0W9pLFKr1SU1Px0UcfoX///mjdujUaNGiA1q1b47777sOCBQuQlpZm9BAJ1tnerIyNZGEvWdjLxFas0CczAP3CflkmM9hNFvaSRUIvjyc0qlatit27d3v03N27d6Nq1aqFHpSvUUrh2LFj8PBgGfIy9pGFveRhM3OIiQH+9z99uUwZYMKE/J/PbrKwlyxW6BUVFYVGjRph2LBhWLZsGQ4ePIhLly7h4MGD+OKLL/DII4+gcePG+Oeff4weqs+zwvZmdWwkC3vJwl4mlvV0Uw88kO0hdpOFvWSR0MvjCY2uXbti0aJFOHPmTL7PO3PmDBYtWoRu3bpd8+CIiIjIOyZPBtLT9eWxYwGe2p6ICuvChQu48847cfr0aUyZMgXHjh1DfHx8tv+++uqrOHnyJHr16oWLrk9fEhEREQHA6dPA2rX6cs2awI03GjseIjIVjyc0nn32WaSkpODmm2/G5s2bc33O5s2bccsttyAlJQVPP/10kQ2SiIiIis+ePZkfgCpbFnjqKWPHQ0SyzZ8/H0ePHsWqVaswfvx4VKtWLdvj1apVw4QJE/Ddd98hJiYGCxYsMGagREREZE5ffAG4Tndz//2AzeN/viQiH+Dn6RMjIiLwxRdfYMCAAejQoQMiIiLQtGlTBAUFITk5Gbt378bBgwdRqlQpLF26FHXq1CnOcVtOUFCQ0UOgfLCPLOwlD5sZ68UXM/cXxo/Xr7nnCXaThb1kkdxr1apVuPXWW9G5c+d8n3fzzTejW7du+O677/DEE094Z3CUK8nbm69gI1nYSxb2MqGvvspcHjAg16ewmyzsJYvZe2mqgCfEOnz4MN544w2sXLkSJ06ccN9ftWpV3HHHHXjmmWcQERFR5AMtLp5ePZ2IiMiKtmwB2rbVlytXBg4eBEqVMnZMRGSMonpfXK1aNTz55JN49tlnr/rcN998EzNmzMi2X+FruD9CRESUxZkzQJUq+ieu6tcH9u4FNM3oURGRF3j6vrjAx2zVqlULs2bNwrFjx5CYmOj+7/HjxzF79mxRkxlm4XQ6ERsba+qrx/sy9pGFveRhM+MoBTzzTObtF1/0fDKD3WRhL1mk94qLi0PlypU9em6lSpUQFxdXzCOi/Ejf3nwBG8nCXrKwlwmtWJF5+HifPrlOZrCbLOwli4Re13QSuqCgIFSrVs30h6GYnVIKsbGxpr56vC9jH1nYSx42M87q1cAvv+jLdesCjz7q+Z9lN1nYSxbpvVJTU+Hv7+/Rc/38/JCWllbMI6L8SN/efAEbycJesrCXCX39deZynz65PoXdZGEvWST08vgaGkRERGQdDgeQ9WwwU6cCHv77IxHRVR0+fBh///33VZ8XExPjhdEQERGRCAkJwPr1+nJ4ONC6taHDISJz4oQGERGRD1q0CNi9W19u1w7o29fY8RCRtbz44ot48cUXr/o8pRQ0nhebiIiIAGD5ciA9XV/O43RTRESc0DABTdMQFhbGnTmTYh9Z2EseNvO+S5f062W4vPlmwfcV2E0W9pJFeq/58+cbPQQqAOnbmy9gI1nYSxb2MpmlSzOX77svz6exmyzsJYuEXpoy8wmxvMDTq6cTERFZxeuvAxMm6Mu9egHffmvseIjIHPi+2Bj8uRMREQE4exaoUkU/N27NmkBMDI/QIPIxnr4vvqaLglPRcDqdOHr0qKmvHu/L2EcW9pKHzbzr3Dn9ehkAYLPpkxuFwW6ysJcs7EXexO3N/NhIFvaShb1M5Msv9ckMQD86I5/JDHaThb1kkdDLo1NObdiwoVB/eceOHQv153yNUgpxcXGoVq2a0UOhXLCPLOwlD5t515QpQFKSvjxkCBAZWbi/h91kYS9Z2Iu8idub+bGRLOwlC3uZiIenmwLYTRr2kkVCL48mNDp37lyg82a5Lu7ncM2sEhERkeEOHQI++EBfLlkSmDzZ2PEQERERERHh338B14epGzQArrvO2PEQkal5NKHx888/F/c4iIiIqJhNmgSkp+vL48YBVasaOx4iIiIiIiLMnp25PHQor51BRPny6BoanTp1KtQXeUbTNFSuXNnUV4/3ZewjC3vJw2besXcvsGSJvhwWBjzzzLX9fewmC3vJwl5Xt2HDBvTq1QtVq1aFpmlYvnx5tseVUpg4cSKqVKmCkiVLomvXrti/f3+258TFxeH+++9HcHAwQkND8cgjj+DChQvZnrNr1y7cdNNNCAwMRHh4ON58880cY1m2bBkaNmyIwMBANG3aFN9//32Rr29x4vZmfmwkC3vJwl4mcPkysGCBvlyiBDB48FX/CLvJwl6ySOjFi4KbgM1mQ+XKlWGzMYcZsY8s7CUPm3nHyy8Drmt6PfMMEBx8bX8fu8nCXrKw19VdvHgR1113HT5wnUfvCm+++SZmzpyJ2bNnY/PmzShdujS6d++OlJQU93Puv/9+REdH48cff8TKlSuxYcMGDBs2zP14UlISbr31VtSsWRPbtm3DtGnT8NJLL+F///uf+zkbN27EgAED8Mgjj2D79u246667cNddd2H37t3Ft/JFjNub+bGRLOwlC3uZwOefA/Hx+vK99wLlyl31j7CbLOwli4RemlJKFeYPpqSk4KuvvsLff/+NxMTEHFc+1zQNH330UZEMsjglJSUhJCQEiYmJCL7Wf90pJIfDgcOHD6NWrVqw2+2GjIHyxj6ysJc8bFb89uwBmjQBlAIqVNCvpVGmzLX9newmC3vJYlSvonhfvMF1/usC6tixY6H+HKDvd3zzzTe46667AOhHZ1StWhVPPfUU/u///g8AkJiYiEqVKmHBggW477778M8//yAyMhJbtmxB69atAQBr1qxBjx49cPz4cVStWhWzZs3C888/j9jYWAQEBAAAxo8fj+XLl2Pv3r0AgP79++PixYtYuXKlezzXX389mjdvjtlZT5+RD6P3R/j7wfzYSBb2koW9TKBTp8zrZ2zaBFx//VX/CLvJwl6yGNnL0/fFHl1D40pHjhxBly5dcPjwYYSGhiIxMRFhYWFISEiAw+FA+fLlUeZa/6XExyQnJxs9BMoH+8jCXvKwWfGaOlWfzAD0ozOK6n/R7CYLe8kitVfnzp0LdHi6UgqapsHhcBTZGGJiYhAbG4uuXbu67wsJCUG7du2wadMm3Hfffdi0aRNCQ0PdkxkA0LVrV9hsNmzevBl33303Nm3ahI4dO7onMwCge/fueOONNxAfH4+yZcti06ZNGDduXLbv37179xynwMoqNTUVqamp7ttJSUkA9J1H189B0zTYbDY4nU5k/fyZ6/4rf1553W+z2XL9+bo+ced0OuFwOJCUlASHw5Ht/qzsdjuUUrnef+UY87rfm+vkyf2S1ilrI6uskxU7ucbo6qWUynPs0tbpavdLXielVLbXlxXWSVSnU6dg++03aABU/fpA27ZALmPM63UGwHzrZMVO17hOAPJ8nUldJyt2cq3Tle87vLlOnu4TFGpC4+mnn0ZiYiL+/PNPREREoGLFivj8889xww03YObMmXj//ffxww8/FPjv3bBhA6ZNm4Zt27bh1KlT2T5plZdffvkF48aNQ3R0NMLDw/HCCy/g4YcfLsxqERERWc7hw8Bnn+nLYWHAY48ZOhwisriff/7Z6CEgNjYWAFCpUqVs91eqVMn9WGxsLCpWrJjtcT8/P4SFhWV7Tu3atXP8Ha7HypYti9jY2Hy/T26mTp2KyZMn57g/Ojra/aGwsLAw1KhRA8ePH0dcXJz7OZUrV0blypVx+PDhbJNe4eHhKFeuHPbv35/ttFoREREIDg7Gnj17su0gNmjQAAEBAYiKioJSCnFxcYiOjkazZs2QlpaGffv2uZ9rt9vRtGlTJCcn49ChQ+77AwMD0bBhQ8THx+PYsWPu+4OCglCnTh2cOXMm28/Bm+uUVdOmTcWvU3R0tLuRpmmWWCcrdnKtk+s15XQ6kZ6ebol1smInl8jISDgcDvfrywrrJKnTqTlzUP2/f/Q8c8MNCE5N9WidlFKI/+80VWZbJyt2utZ1ioyMRHp6erbXmfR1smIn1zodPHjQ/b6jZMmSXl2nK69nl5dCnXKqfPnyGDFiBF555RXExcWhfPny+PHHH3HLLbcAAIYMGYLTp09j1apVBfp7V69ejT/++AOtWrVCnz59rjqhERMTgyZNmuCxxx7D0KFDsX79eowZMwarVq1C9+7dPfqeRh/iDeizT1FRUWjatCkPvTIh9pGFveRhs+I1ciTgOsX8Sy8BkyYVzd/LbrKwlyxG9TLD++LCuPKUUxs3bsQNN9yAkydPokqVKu7n3XvvvdA0DZ9//jlee+01LFy4MNuOHABUrFgRkydPxogRI3Drrbeidu3amDNnjvvxPXv2oHHjxtizZw8aNWqEgIAALFy4EAMGDHA/58MPP8TkyZNx+vTpXMeb2xEa4eHhiIuLc//cvX2ERnR0NBo3bgx/f3/3/VlZ+VOIEtbJ9Y9AjRs3ht1ut8Q6WbFT1k+OR0dHu3+HW2Gdrna/5HVSSiEqKsr9+rLCOknqpHr0gLZ6NQDAsXEjbP+dbsqTIzRcE/Gu8ZhlnazYqSiO0Ni1a1eurzOp62TFTq51uvJ9hzfXKSkpCWFhYcVzyqlLly6hVq1aAIDg4GBomobExET34+3bt3efr7Ygbr/9dtx+++0eP3/27NmoXbs23n77bQBAo0aN8Pvvv2P69OkeT2iYgaZpCA8PN/XV430Z+8jCXvKwWfE5fRpwXc6qdGl9cqOosJss7CULe12bypUrAwBOnz6dbULj9OnTaN68ufs5Z86cyfbnMjIyEBcX5/7zlStXzjEp4bp9tee4Hs9NiRIlUKJEiRz3u3YYs3LtcOb23KK6X9M01KhRA35+ftk+nXwlTdNyvT+vMRb0/qJcJ0/vl7JOfn5+7kZZv5fkdbJiJ9f9rteU6x+YrLBOntwvdZ2cTmeury9A7jrld7+p1ikpCdr69fpytWqwt2sH5PP/oaz3u15nmqaZa52K6H6rrVN+rzOp6wRYrxOgr1Nu7zu8tU6efpirUBMarkNHAP3NVbVq1fDnn3+iT58+APRPLgUGBhbmry6QTZs2ZTs3LqCfs3bMmDHF/r2Lks1mQ7ly5YweBuWBfWRhL3nYrPjMnAm4jkQdNgwoyh8zu8nCXrJYrVdKSgq++uor/P3330hMTMzxaTBN0/CRa/a1CNSuXRuVK1fG+vXr3RMYSUlJ2Lx5M0aMGAFA/wBWQkICtm3bhlatWgEAfvrpJzidTrRr1879nOeffx7p6enuIxd+/PFHNGjQAGXLlnU/x3WUuMuPP/6I9u3bF9n6FDerbW9WxEaysJcs7GWg1auBtDR9+a67gDz+ATQ37CYLe8kioVehJjRuvvlmrFixApP+O2/Fww8/jKlTpyI+Ph5OpxOLFy/Ggw8+WKQDzU1e56xNSkrC5cuXUbJkyRx/xmwX4XN97wMHDqB+/fo8JNWE65Seno4DBw6gbt26PMRbwDrx9SRvnRwOB/7991/3a8wK65Tb/d5ep6Qk4IMPbAA0+PsrjB7thOvholgnh8OBQ4cOoW7dujk+Rc5O5lunjIyMXF9nktfJip1c6+T6f1ndunUREBDgtXXy9CJ8BXHkyBF06dIFhw8fRmhoKBITExEWFoaEhAQ4HA6UL1/efd2Igrhw4QIOHDjgvh0TE4MdO3a4z9s7ZswYvPrqq6hXrx5q166NF198EVWrVnWflqpRo0a47bbb8Oijj2L27NlIT0/HyJEjcd9996Fq1aoAgIEDB2Ly5Ml45JFH8Oyzz2L37t2YMWMGpk+f7v6+o0ePRqdOnfD222+jZ8+eWLp0KbZu3Yr//e9/1/aD8yKHw4H9+/ejXr16Hn8qjryLjWRhL1nYy0Dz52cu3313gf4ou8nCXrJI6FWoCY3x48djy5YtSE1NRYkSJfDcc8/h5MmT+PLLL2G32zFw4ED3aaDMxmwX4QMyLxpWt25dXjTMhOvkughfamoqNI0X4TP7OvH1JG+dUlNTcerUKfdrzArrZIZOCxZURGKi/o9yvXolIj7+MP67bl6RrJOmaVBK4cKFCzh8+LBX1gmwXidvrdOFCxeyvc6ssE5W7ORaJ9f/ywD9YqVmuwhfQTz99NNITEzEn3/+iYiICFSsWBGff/45brjhBsycORPvv/8+fvjhhwL/vVu3bkWXLl3ct8eNGwcAeOihh7BgwQI888wzuHjxIoYNG4aEhATceOONWLNmTbajyD/99FOMHDkSt9xyC2w2G/r27YuZM2e6Hw8JCcHatWvxxBNPoFWrVihfvjwmTpyIYcOGuZ/ToUMHLFmyBC+88AKee+451KtXD8uXL0eTJk0K8+MyTNZtmsyJjWRhL1nYywAxMcDatfpyrVpAlv+ne4rdZGEvWczeq1AXBfcGTdOuelHwjh07omXLlnj33Xfd982fPx9jxozJdk2PrMx2ET6AFw0z+zrxInyy1omvJ3nr5HA4clyIT/o65Xa/N9cpJQWoW9eG2FgNmgbs3u1AgwZFu04OhwN79uxBkyZNeISGgHXKyMjI9XUmeZ2s2CnrERqu9x7ePELD04vwFUT58uUxYsQIvPLKK4iLi0P58uXx448/4pZbbgEADBkyBKdPn8aqVauK5PtJZPTF2F3/H/b2RejJc2wkC3vJwl4Gee45YOpUfXnKFP12AbCbLOwli5G9PH1fXKgjNIYMGYLhw4e7zy97pb/++guzZ8/Gxx9/XJi/3mPt27fH999/n+2+q52z1mwX4XNxXcgorwvKWPVCM1LWyTXWrM+Rvk6e3i9xnfh6uvoYzbROWVtd2VHqOuV1v7fWafFiwPWh7b59gchI+evkzfutuk65vc6kr5MVO7nuz7rsrXUqjh2WS5cuoVatWgCA4OBgaJqW7YNH7du3x//93/8V+fclIiIik0pPB1z/XujnBwwZYux4iEgcz6+4k8WCBQtw8ODBPB+PiYnBwoULC/z3XrhwATt27MCOHTvcf8+OHTtw9OhRAMCECROyXZvjsccew6FDh/DMM89g7969+PDDD/HFF19g7NixBf7eRrLZbIiIiMhz55OMxT6ysJc8bFa0MjKAadMyb48fXzzfh91kYS9ZrNTLdQosAPDz80O1atXw559/uh/fs2dPttNAkfdZaXuzKjaShb1kYS8DrFgBnD6tL/fuDVSuXOC/gt1kYS9ZJPQq1BEaV3Py5MlcL8h9NVc7F+6pU6fckxsAULt2baxatQpjx47FjBkzUL16dcybNw/du3e/9pXwIk3TDDm8nDzDPrKwlzxsVrSWLQNclxXo1g1o1ap4vg+7ycJeslip180334wVK1Zg0qRJAICHH34YU6dORXx8PJxOJxYvXpztA0vkfVba3qyKjWRhL1nYywBz5mQuDx9eqL+C3WRhL1kk9PL4GhorVqzAihUrAOhHaHTs2BERERE5npeQkIB169ahVatW+Pnnn4t2tMXA6HPWApnnIY+MjOS55EyIfWRhL3nYrOgoBTRvDuzapd/+6adCXV/PI+wmC3vJYlSv4nhffPToUWzZsgV33HEHSpQogZSUFIwcORJfffUV7HY77rjjDsyYMQMhISFF8v0kMnp/hL8fzI+NZGEvWdjLyw4cAOrV05cjIoD9+4FCfAqc3WRhL1mM7FXk19DYs2cPli1bBkCfqdm8eTO2bduW7TmapqF06dLo2LEj3nnnnUIO3TddeZFGMhf2kYW95GGzorF6deZkRtu2QOfOxfv92E0W9pLFKr1q1KiBGjVquG8HBgZi3rx5mDdvnoGjoitZZXuzMjaShb1kYS8vmjs3c3nYsEJNZriwmyzsJYvZe3n8m2PChAlITk5GcnIylFL46KOP3LddX0lJSTh16hRWrlyJ+vXrF+e4iYiI6ApTp2YuT5gAaJpxYyEiAoAhQ4Zg8+bNeT7+119/YQgvBkpERGR9aWnA/Pn6sr8/MHiwseMhIrEKNRXqdDoxcODAoh4LERERFdIffwC//64vN2oE3HmnseMhIgL0U9UePHgwz8djYmKwcOFCL46IiIiIDPHNN8DZs/pynz5AxYrGjoeIxLqmi4LHxMRg9erVOHLkCACgZs2auP3221G7du0iGZyvsNlsaNCggamvHu/L2EcW9pKHzYrG669nLj/77DUdve0RdpOFvWTxpV4nT55EyZIljR6GT/Ol7U0qNpKFvWRhLy8qgouBu7CbLOwli4RehZ7QeOqppzBjxgw4nc5s99tsNowZMwZvvfXWNQ/OlwQEBBg9BMoH+8jCXvKw2bXZvRtYuVJfDg8HvHUQJbvJwl6ySO61YsUKrFixwn37f//7H9atW5fjeQkJCVi3bh3atGnjzeFRLiRvb76CjWRhL1nYywv+/Rf4+Wd9uX79IrnYH7vJwl6ymL1XoaZa3n77bUyfPh19+vTBpk2bkJCQgISEBGzatAn33HMPpk+fjunTpxf1WC3L6XQiKioqx+QQmQP7yMJe8rDZtXvzzczlp57ST0lb3NhNFvaSRXqvPXv2YNmyZVi2bBk0TcPmzZvdt11fX375JTZt2oSOHTtiTtZPbJLXSd/efAEbycJesrCXl/zvf5nLw4Zd88X+2E0W9pJFQq9CHaExd+5c3Hnnnfjiiy+y3d+uXTssXboUKSkpmDNnDsaOHVskgyQiIqLcHTkCfPaZvhwWBgwdaux4iIgmTJiACRMmANCP3v7oo494/T0iIiJflZ4OLFqkLwcEAA89ZOx4iEi8Qk1oHD58GKNHj87z8e7du2PNmjWFHhQRERF55p13gIwMfXnUKKB0aWPHQ0SUlZk/2UVEREResG5d5sXAe/cGypc3djxEJF6hJjQqVqyInTt35vn4zp07UaFChUIPioiIiK7u3Dlg3jx9uWRJYORIY8dDRJSXmJgYrF69GkeOHAEA1KxZE7fffjtq165t8MiIiIioWC1enLk8aJBx4yAiy9CUUsqTJ27YsAGNGjVChQoV3BcEf/XVVzFq1CiU/u/joBcvXsT777+P559/XsyFwZOSkhASEoLExEQEBwcbMgalFJxOJ2w2G7RrPI8gFT32kYW95GGzwnvpJWDyZH35ySeBGTO8973ZTRb2ksWoXsX1vti173Dl0Ro2m03MPkNxMnp/hL8fzI+NZGEvWdirmCUnA5UqAZcv6+fHPXVKP+3UNWI3WdhLFiN7efq+2OOLgnfp0gU//vgjAOCVV15Bp06d8Nxzz6Fs2bKoVasWatWqhbJly2LChAno1KkTXn755WtfCx+SlpZm9BAoH+wjC3vJw2YFd/ky8P77+rLdDowb5/0xsJss7CWLVXq9/fbbmD59Ovr06YNNmzYhISEBCQkJ2LRpE+655x5Mnz4d06dPN3qYPs8q25uVsZEs7CULexWjr7/Wd1wAoH//IpnMcGE3WdhLFrP38nhCI+uBHKVKlcL69evxzTffYMiQIWjUqBEaNWqEIUOGYPny5Vi3bh1KlSpVLAO2IqfTiX379vEcwybFPrKwlzxsVjhLlgDnz+vL990H1Kzp3e/PbrKwlyxW6jV37lzceeed+OKLL9CuXTsEBwcjODgY7dq1w9KlS9GrVy/MmTPH6GH6NCttb1bFRrKwlyzsVczmz89cvv/+Ivtr2U0W9pJFQq9CXUPDpXfv3ujdu3dRjYWIiIg8oBQwc2bm7dGjjRsLEVF+Dh8+jNH5/JLq3r071qxZ48URERERkVf8+y/w66/6coMGQIcOxo6HiCzD4yM0APA8Z0RERCbw22/Arl368vXXA23aGDseIqK8VKxYETt37szz8Z07d6JChQpeHBERERF5xccfZy4PHQrw3xSJqIgUaEJj0KBBsNvtHn35+V3TwR8+x263Gz0Eygf7yMJe8rBZwWQ9OmPUKOPGwW6ysJcskntt2LABZ8+eBQD069cP8+bNw+uvv46LFy+6n3Px4kW88cYbmDdvHvr372/UUOk/krc3X8FGsrCXLOxVDNLTgQUL9GU/P+DBB4v8W7CbLOwli9l7aSrrxTHyYbPZ0K1bN9SvX9/jv/y9994r9MC8xdOrpxMREZnB0aNARATgcACVKwNHjhTptfWIyIcV1ftiu92OxYsXY+DAgbh06RJ69eqFn3/+GX5+fqhatSoA4OTJk8jIyECXLl3w3Xff+fT197g/QkRElvPtt4DrFPV9+wJffmnseIhIBE/fFxfoMIqHHnoIAwcOvObBUXZKKSQnJyMoKIin9TIh9pGFveRhs4KZNUufzACAxx4zbjKD3WRhL1mk98r6ealSpUph/fr1WLFiBVavXo0jR44AAG677Tb06NEDvXr1ErmOViJ9e/MFbCQLe8nCXsXkm28ylx9+uMj/enaThb1kkdCrQKecouLhdDpx6NAhU1893pexjyzsJQ+bee7yZWDuXH3Z3x8YPty4sbCbLOwlixV79e7dG7Nnz8bq1auxevVqzJ49G3feeadpd5J8iRW3N6thI1nYSxb2KgYOB7Bypb5cujTQtWuRfwt2k4W9ZJHQixMaREREQnz2GXD+vL587736KaeIiMyIExVEREQ+atMm4Nw5fbl7dyAw0NjxEJHlcEKDiIhIAKWArJemevJJ48ZCRHQ1gwYNgt1u9+jLz69AZ8ElIiIiM/v228xl13U0iIiKkMd7D2Y+zMQKAjljbWrsIwt7ycNmV/f778COHfpy27b6l9HYTRb2kkV6r65du6J+/fpGD4M8JH178wVsJAt7ycJeRWzFCv2/NhvQo0exfRt2k4W9ZDF7L01lvWqfD/L06ulERERGuvdeYNkyfXnxYmDQIGPHQ0TWU1Tvi202Gz755BMMHDiwCEdnXdwfISIiy9i3D2jYUF/u2BH49Vdjx0NEonj6vpinnDIBp9OJ8+fP8ygYk2IfWdhLHja7umPHgK+/1pcrVQL69TN2PAC7ScNesrAXeRO3N/NjI1nYSxb2KmKuozMA4M47i+3bsJss7CWLhF6c0DABpRSOHTsGHz9YxrTYRxb2kofNrm72bMDh0JeHDwdKlDB2PAC7ScNesrAXeRO3N/NjI1nYSxb2KmJemtBgN1nYSxYJvTihQUREZGIpKcD//qcv+/kBjz1m7HiIiIiIiIhyOHMG2LRJX27UCKhXz9jxEJFleXxRcCIiIvK+pUuBc+f05X79gCpVjB0PEdHVmPnwdCIiIiomK1cCrk909+5t7FiIyNJ4hIZJBAUFGT0Eygf7yMJe8rBZ7pQC3nsv8/aTTxo3ltywmyzsJQt7kTdxezM/NpKFvWRhryLy7beZy16Y0GA3WdhLFrP30pSZT4jlBZ5ePZ2IiMjbfv0V6NxZX27dGvjrL0DTDB0SEVkY3xcbgz93IiISLy4OqFoVSE0FKlUCTp4EbPwMNREVjKfvi/nbxQScTidiY2N5eL5JsY8s7CUPm+Vt2rTM5TFjzDWZwW6ysJcs7EXexO3N/NhIFvaShb2KyCef6JMZADBgQLFPZrCbLOwli4RenNAwAaUUYmNjTX31eF/GPrKwlzxslrvoaGDVKn25Rg3g3nuNHc+V2E0W9pKFvcibuL2ZHxvJwl6ysFcRUAqYOzfz9qOPeuFbspsk7CWLhF6c0CAiIjKht97KXB47FvD3N24sREREREREudq8Gdi9W1/u0AGIjDR2PERkeZzQICIiMpkjR/SjtgEgNBQYOtTQ4RAREREREeXuww8zl71wdAYRESc0TEDTNISFhUEz08nRyY19ZGEvedgspzfeADIy9OVRo4AyZYwdT27YTRb2koW9yJu4vZkfG8nCXrKw1zXauxf49FN9uWxZoF8/r3xbdpOFvWSR0EtTZj4hlhd4evV0IiIibzhxAoiIANLS9ImMI0eAsDCjR0VEvoDvi43BnzsREYl1333A55/ry6+9BkyYYOx4iEg0T98X8wgNE3A6nTh69Kiprx7vy9hHFvaSh82ymzZNn8wAgCeeMO9kBrvJwl6ysBd5E7c382MjWdhLFva6Brt2ZU5mVKyoH1ruJewmC3vJIqEXJzRMQCmFuLg4U1893pexjyzsJQ+bZTp9GpgzR18uWRIYN87Y8eSH3WRhL1nYi7yJ25v5sZEs7CULe12DN9/MXJ4wwavnyWU3WdhLFgm9OKFBRERkEm+/DaSk6MuPPaZ/0ImIiIiIiMhUTpzIPDojLAwYNszY8RCRT+GEBhERkQmcOwd8+KG+XKIE8PTTxo6HiIiIiIgoVx98AGRk6MuPPQaUKmXseIjIp3BCwwQ0TUPlypVNffV4X8Y+srCXPGyme+894OJFfXnoUKBKFWPHczXsJgt7ycJe5E3c3syPjWRhL1nYqxAuXco8T66/v37hPy9jN1nYSxYJvTRl5hNieYGnV08nIiIqLpcuATVqAOfPA3Y7cOiQfpuIyJv4vtgY/LkTEZEos2cDI0boyw88ACxaZOx4iMgyPH1fzCM0TMDhcODgwYNwOBxGD4VywT6ysJc8bAbMn69PZgDAfffJmMxgN1nYSxb2Im/i9mZ+bCQLe8nCXgXkdALvvpt5e+xYQ4bBbrKwlywSenFCwySSk5ONHgLlg31kYS95fLmZwwG8807mbUnXzvDlbhKxlyzsRd7E7c382EgW9pKFvQpgzRpg3z59uVMnoEULw4bCbrKwlyxm78UJDSIiIgN9/bV+iikAuPVW4LrrjB0PERERERFRrqZPz1w26OgMIiJOaBARERlEKeDNNzNvSzo6g4iIiIiIfMimTcC6dfpynTrAHXcYOx4i8lmc0DABTdMQHh5u6qvH+zL2kYW95PHlZr/+Cmzdqi83bw7ccouhwykQX+4mEXvJwl7kTdzezI+NZGEvWdirACZOzFx+9lnAbjdsKOwmC3vJIqGXppRSRg/CSJ5ePZ2IiKio9ewJfP+9vvzpp8DAgcaOh4h8G98XG4M/dyIiMr0NG/RrZgBARASwdy/g72/smIjIcjx9X8wjNEzA4XBg7969pr56vC9jH1nYSx5fbRYdnTmZUaMG0K+fseMpKF/tJhV7ycJe5E3c3syPjWRhL1nYywMOR/Zz406caPhkBrvJwl6ySOjFCQ2TSElJMXoIlA/2kYW95PHFZm+9lbk8dqzh+wSF4ovdJGMvWdiLvInbm/mxkSzsJQt7XcUHHwB//aUvN2oE3H+/seP5D7vJwl6ymL0XJzSIiIi87MQJ/RRTABAaCgwdauhwiIiIiIiIcjp6FHjuuczbc+YAfn7GjYeICJzQICIi8rqZM4H0dH15xAigTBljx0NERERERJTDSy8BFy/qy489Btx0k6HDISICeFFwU1yETymF5ORkBAUFmfoK8r6KfWRhL3l8rVlion7NjKQkICAAOHwYqFLF6FEVnK91k469ZDGqlxneF/sio3/u/P1gfmwkC3vJwl75OHkSqFVL/yRWaKi+4xISYvCgdOwmC3vJYmQvT98X8zgxE9A0jTuNJsY+srCXPL7WbNYsfTIDAB5+WOZkBuB73aRjL1nYi7yJ25v5sZEs7CULe+XjvfcyDyt/7DHTTGYA7CYNe8kioRdPOWUCDocDUVFRpr56vC9jH1nYSx5fanb5MvDuu/qyzQY8/bShw7kmvtTNCthLFvYib+L2Zn5sJAt7ycJeeUhOBmbP1pf9/YEnnzR2PFdgN1nYSxYJvTihYRJm3kiIfaRhL3l8pdnChcDp0/ryPfcAdesaO55r5SvdrIK9ZGEv8iZub+bHRrKwlyzslYtPPgESEvTlQYNMeVg5u8nCXrKYvRcnNIiIiLwgIwOYNi3z9rPPGjcWIiIiIiKiXCkFzJmTeXv0aOPGQkSUC05oEBERecGXXwKHDunLt94KtGxp7HiIiIiIiIhy2LIF2LlTX27XDrjuOmPHQ0R0BU5omIDNZkODBg1gszGHGbGPLOwljy80Uwp4/fXM2+PHGzeWouIL3ayEvWRhL/Imbm/mx0aysJcs7JWLrEdnDBtm3DjywW6ysJcsEnqZd2Q+JiAgwOghUD7YRxb2ksfqzVatyvyQU9u2QOfOhg6nyFi9m9WwlyzsRd7E7c382EgW9pKFvbI4eRJYulRfDg4G+vc3djz5YDdZ2EsWs/fihIYJOJ1OREVFwel0Gj0UygX7yMJe8li9mdMJvPBC5u0JEwBNM248RcXq3ayGvWRhL/Imbm/mx0aysJcs7HWFJ58ELl3Slx9+GChd2tDh5IXdZGEvWST04oQGERFRMVq2LPPojNatgd69jR0PERERERFRDitWAF99pS9XqABMmmTseIiI8sAJDSIiomKSkQG8+GLm7ddes8bRGUREREREZCHx8cDjj2fefvddICzMsOEQEeWHExpERETFZOFCYP9+fblzZ6BrV0OHQ0RERERElNOoUfr1MwCge3dgwABjx0NElA9NKaWMHoSRkpKSEBISgsTERAQHBxsyBqUUnE4nbDYbNH5013TYRxb2kseqzVJTgXr1gGPH9Nt//AF06GDsmIqSVbtZFXvJYlQvM7wv9kVG/9z5+8H82EgW9pKFvQAsXw7cfbe+HBIC7N4NVK9u6JCuht1kYS9ZjOzl6ftiHqFhEmlpaUYPgfLBPrKwlzxWbDZnTuZkRs+e1prMcLFiNytjL1nYi7yJ25v5sZEs7CWLT/dSCpg4MfP2e++ZfjLDxae7CcRespi9Fyc0TMDpdGLfvn2mvnq8L2MfWdhLHis2u3ABmDIl8/arrxo3luJixW5Wxl6ysBd5E7c382MjWdhLFp/vtX49EBWlL19/PTBokLHj8ZDPdxOGvWSR0IsTGkREREVs5kzgzBl9+d57gebNDR0OERERERFRTu+8k7k8bhzA0wERkQCc0CAiIipC8fHAm2/qyzYb8PLLxo6HiIiIiIgoh3/+AVav1pdr1sy8jgYRkclxQsMk7Ha70UOgfLCPLOwlj5WavfUWkJioLz/8MNCggaHDKVZW6uYL2EsW9iJv4vZmfmwkC3vJ4rO9Xn89c3n0aMDPz7ixFILPdhOKvWQxey9NKaWMHoSRPL16OhER0dWcPg1ERACXLgEBAcC//+ofdiIikoDvi43BnzsREXndgQNAw4aAwwGEhQGHDwNBQUaPioh8nKfvi3mEhgkopZCUlAQfn1syLfaRhb3ksVKzqVP1yQwAGD7c2pMZVurmC9hLFvYib+L2Zn5sJAt7yeKzvaZO1SczAP3aGcImM3y2m1DsJYuEXpzQMAGn04lDhw6Z+urxvox9ZGEveazS7OhRYNYsfblUKeC554wdT3GzSjdfwV6ysBd5E7c382MjWdhLFp/stX8/sGiRvhwaCowcaehwCsMnuwnGXrJI6MUJDSIioiLw4otAWpq+/OSTQOXKxo6HiIiIiIgohzFjgIyMzOWQECNHQ0RUYJzQICIiukZ//535IaeyZYFnnjF2PERERERERDmsXAl8/72+XL068H//Z+x4iIgKgRMaJhEYGGj0ECgf7CMLe8kjuZlS2fcDJk7UJzV8geRuvoi9ZGEv8iZub+bHRrKwlyw+0ysjQ79ehstbbwGlSxs3nmvkM90sgr1kMXsvTZn5Ch9e4OnV04mIiHLz3XfAnXfqy3XqAHv2AAEBxo6JiKgw+L7YGPy5ExGRVyxYAAwerC937Aj88gugaUaOiIgoG0/fF/MIDRNwOp04f/68qS+24svYRxb2kkdys/T07EdnTJ3qO5MZkrv5IvaShb3Im7i9mR8bycJesvhMr4wM4NVXM2+/+qroyQyf6WYR7CWLhF6c0DABpRSOHTsGHz9YxrTYRxb2kkdys9mzgX//1ZdvvBG45x5jx+NNkrv5IvaShb3Im7i9mR8bycJesvhMr08+AQ4e1JdvuQW46SZjx3ONfKabRbCXLBJ6cUKDiIioEOLjgZdeyrz9zjuiP+RERERERERWlJAATJiQeXvSJMOGQkRUFDihQUREVAivvALExenLgwYBbdoYOx4iIiIiIqIcnnkGiI3Vl3v1En90BhERJzRMIigoyOghUD7YRxb2kkdas/37gfff15cDA4HXXjN2PEaR1s3XsZcs7HVtXnrpJWialu2rYcOG7sdTUlLwxBNPoFy5cihTpgz69u2L06dPZ/s7jh49ip49e6JUqVKoWLEinn76aWRkZGR7zi+//IKWLVuiRIkSqFu3LhYsWOCN1Sty3N7Mj41kYS9ZLN1rwwZg7lx9uUwZ4IMPjB1PEbJ0NwtiL1nM3svP6AEQYLfbUadOHaOHQXlgH1nYSx5pzZQCnnxSvyA4oF8UPDzc2DEZQVo3X8desrBX0WjcuDHWrVvnvu3nl7nrM3bsWKxatQrLli1DSEgIRo4ciT59+uCPP/4AADgcDvTs2ROVK1fGxo0bcerUKTz44IPw9/fHa//NYsfExKBnz5547LHH8Omnn2L9+vUYOnQoqlSpgu7du3t3Za8BtzfzYyNZ2EsWS/dSCnj66czbr79umR0XS3ezIPaSRUIvUx6h8cEHH6BWrVoIDAxEu3bt8Ndff+X53AULFuT49FVgYKAXR3vtnE4nYmNjTX31eF/GPrKwlzzSms2bB6xZoy9XqQI8+6yx4zGKtG6+jr1kYa+i4efnh8qVK7u/ypcvDwBITEzERx99hHfeeQc333wzWrVqhfnz52Pjxo34888/AQBr167Fnj178Mknn6B58+a4/fbb8corr+CDDz5AWloaAGD27NmoXbs23n77bTRq1AgjR47EPffcg+nTpxu2zoXB7c382EgW9pLF0r2WLwdc/57WpAnw2GOGDqcoWbqbBbGXLBJ6mW5C4/PPP8e4ceMwadIk/P3337juuuvQvXt3nDlzJs8/ExwcjFOnTrm/jhw54sURXzulFGJjY0199Xhfxj6ysJc8kpodPgyMG5d5e948/chtXySpG7GXNOxVNPbv34+qVasiIiIC999/P44ePQoA2LZtG9LT09G1a1f3cxs2bIgaNWpg06ZNAIBNmzahadOmqFSpkvs53bt3R1JSEqKjo93Pyfp3uJ7j+juk4PZmfmwkC3vJYtleDgfwwguZt197DbDbjRtPEbNsN4tiL1kk9DLdKafeeecdPProoxg8eDAA/ZNPq1atwscff4zx48fn+mc0TUPlypW9OUwiIvIxSukfarpwQb89dCjQo4exYyIioty1a9cOCxYsQIMGDXDq1ClMnjwZN910E3bv3o3Y2FgEBAQgNDQ025+pVKkSYv+7aGpsbGy2yQzX467H8ntOUlISLl++jJIlS+Y6ttTUVKSmprpvJyUlAdBPc+VwOADo+zc2mw1OpzPbzqTrftfzrna/zWaDpmm53g/on8BzOBxQSsHhcGS7Pyu73Q6lVK73XznGvO735jp5cr+kdcrayCrrZMVOrjG6erm+rLBOV7tf8jq5Ol35fMnrZLPZgGnToO3Zo6/j9dfDefvtsP+3vmLXCTlfZ7DQOmUdo9XWCUCerzOp62TFTq51uvJ9hzfX6crH82KqCY20tDRs27YNEyZMcN9ns9nQtWvXfD/pdOHCBdSsWRNOpxMtW7bEa6+9hsaNG3tjyERE5CM+/xz44Qd9uXp14O23jR0PERHl7fbbb3cvN2vWDO3atUPNmjXxxRdf5DnR4C1Tp07F5MmTc9wfHR2NMv8d9hcWFoYaNWrg+PHjiIuLcz/Hdfqsw4cPIzk52X1/eHg4ypUrh/379yMlJcV9f0REBIKDg7Fnz55sO4gNGjRAQEAAoqKioJRCXFwcoqOj0axZM6SlpWHfvn3u59rtdjRt2hTJyck4dOiQ+/7AwEA0bNgQ8fHxOHbsmPv+oKAg1KlTB2fOnHFP/nh7nbJq2rSp+HWKjo52N9I0zRLrZMVOrnVyvaacTifS09MtsU5W7OQSGRkJh8Phfn1ZYZ2apqfDNnEiAEBpGvYPH47Uf/6RvU5XbHtKKcTHxwOAZdYJsMC2l8c6RUZGIj09PdvrTPo6WbGTa50OHjzoft9RsmRJr67TBdcnSK9CUyY6fuTkyZOoVq0aNm7ciPbt27vvf+aZZ/Drr79i8+bNOf7Mpk2bsH//fjRr1gyJiYl46623sGHDBkRHR6N69eo5np/bJ6LCw8MRFxeH4OBgAN6fIXM6nThx4gTCw8Pd3zcrK8/6SVinjIwMnDhxAtWqVYPNZrPEOlmxE19PctfJ6XTi2LFj7teYGdcpIUFDo0YKp0/rb76+/tqBu+7yrU5X3u90OnHq1ClUq1YNV5K6Tq4xWqmTa4wOhyPX15nkdbJiJ9c6uf5fVq1aNfj7+3ttnZKSkhAWFobExET3+2IradOmDbp27Ypu3brhlltuQXx8fLajNGrWrIkxY8Zg7NixmDhxIr799lvs2LHD/XhMTAwiIiLw999/o0WLFujYsSNatmyJd9991/2c+fPnY8yYMUhMTMxzHGbbH8m6vbkunO5rrzmzrxP3R2StE/dHZK0TABw/fhxVq1Z1P0f0OqWnw9ayJbR//tEfe+YZqNdek71Oudzvep3VqFEDmqZZYp2yjtEqnbL+/ceOHcv1dSZ1nazYybVOV77v8OY6ebo/YqojNAqjffv22SY/OnTogEaNGmHOnDl45ZVXcjzfbJ+Iyio8PBwpKSk+NesnYZ1c50lOSEiwzDpZsRNfT7LXKSEhwf0aM+M6jRsX7J7M6NIlAbVrH0ZKiu91ym2dkpKSLLdOVux08eLFbK8zK6yTFTtduU4pKSmm/ESURBcuXMDBgwfxwAMPoFWrVvD398f69evRt29fAMC+fftw9OhR935F+/btMWXKFJw5cwYVK1YEAPz4448IDg5GZGSk+znff/99tu/z448/Zts3yU2JEiVQokSJHPfb7XbY7dnPb551p//K5xbV/Xa7HbVq1brq8zVNy/X+vMZY0PuLcp08vV/KOvn7++dolNfzpayTFTu57r/yNWWFdfLkfsnrVLNmzVyfK3Kd5s4F/pvMQMuWsL3yCpDlcZHrlMv9nrzOpK1TVlbplFVerzPJ62TFTpqm5fq+w1vrlNfjOcZppiM00tLSUKpUKXz55Ze466673Pc/9NBDSEhIwIoVKzz6e/r16wc/Pz989tlnOR4z2yeiXP/lJzjMu078RJSsdeLrSd46OZ3mPkJj7VobevTQJzOCgxWiopyoVs33Ol15v9PJIzQkrROP0JC1Tq7/l/EIjcL7v//7P/Tq1Qs1a9bEyZMnMWnSJOzYsQN79uxBhQoVMGLECHz//fdYsGABgoODMWrUKADAxo0bAejn723evDmqVq2KN998E7GxsXjggQcwdOhQvPbfJ11jYmLQpEkTPPHEExgyZAh++uknPPnkk1i1ahW6d+/u8ViTkpIQEhJi2M/d6XTi+PHjqF69ep47n2QsNpKFvWSxVK9Ll4C6dYFTp/Tbf/4JtGtn7JiKiaW6+QD2ksXIXp6+LzbVERoBAQFo1aoV1q9f757QcDqdWL9+PUaOHOnR3+FwOBAVFYUeeVyp1WyfiHJJSEhAeHh4nrN7Vp31k7BONpvN3SfrcySvkxU78fUke51ye42ZYZ2SkoDhwzMfe/ttDTVq2PN8/tXuN8M6FeX9cXFxqFatmqXWCbBeJ5fcXmeS18mKnbKuk6tXfmMs6nXy9BNREhw/fhwDBgzA+fPnUaFCBdx44434888/UaFCBQDA9OnTYbPZ0LdvX6SmpqJ79+748MMP3X/ebrdj5cqVGDFiBNq3b4/SpUvjoYcewssvv+x+Tu3atbFq1SqMHTsWM2bMQPXq1TFv3rwCTWaYgVLK/fuczImNZGEvWSzVa+bMzMmMu+6y7GQGYLFuPoC9ZJHQy1QTGgAwbtw4PPTQQ2jdujXatm2Ld999FxcvXsTgwYMBAA8++CCqVauGqVOnAgBefvllXH/99ahbty4SEhIwbdo0HDlyBEOHDjVyNYiIyALGjwdcZ3m55RbgkUeMHQ8REXlm6dKl+T4eGBiIDz74AB988EGez6lZs2aOU0pdqXPnzti+fXuhxkhERFRkNm8GJk3SlzUNePVVY8dDRFSMTDeh0b9/f5w9exYTJ05EbGwsmjdvjjVr1qBSpUoAgKNHj2b71Fl8fDweffRRxMbGomzZsmjVqhU2btzoPrctERFRYfzyCzBrlr5cqpR+OlpNM3RIRERERERE2cXGAn36AGlp+u1Ro4DGjY0dExFRMTLdhAYAjBw5Ms9TTP3yyy/Zbk+fPh3Tp0/3wqiKj6ZpqFy5MjT+S5kpsY8s7CWPGZtdugRkPdDv9deB2rWNG48ZmbEb5Y29ZGEv8iZub+bHRrKwlyyW6DVyJHDypL58003AtGnGjscLLNHNh7CXLBJ6meqi4EYw+iJ8RERkPk89Bbzzjr58ww3Ahg0Ar11GRFbH98XG4M+diIgK7ddfgc6d9eWKFYFdu4D/znBCRCSNp++L+c8zJuBwOHDw4EE4HA6jh0K5YB9Z2EseszX780/g3Xf15RIlgI8+4mRGbszWjfLHXrKwF3kTtzfzYyNZ2EsW0b0cDmDs2MzbU6b4zGSG6G4+iL1kkdCL/0RjEsnJyUYPgfLBPrKwlzxmaZaUBNx/P+B06rdffhlo0MDYMZmZWbqRZ9hLFvYib+L2Zn5sJAt7ySK21/vvA9u368vXXQcMHmzseLxMbDcfxV6ymL0XJzSIiIj+M3IkcOiQvtyuHTBunLHjISIiIiIiyiEqCnj22czbM2YAdrtx4yEi8iJOaBAREQH49FNg8WJ9OSgIWLIE8PMzdkxERERERETZXLqkH1aemqrfHjMG6NTJ0CEREXkTJzRMQNM0hIeHm/rq8b6MfWRhL3nM0OzQIWDEiMzbs2cDERGGDUcEM3Qjz7GXLOxF3sTtzfzYSBb2kkVcL6WAYcP0IzQAoGlTYOpUY8dkAHHdfBx7ySKhl6aUUkYPwkieXj2diIisKTUV6NgR+Osv/faDDwILFxo7JiIiI/B9sTH4cyciIo+9/Tbwf/+nL5cuDWzeDDRubOyYiIiKiKfvi3mEhgk4HA7s3bvX1FeP92XsIwt7yWNkM6WARx/NnMyoW1e/th5dHV9rsrCXLOxF3sTtzfzYSBb2kkVML6WA11/PnMwA9E9h+ehkhphuBIC9pJHQixMaJpGSkmL0ECgf7CMLe8ljVLM33si8bkbJksDnn+vXzyDP8LUmC3vJwl7kTdzezI+NZGEvWUT0euMNYMKEzNuTJgF9+xo3HhMQ0Y3c2EsWs/fi5U6JiMgnffNN9n2CTz4BWrY0bjxEREREREQ5/P478Pzzmbdffx149lnjxkNEZDAeoUFERD5n+3Zg0KDM21OmAH36GDceIiIiIiKiHOLjgYEDAadTvz1xIicziMjncULDBGw2GyIiImCzMYcZsY8s7CWPt5udOgX06gVcuqTfHjQo+5Ea5Bm+1mRhL1nYi7yJ25v5sZEs7CWLqXs5HPpkxrFj+u2OHfUJDTJ3N8qBvWSR0IunnDIBTdPyvXI7GYt9ZGEvebzZ7NIloHdv4MQJ/XaHDsDcuYCmeeXbWwpfa7KwlyzsRd7E7c382EgW9pLF1L2eew5Ys0ZfLl9eP0eu3W7smEzC1N0oB/aSRUIv8061+BCHw4GoqChTXz3el7GPLOwlj7eapabqp5XaskW/XaOGfh2NwMBi/baWxdeaLOwlC3uRN3F7Mz82koW9ZDFtr88+A958U1+224Fly4DwcGPHZCKm7Ua5Yi9ZJPTihIZJmHkjIfaRhr3kKe5m6enAffcBP/yg3w4KAlauBCpWLNZva3l8rcnCXrKwF3kTtzfzYyNZ2EsW0/Xavh145JHM2+++C3TubNRoTMt03Shf7CWL2XtxQoOIiCwtNRXo1w9Yvly/XbIk8P33QNOmhg6LiIiIiIgou+hooGdP4PJl/faQIcATTxg7JiIik+GEBhERWVZKCtC3L7BihX47MFBfvvFGY8dFRERERESUzZYt+oW/T53Sb19/PfDhh7zgHxHRFTSllDJ6EEZKSkpCSEgIEhMTDbvgiVIKKSkpCAwMhMb/UZkO+8jCXvIUV7PLl4G77848zVTJksB33wG33FJk38Kn8bUmC3vJYlQvM7wv9kVG/9z5+8H82EgW9pLFNL327wfatwfOn9dvt2oFrF4NVKhg3JhMzDTdyCPsJYuRvTx9X+znxTFRPgICAoweAuWDfWRhL3mKullyMnDnncAvv+i3S5fWr5nBU88WLb7WZGEvWdiLvInbm/mxkSzsJYvhvc6cAXr0yJzM6NhR33kJCjJ2XCZneDcqEPaSxey9eMopE3A6nYiKioLT6TR6KJQL9pGFveQp6mbnz+tHYbgmM8qUAdas4WRGUeNrTRb2koW9yJu4vZkfG8nCXrIY3mvvXv3IjAMH9NtNmgDffsvJjKswvBsVCHvJIqEXJzSIiMgyTpzQP9C0ZYt+u2xZYN06XjODiIiIiIhM5qef9MmMQ4f029WrA99/D4SEGDsuIiKT44QGERFZwqFDwE03AXv26LerVAE2bADatTN2XERERERERNksWAB07w4kJOi3mzcHNm0CwsMNHBQRkQyc0CAiIvH27tUnM2Ji9Nu1awO//64fsU1ERERERGQaixYBgwcDGRn67TvuAH77TT9Cg4iIrkpTSimjB2EkT6+eXpyUUnA6nbDZbF6/ejxdHfvIwl7yXGuznTuBbt2As2f125GRwI8/AlWrFvFAKRu+1mRhL1mM6mWG98W+yOifO38/mB8bycJesni917ffAn36AA6HfnvkSODddwG7vfi/t4XwdSYLe8liZC9P3xfzCA2TSEtLM3oIlA/2kYW95Clss82b9Yt9uyYzWrQAfv2VkxnewteaLOwlC3uRN3F7Mz82koW9ZPFar+PHgQceyD6ZMXMmJzMKia8zWdhLFrP34oSGCTidTuzbt8/UV4/3ZewjC3vJU9hmGzYAXbtmnna2fXv9unrlyxf9GCknvtZkYS9Z2Iu8idub+bGRLOwli9d6KQU8+iiQlKTf7tcPmDED4KfVC4WvM1nYSxYJvTihQURE4vzwA3DbbcCFC/rtLl2AtWuB0FBDh0VERERERJSdwwG8+CKwZo1+u2pVYM4cwMZ/kiMiKgw/owdARERUEMuXA/37A64jIHv0AL78EihZ0tBhERERERERZXfunH7NjN9+y7zvf/8DypY1bkxERMJxOtgk7DxnoqmxjyzsJY8nzTIygFdfBe65J3Myo29f4JtvOJlhFL7WZGEvWdiLvInbm/mxkSzsJUux9UpIAG69NXMyw2YDpk4FevYsnu/nY/g6k4W9ZDF7L00ppYwehJE8vXo6EREZJyZGv37eH39k3vfAA8DHHwN+PNaQiKhI8H2xMfhzJyKyoIQE/Ry5mzfrt6tUAZYtA264wdBhERGZmafvi3mEhgkopZCUlAQfn1syLfaRhb3kya+Zw6GfXva66zInM2w2/RS0CxZwMsNIfK3Jwl6ysBd5E7c382MjWdhLlmLpFRsLdOqUOZlRoQLw00+czChCfJ3Jwl6ySOjFCQ0TcDqdOHTokKmvHu/L2EcW9pInr2YbNgAtWgCPPQYkJ+v31a6tH7H98su8hp7R+FqThb1kYS/yJm5v5sdGsrCXLEXay+kE5s8HmjUDdu3S76tQAVi3DmjY8Nr/fnLj60wW9pJFQi9+tpWIiEwlPh545hlg3rzs9z/8MDBzJhAUZMiwiIiIiIiIcnfhAjBwIPDdd5n31awJ/PgjUK+eceMiIrIgfr6ViIhMQSng88/1Dy9lncxo3Vo/KmP+fE5mEBERERGRyZw8Cdx0U/bJjH79gE2bOJlBRFQMeISGSQQGBho9BMoH+8jCXvKcP18Gd95pw+rVmfcFBQGvv66fcoqnlzInvtZkYS9Z2Iu8idub+bGRLOwlyzX1OnQI6NoViInRb4eEAEuWAD16FM3gKE98ncnCXrKYvZemzHyFDy/w9OrpRERU9FJTgbffBl59Fbh8OfP+u+8G3nsPqFbNuLEREfkavi82Bn/uRERCRUcD3boBp07pt2vVAr7/HmjUyNBhERFJ5en7Yn7m1QScTifOnz9v6out+DL2kYW95Fi3Tr9e3vPPZ05mVK0KfP21/sXJDHPja00W9pKFvcibuL2ZHxvJwl6yFLrX1q1Ap06ZkxmRkcDvv3Myw0v4OpOFvWSR0IsTGiaglMKxY8fg4wfLmBb7yMJe5vfrr/pR2d26Af/+q99nsymMGuXEnj360RlkfnytycJesrAXeRO3N/NjI1nYS5ZC9frsM30y4/x5/XarVvpODj+R5TV8ncnCXrJI6MUJDSIi8opfftHf93fuDKxfn3l/+/YKS5bsw/TpCiEhRo2OiIiIiIgoH+npwOjRwMCBwKVL+n0dOwI//QSUL2/s2IiIfAgnNIiIqFj9/Tdw551Aly7Ahg2Z90dEAAsXAr/+6kSDBinGDZCIiIiIiCg/MTH6Ds3MmZn3PfwwsGYNwOsfERF5lZ/RAyBdUFCQ0UOgfLCPLOxlvPh4YMkSYN48YMeO7I81aKBfN2PAAMDPD3A42EwqdpOFvWRhL/Imbm/mx0aysJcs+fa6dAl44w3gzTeBlP8+hBUQALz3HvDoo4CmeWeQlANfZ7Kwlyxm76UpM58Qyws8vXo6ERHlTyn91LHz5gFffZX5ft+lWjVgyhRg0CDAbjdmjERElDe+LzYGf+5ERCaklL5T83//Bxw5knl/eDjw5ZdA27bGjY2IyKI8fV/MU06ZgNPpRGxsrKmvHu/L2EcW9vK+kyeBqVOBevX0o7A//TT7ZEbbtsCcOfoFwB96KOdkBpvJxG6ysJcs7EXexO3N/NhIFvaSJUcvpYDVq4F27YB+/TInM/z89MmN3bs5mWECfJ3Jwl6ySOjFCQ0TUEohNjbW1FeP92XsIwt7eUd6OrBihX5tjBo1gOeeAw4ezHw8LEy/Xt6uXcDmzcCwYUCpUrn/XWwmE7vJwl6ysBd5E7c382MjWdhLFnevy5eBjz4CmjQBevQAtmzJfFK3bkBUFDBtGq+XYRJ8ncnCXrJI6MVraBARkcf27wc+/hhYsACIjc35eNeuwNChQO/eQGCg14dHRERERETkOaUQ+sMPsPXoAZw6lf2xZs2A117TJzh4rQwiItPghAYREeUrNlY/TezSpcAff+R8vFo1YMgQYPBgoHZt74+PiIiIiIiowA4dgm30aNRauTL7/TfeqJ9eqlcvwMYTmxARmQ0nNExA0zSEhYVB44y/KbGPLOxVNM6dA77+Wp/E+PVX4MpTJ/r56aebGjoUuPXWa7vIN5vJxG6ysJcs7EXexO3N/NhIFvYS4OJF/SKAb70FLTU18/477gBeeEG/fgaZGl9nsrCXLBJ6acrMJ8TyAk+vnk5EZGUZGfrRF8uXA+vW6de6y01kpH4kxgMPAJUqeXWIRERUzPi+2Bj8uRMRecm5c8AnnwBvvw0cP555f+XKwPvvA337Gjc2IiLy+H0xj50zAafTiaNHj5r66vG+jH1kYS/PpacDP/ygX7C7ShWgc2fg3XdzTmbUrat/UCkqCoiO1o++LsrJDDaTid1kYS9Z2Iu8idub+bGRLOxlMocPA+PHAy1b6jsxY8dmTmb4+0M9/TSOrV8P5913GzpMKhi+zmRhL1kk9OKEhgkopRAXF2fqq8f7MvaRhb3yd/Ys8M03+lEWlSoBt90GzJ2rf1jJxWYDWrcGnnkG2LYN+Pdf4JVXgCZNimdMbCYTu8nCXrKwF3kTtzfzYyNZ2MskDh0C7r8fqFMHeOMNYPv27OfR7dED2L0bzqlTcT4tjb2E4etMFvaSRUIvXkODiMjCkpL0a2CsX6+fSio6OvfnlSqlv6e/+279v6GhXh0mERERERHRtTt4EHjrLeCjj/RD0l00DWjaVP9E18MPA40a6fc7HIYMk4iICo8TGkREFpKRAWzeDKxdq09gbN6c93v0oCCgVy/9VLG33aZPahAREREREYmSkgIsXAh89hmwYQOQ9VPF5csDTz4JDB8OVKxo3BiJiKjIcELDBDRNQ+XKlU199Xhfxj6y+GKvgwf1CYy1a4GfftKPysiN61RSHTvq18u45RYgMNCrQ82VLzazAnaThb1kYS/yJm5v5sdGsrCXF8XFAcuWAa+9Bhw9mv2xMmWA0aP18+jmc2FZ9pKJ3WRhL1kk9NKUmU+I5QWeXj2diMhMDh8GPv8cWLoU2LEj7+c1bKhPXHTtqk9i8FRSRESUF74vNgZ/7kREHlIKOHYM+OUX4Isv9E90ZT2tFADUrw889BAwYgRQtqwhwyQiosLx9H0xLwpuAg6HAwcPHoSD5240JfaRxaq9lAIOHABmzgTatwdq1wbGj885mVGuHHDffcDHH+vv9f/5B3j/feCuu8w7mWHVZlbHbrKwlyzsRd7E7c382EgW9ipily7pExijRwPh4UDNmvqExapV2SczbrsN2LIF2LsXeO45jycz2EsmdpOFvWSR0IunnDKJ5ORko4dA+WAfWazUKyEBeOcdYO5cIDY29+e0bQv07g107w60aKGfWkoaKzXzJewmC3vJwl7kTdzezI+NZGGva3T2rH4o+tdfA3/8kfMoDJdq1YB77wUGDADatCn0t2MvmdhNFvaSxey9OKFBRGRCycnAjBnAW28BiYk5H2/WTD8So39/ICLC++MjIiIiIiIqEikpwO7dwPbt+kW9ly0DUlNzPi8gQL8gYLt2+hEZHTrI/DQXERFdE05oEBGZyMWLwAcfAG++CZw/n3m/vz9w883ATTcBd98NREYaN0YiIiIiIqJCO3MG+P57/VRSf/+tnyc3IyP359apA3TpAnTqBPTqBYSEeHWoRERkPpzQMAFN0xAeHm7qq8f7MvaRRWIvp1M/knrhQv3DSElJmY/Z7fopYl98EahVy7AhFiuJzYjdpGEvWdiLvInbm/mxkSzslYezZ4GPPgJWrAA2b9YvEpiX0FDgkUf0HaEmTYBi/Fmyl0zsJgt7ySKhl6ZUfv8XsT5Pr55ORFSUUlL0o6m//15/T3/4cPbHNQ24/35g4kSgXj1DhkhERD6G74uNwZ87EVmWwwH8+ivw2WfAJ5/oO0FXstv1w89btMj8atsWKFnS++MlIiJDefq+mCcbNAGHw4G9e/ea+urxvox9ZDFzr1OngDlzgDvvBMqV0y/iPWNG9smMMmWAwYP1U8guXuwbkxlmbkZ5YzdZ2EsW9iJv4vZmfmwki8/3cjqB334DRo7UL9p9yy3AvHnZJzOaNAHGj9efd+ECsGuXfrj6mDH6qaW8OJnh872EYjdZ2EsWCb14yimTSMntkwpkGuwji5l6nTsHfPUVsHSp/uGk3I6Js9v19/kPPQTcdRdQqpTXh2k4MzUjz7GbLOwlC3uRN3F7Mz82ksXneiUnA19/Dfz4I/DTT/onua5UpgwwdKg+0VGnjvfHmA+f62UR7CYLe8li9l6c0CAiKmLHjgFr1wJffqm/p89tUrtSJeD224GePYFu3XhtOyIiIiIiEkQpYONG/boYX3wBXLyY8zklSgA9egD9+wN33AGULu39cRIRkeVwQoOI6BopBezdC6xcCSxZAuzYkfvz6tXT38v37g20bAnYeNI/IiIiIiKS5MwZYNEifSJj796cj5csCdx8c+aOD68NRERERYwTGiZgs9kQEREBG/9105TYRxZv9/rxR+DRR4EjR3J/vEYN4L779K/mzfWLfVN2fI3JxG6ysJcs7EXexO3N/NhIFkv2ysgAfvhBn8T47jv9dlbBwcCAAcCgQfoFvQMCjBlnIViylw9gN1nYSxYJvTihYQKapuV75XYyFvvI4s1eq1cDd98NpKZmv791a/2I6u7dgXbtOIlxNXyNycRusrCXLOxF3sTtzfzYSBZL9EpPB/74I/Nr0yYgISHn8zp21K+L0bev2AsBWqKXD2I3WdhLFgm9zDvV4kMcDgeioqJMffV4X8Y+shRnr/R04JdfgCefBCIj9dPBuiYz2rcHpk0D9u8HtmwBJk0Crr+ekxme4GtMJnaThb1kYS/yJm5v5sdGsojutXcvMHo0UK0a0KUL8MIL+qe4sk5mVK4MjB8P/Psv8OuvwAMPiJ3MAIT38mHsJgt7ySKhF4/QMAkzbyTEPtIUZS+nE/j6a2DWLP2DSZcv53xOv376tTP8+Bu10Pgak4ndZGEvWdiLvInbm/mxkSyiejmd+umkZszQ/5ubChX0ozEefBC4/XbA39+7YyxmonqRG7vJwl6ymL0X//mNiCiLy5eB3buBnTuBbdv0IzJyu9adnx/QqpV+yqmnnuJkBhERERERCXL+PPDZZ8B77+lHW2RVogTQqxfQsydwww1A3bo89JyIiEyD/wRHRD5LKeDAAeD33/WvTZuAffv0DynlpkYN4Kab9Otj9OihX/uOiIiIiIjI9NLSgD17gLVr9Qt7b9yYc8enVi1g5EhgyBCgbFlDhklERHQ1mlJKGT0IIyUlJSEkJASJiYmGXfBEKYWUlBQEBgZC46ceTId9ZMmrl1LAyZPA1q3Zv86dy//v0zT9+hgvvqhf5JubQNHja0wmdpOFvWQxqpcZ3hf7IqN/7vz9YH5sJItpejmd+gW9V64EfvoJ2LEDyMjI/blduugXCuzVC7DbvTpMo5mmFxUIu8nCXrIY2cvT98U8QsMkAgICjB4C5YN9ZAkICMDp0/opo7JOXsTG5v/n/P2Bxo2B5s2B667T/9uyJY/E8Aa+xmRiN1nYSxb2Im/i9mZ+bCSLYb0uXABWrQJ+/BFYswY4cSLv5zZooB96/uCDQLNm3hujCfH1JRO7ycJespi9Fyc0TMDpdCIqKgpNmzaF3cc+DSEB+5jf2bP65MW2bcCWLcCffzpw+vTVW5UrB7RtC9x4o/7Vpg1QsqQXBkzZ8DUmE7vJwl6ysBd5E7c382MjWbze6+JFYPVq4PPP9aMxUlJyf16jRkCLFvpOT8+eQL16xT82Afj6kondZGEvWST04oQGEYly/nzmkReu/x49mvUZGoCcM8mhoUDr1tm/atTgKaSIiIiIiEiQxET99FE//wysXw9s3gykp+d8XokSQNeuQP/++rlzK1b0+lCJiIiKAyc0iMjUYmL069atX68ffXH48NX/TKlSDrRubUObNpp78qJOHU5eEBERERGRMEoBUVHAF18AX34J7NuX93MrVADuuQe4+279EHQefk5ERBbECQ0iMgWnEzhyBNizR/+KjtavYXfgQP5/rnRp/cjp1q2BVq2AFi0cSE2NwnXXmffQOCIiIiIionxFR+uTGF98Aezdm/fz6tUDbrkF6NNHv7i3H/+Zh4iIrE1TSimjB2EkT6+eXpyUUnA6nbDZbF6/ejxdHfsULYdDP+rCNWnhmsD45x/g8uX8/2ypUtknL1q10q9ll3Xegr3kYTOZ2E0W9pLFqF5meF/si4z+ufP3g/mxkSyF7nXmjH4+3U2bgG++0XeWrqRp+kUAW7QA2rUDbr5ZP48uFRpfXzKxmyzsJYuRvTx9X8ype5NIS0tDYGCg0cOgPLBPwaWm6qeHyjppsWeP/uGi1FTP/g4/P6BDB+DWW/Wvli2zT17khb3kYTOZ2E0W9pKFvcibuL2ZHxvJctVeTiewfbt+Xt2//tLPrZv9woCZNE0/fVT//kDfvkDlysUzaB/G15dM7CYLe8li9l6c0DABp9OJffv2mfrq8b6MfTKlpgIJCfp16Fz/PXMGOH5c/zp2LHP59GnP/16bTb/GRWRk9q+GDfWjMgqCveRhM5nYTRb2koW9yJu4vZkfG8mSa699+4Dff9evhbF7N7BzJ3DuXP5/0Q03APfeq09iVKtW/AP3UXx9ycRusrCXLBJ6cUKDxFNKP41RRkbmf11fud12fTmd2f+b13JaGhATE4yDB/XvdbXnF9Wyt75PQcaSkXFtrex2/RSvWSctGjcG6tcHTDzxS0RERERE5DEtPV2fwFi1ClixAvj33/z/QOnS+uHobdroXzfeCFSv7p3BEhERCcMJDSo2TicQHw+cPat/+OTs2ezL588Dly7p101IScn8SkvzbHIi6wRF8bIDiCjub2IZNhtQtar+/rtGDaBRo8yJi3r1gIAAo0dIRERERERUBBwO4MiRzIsC/vMPbLt3o+nOnbClpeX95ypWBK6/Hrj9duCmm/RD0036KVgiIiKzMeWExgcffIBp06YhNjYW1113Hd577z20bds2z+cvW7YML774Ig4fPox69erhjTfeQI8ePbw44mtn1kN4rnTpkn4qodOn9VMNXbl85oz+5ZqwcDqNHjHZbPp7Y7v92pdLlwZCQ/WvkBD9v2FhQHi4PoFRvbp+Slc/g3+zSHk9USY2k4ndZGEvWdhLloLuv5gNtzfzYyODXL6c8xN6MTHuyQvs3at/Ki8L7b8vN5tNP+KiZ0+gVSugaVN9QoNMg68vmdhNFvaSxey9NKWUMnoQWX3++ed48MEHMXv2bLRr1w7vvvsuli1bhn379qFiLv/T37hxIzp27IipU6fijjvuwJIlS/DGG2/g77//RpMmTa76/Ty9erq3KaVfryAxEUhKApKT9dupqfoRDK7/Zl3O679XfqWn536/J48V99EQfn76J/j9/DK/7Pbst3O7z9PnZP0qyn/ov3K5OP/ugnx/m614exEREZF1mPV9sdkVdP/lSvy5F4JSmV9Op/7lWvb0PtffY/X/Xu3L9TMpzOO5Pebpfa6vK8fpjdsZGfrOckpKzv8mJ2dOXpw7B1y8iEKpWxdo3x64+WbgjjuA8uUL9/cQERH5EE/fF5tuQqNdu3Zo06YN3n//fQD6hUjCw8MxatQojB8/Psfz+/fvj4sXL2LlypXu+66//no0b94cs2fPvur3M3oHol8/ICZG4fJlJ9LTbUhN1XDpkj6RkZ7u9eEUiZIlgQoVMr/Kl8/9dvnyQJky+rUTAgOBEiWM/2R/bpRSSE5ORlBQEDRNu/ofIEOxlzxsJhO7ycJeshjVy+j3xVIVdP/lSob+3DdvhnriCTgzMmCz2aDl9o/PBfkH6qv943hhv66clCAyA7tdn7iIjMw8z26jRlD16yPZ6eT/c4XgeySZ2E0W9pLFyF6evi821T8fp6WlYdu2bZgwYYL7PpvNhq5du2LTpk25/plNmzZh3Lhx2e7r3r07li9fXpxDLTK7dwN792rQr9NgLH9//egI13+v/PL31085VKmSfoRspUo5lytV0p9jJU6nE4cOHULTpk1Nf8gVsZdEbCYTu8nCXrKwlxyF2X8xlaQkaNu2mWBPhMhEbDagXLmcn85zLVetqk9e1K2b6wUCnQ4HDkVF8Xe4EPx/rkzsJgt7ySKhl6kmNM6dOweHw4FKlSplu79SpUrYu3dvrn8mNjY21+fHxsbm+vzU1FSkpqa6byclJQEAHA4HHP+dT0nTNNhsNjidTmQ9gMV1v+OK8y7ldb/NZoOmabneD+gbSIkSNtjtgL+/EyVL2lCiBFCqlH59gqAg/b8hIRrKlFEoUUIhIEA/kiEgAChZ0gZ/fyf8/TPvK1FCITDQ/t/9yj0ZUaKEhsBAG/z8Mu/X/5x+v83mQNZJt2tZp6wPZb0/K7vdDqVUrvdf+XPP635vdXI4HFBKuR+3wjpdOUYrrZOrl+vLCut0tfulr5OrVdY/I32dcrvfauvk+rNXtpO8Tq4xWqlT1nXK7XUmfZ2s2El/L5X53sOb63Tl43R1hdl/MdX+iFKw2e2ApulfNlvmcpb7NE2DyuU52e7P8liO+/N6vqf322yZ39dmg2azQekrknl/buvhejzrernG6Po7Mn+I+n9c701cO0f//deWy/1aHs933e9Uyv3nC3s/NA1OpxNxCQkIK1sWmt3uvl9lGR80Dbb/7stx/3/r6r7/vy+bn1+O+7UsP98r29qyjjHLz9h9f9Zt47+/x3nF99T+e062sfy3/u77szxmc/0/7Irn2+z2HD8vpWmZvxuzfs8sz3dvT4GB0AIDYStVCg4/v8xTBpQuDS0sDDY/P89eZxFkjAABAABJREFUTw4H90eEr1Nu75Gkr5MVO+X1OgNgmXXKOkarrRPA/UZJ63Tlv4OacX/EVBMa3jB16lRMnjw5x/3R0dEoU6YMACAsLAw1atTA8ePHERcX535O5cqVUblyZRw+fBjJycnu+8PDw1GuXDns378fKVkuCBYREYHg4GDs2bMnW5AGDRogICAAUVFR+PhjQNMU4uLicNNNN8HhcGDfvn3u59rtdjRt2hRJSck4dOiQ+/7AwEA0bNgQ58/H49ixY+77g4KCUKdOHcTGnsk2qeNap6NHc65TcHBlHDxYdOuUVdOmTZGWlpbrOiUn575O8fG5r9OZM7mvU3F3io6ORlxcHKKjo6FpmiXWyYqdXOuklP56cjqdSE9Pt8Q6WbFT1nVKTU3N9hqzwjpZsdOV6+Q69PTChQs4fPiwJdbJip1c63ThwoVsrzMrrJMVO7nWyfX/sgMHDiAyMtJr63ThwgVQ8TPV/kjFilBbtiAuLg5hYWFo1qxZ3ttnUlKur7m48+dz3T5Px8bmun0eO3o013U6dPBgruu0b+/eXNdpd1TUtb/minmdYvJYp3/zWKfoPNZp165d7kZX3R8Rsk5F0Sk+j3U6k8c6Hc9jnQ671iklBUhMRLjdzv0RH/r/cmRkJBwOh/s9khXWyYqdrlwnpRTi4+MBwDLrBFivk2udIiMjkZ6enu11Jn2drNjJtU4HDx507zuWLFnSq+vk6f6Iqa6hkZaWhlKlSuHLL7/EXXfd5b7/oYceQkJCAlasWJHjz9SoUQPjxo3DmDFj3PdNmjQJy5cvx86dO3M8P7dPRIWHhyMuLs59bi4jPlF+4MAB1K9f3z27lZWVZ/0krFN6ejoOHDiAunXrwm63W2KdrNiJrye56+RwOPDvv/+6X2NWWKfc7rfaOjkcDhw6dAh169Z1vymVvk6uMVqpk2uMGRkZub7OJK+TFTtlPULD9d4jICDAa+uUlJSEsLAwXkOjAAqz/2K2/ZGs25u/v7/7/qys/poz+zpxf0TWOnF/RNY6KaWwf/9+1KlTx/0eSfo6WbFTXq+zBg0auMcjfZ2yjtEqnbL6999/c32dSV0nK3ZyrdOV7zu8uU6e7o+YakID0C+q17ZtW7z33nsA9B9ujRo1MHLkyDwvCn7p0iV899137vs6dOiAZs2aibgoOBERERGRGfB9ceEUdP/lSvy5ExERERF5/r7Y5sUxeWTcuHGYO3cuFi5ciH/++QcjRozAxYsXMXjwYADAgw8+mO2ie6NHj8aaNWvw9ttvY+/evXjppZewdetWjBw50qhVKDCn04nz58/nOoNJxmMfWdhLHjaTid1kYS9Z2EuWq+2/mB23N/NjI1nYSxb2kondZGEvWST0Mt01NPr374+zZ89i4sSJiI2NRfPmzbFmzRr3hfaOHj3qPjQG0I/GWLJkCV544QU899xzqFevHpYvX44mTZoYtQoFppTCsWPHEBoaavRQKBfsIwt7ycNmMrGbLOwlC3vJcrX9F7Pj9mZ+bCQLe8nCXjKxmyzsJYuEXqab0ACAkSNH5nmExS+//JLjvn79+qFfv37FPCoiIiIiIqKc8tt/ISIiIiKiomO6U04RERERERERERERERFdiRMaJhEUFGT0ECgf7CMLe8nDZjKxmyzsJQt7kTdxezM/NpKFvWRhL5nYTRb2ksXsvTSllDJ6EEby9OrpRERERERWxvfFxuDPnYiIiIjI8/fFPELDBJxOJ2JjY0199Xhfxj6ysJc8bCYTu8nCXrKwF3kTtzfzYyNZ2EsW9pKJ3WRhL1kk9OKEhgkopRAbGwsfP1jGtNhHFvaSh81kYjdZ2EsW9iJv4vZmfmwkC3vJwl4ysZss7CWLhF6c0CAiIiIiIiIiIiIiItPjhAYREREREREREREREZkeJzRMQNM0hIWFQdM0o4dCuWAfWdhLHjaTid1kYS9Z2Iu8idub+bGRLOwlC3vJxG6ysJcsEnppyswnxPICT6+eTkRERERkZXxfbAz+3ImIiIiIPH9fzCM0TMDpdOLo0aOmvnq8L2MfWdhLHjaTid1kYS9Z2Iu8idub+bGRLOwlC3vJxG6ysJcsEnpxQsMElFKIi4sz9dXjfRn7yMJe8rCZTOwmC3vJwl7kTdzezI+NZGEvWdhLJnaThb1kkdCLExpERERERERERERERGR6fkYPwGiu2aakpCTDxuBwOHDhwgUkJSXBbrcbNg7KHfvIwl7ysJlM7CYLe8liVC/X+2EzfxrLiozeH+HvB/NjI1nYSxb2kondZGEvWYzs5en+iM9PaCQnJwMAwsPDDR4JEREREZHxkpOTERISYvQwfAb3R4iIiIiIMl1tf0RTPv4RLKfTiZMnTyIoKAiaphkyhqSkJISHh+PYsWP5XsGdjME+srCXPGwmE7vJwl6yGNVLKYXk5GRUrVoVNhvPTOstRu+P8PeD+bGRLOwlC3vJxG6ysJcsRvbydH/E54/QsNlsqF69utHDAAAEBwfzhW1i7CMLe8nDZjKxmyzsJYsRvXhkhveZZX+Evx/Mj41kYS9Z2EsmdpOFvWQxqpcn+yP86BUREREREREREREREZkeJzSIiIiIiIiIiIiIiMj0OKFhAiVKlMCkSZNQokQJo4dCuWAfWdhLHjaTid1kYS9Z2Iu8idub+bGRLOwlC3vJxG6ysJcsEnr5/EXBiYiIiIiIiIiIiIjI/HiEBhERERERERERERERmR4nNIiIiIiIiIiIiIiIyPQ4oUFERERERERERERERKbHCQ0iIiIiIiIiIiIiIjI9TmgQEZFYqampRg+BiIiIiIh8FPdHiIi8jxMawimljB4CkWUcO3YM//77r9HDIA/t27cPEydOREZGhtFDISIyDafTafQQyMdwf4SoaHBfRB7ujxAR5eSN/RG/Yv8OVCzi4uIQFhYGTdOglIKmaUYPia5w8OBBLF68GDExMejcuTMGDx5s9JAoH9u3b8dtt92GDz/8EPXr1zd6OHQVu3btQrt27ZCamoouXbrgtttuM3pI5IEDBw7gm2++wblz59CkSRPcfvvtKF++vNHDojycPXsW/v7+CA0NNXoo5IHExESEhITAZrPB6XTCZuPnlqh4cX/E3LgvIgv3ReTh/ohM3B+Rhfsjsnhzf4R7OgLt2bMHlSpVwpgxYwDAvRNB5rFr1y7cdNNN2LJlC+Lj4zF06FDMmzfP6GFRHnbu3ImbbroJ999/P/r27Wv0cOgqdu7cieuvvx5DhgxBv379sGTJEly+fJm/B01u9+7duP766/Hzzz/jwIEDGDp0KPr374/vvvvO6KFRLvbs2YPw8HA89thjSE5ONno4dBV79uxBzZo18dprrwGAeyeCqLhwf8TcuC8iC/dF5OH+iEzcH5GF+yOyeH1/RJEoJ06cUG3btlUtW7ZUpUuXVmPGjHE/5nQ6DRwZuezfv1+Fh4erCRMmqIyMDKWUUkOGDFETJ040eGSUm3/++UeVKlVKPffcc0oppdLT09Wvv/6qli9frv744w+DR0dX2rZtmwoKClLPP/+8Ukqpt99+W4WGhqpDhw4ppfh70Kzi4+NVhw4d3K8zpZSKiopSdrtdtWrVSi1atMjA0dGVTp06pdq3b6+6dOmiwsLC1H333aeSkpKMHhbl4dixY6pFixaqfv36KiwsTE2dOtX9mMPhMHBkZFXcHzE37ovIwn0Rebg/IhP3R2Th/ogsRuyP8AgNQZRS+Pnnn1GzZk289957mDt3LmbNmoVx48YB4CejzCAjIwMffvghunfvjokTJ8JutwPQLxS2bds29OzZE5MmTUJUVJTBIyUASEtLw/jx41GmTBncddddAIA+ffrgySefxLBhw9C5c2eMHj0a586dM3agBABISEjAjTfeiGHDhuHVV18FADzxxBOIiIjAK6+8wtNdmFh6ejouX76MW2+9FU6nE5cuXULDhg3RoUMHOBwOLF68GHv27DF6mAT9vcb27dtRu3ZtvPnmm1i5ciXWrFmDYcOG8ZNRJuR0OvHVV1+hdu3amD17Np555hlMnToVr7/+OgAeqUFFj/sj5sZ9EVm4LyIP90fk4v6IHNwfkcWo/RFeQ0MQTdNw0003ISgoCB06dECHDh2glMKQIUOglML06dN5DluD+fn54fHHH8eJEycQGBgIAJgyZQqWLl2K4cOHo3z58nj//fexZ88eLF261L2TQcYICAjACy+8gOeffx4TJ07E4cOHUatWLXz88ccoV64cdu3ahb59+yI4OBivvPKK0cP1eaGhodi4cSOaN28OQH+j4+fnh1tvvRWrVq3C+fPnUb58ef4ONKHk5GT8888/OHPmDGw2G0qVKoUjR44gLS0NTz/9NJ544gl89dVXiIyMNHqoPk/TNLRq1QqBgYFo3bo1AGDlypW44447MGzYMMyZMwfBwcEAwNeaCdhsNvTo0QMVK1ZEly5d0Lx5cyilMHXqVADA+PHjeU0NKlLcHzE37ovIwn0Rebg/Ihf3R+Tg/ogshu2PFMtxH1Sssh7CmJGRoZYsWaJKlCihxo4dq5TSD1P95JNPVFRUlFFD9HmuRjExMWrgwIFq9erV7sd+//13pWma+uuvv4waHl1hy5YtqkOHDqpbt24qJiYm22MzZsxQFSpUUCdOnODhwybh6uD678mTJ1Xp0qXVa6+9ZuSw6CrGjh2rSpQooSZNmqRmzpypQkJC1PDhw5VSSk2bNk3dcMMN6uLFi3ydmYzrEOE//vhDhYaGug/3TktLU7NmzVLr1q0zeISkVPb3hmfPnlWvv/66Cg4Odh/unZGRob799lt19uxZo4ZIFsP9EXPjvogs3BeRh/sjMnF/RCbuj8jg7f0RHqFhcseOHcM///yDs2fPolu3bggNDUVAQAAyMjLg5+cHu92Ofv36AQAGDx4MAHA4HJg1axYOHDhg5NB9Rl6NlFKoVasW3n//fZQtW9Z9+L3D4UDTpk1RqVIlg0fum7L26tq1K0JCQtC6dWvMmTMH+/btQ/Xq1QFkzvRrmoYqVaqgXLlynPk3QF6vL4fDAbvdDofDgSpVqmDYsGFYtWoVBg0ahPDwcKOH7fOu7BYWFoaXX34ZwcHBWLRoESpVqoRx48Zh4sSJAIC4uDgAQKlSpYwcts+6dOkS/P394e/vn+Mx16doOnTogO+//x49evTA8OHDUbJkSXzyySc8NN8AJ0+exIkTJ3D+/Hl07doVNpsNNpvN/d6wfPnyGDJkCADgtddeg1IK58+fx4wZM3D06FGDR08ScX/E3LgvIgv3ReTh/ohM3B+Rhfsjsphif6RIpkWoWOzcuVNVqlRJtWzZUgUEBKjGjRurp59+WsXHxyullPsib67lxYsXK03TVNmyZdWWLVsMGrVvuVojp9OZY3Z//PjxqnPnziouLs6AEfu23Ho99dRT6vz580oppdLS0nL8mdGjR6t77rlHXbx40dvD9XkF+R24evVqFRQUpL777juDRksuV3Zr1KiRevbZZ93dzp496152GTZsmBo6dKhKS0vjJ6K8LDo6Wt18883qu+++U+np6Vd9/q+//qo0TVNhYWFq27ZtXhghZbVz504VHh6uIiMjlZ+fn2rRooWaNWuWSk5OVkpl/7149uxZNXXqVL43pGvC/RFz476ILNwXkYf7IzJxf0QW7o/IYpb9EU5omFRCQoJq2bKl+w3O5cuX1YQJE1SHDh1U79693W96XBuKw+FQjzzyiAoODlZ79uwxcug+w9NGLocOHVIvvPCCCgoKUrt27TJo1L6rML1efPFFFRoaqnbv3m3QqH1XQX8HKqXUrbfeqjp16qQcDgffhBokr27t27dXd955pzp37pxSKvNw1P3796tnnnlGBQcH83VmgMOHD6uGDRsqu92uatWqpdauXZvvTkRqaqp67LHHVFBQkIqOjvbiSEkpfYfAtUMeExOjzpw5owYMGKDatWunxowZo5KSkpRSmYflK6XUAw88oIKDg9mLCoX7I+bGfRFZuC8iD/dHZOL+iCzcH5HFTPsjnNAwqZiYGBUREaF++eUX932pqanq448/Vu3bt1f333+/e0NxOp3q+++/V7Vr1+YnobyoII12796t7r33XlW/fn21fft2g0bs2wrSKyoqSt15552qVq1a7GWQgvRy/c/yq6++UgcOHDBkvKTLr9v111+vBg4c6O52/vx59cILL6jWrVurv//+26gh+6z09HQ1ffp0ddddd6kjR46o2267TVWuXDnfnYjNmzerxo0b87zrBomKilK1atVSO3fudN+XmpqqJk6cqNq2bauef/55dfnyZaWU/t5w8eLFqlKlSvzkGhUa90fMjfsisnBfRB7uj8jE/RE5uD8ij5n2R4rw8uJUlMqUKYNSpUohKioKgH4OzYCAADz00EMYNGgQ/vnnHyxfvhwAoGkaWrZsiY0bN6J169YGjtq3FKRRnTp1MGrUKKxduxbNmzc3btA+rKC9Ro8ejZ9++om9DFKQXuq/c0L36dMHderUMWrIhPy7PfDAA9i7d6+7W1hYGEaMGIFVq1ahRYsWBo7aN9ntdrRp0wYPPPAAatSogdWrV+O6667DQw89hJ9//hnp6ek5/kz9+vWxYcMGtGnTxoARU0BAADRNc593NiMjAwEBAXjxxRfRqVMnrFq1Clu2bAGgvze84YYbsHnzZrRs2dLIYZNg3B8xN+6LyMJ9EXm4PyIT90fk4P6IPGbaH9GU6zcvmUp6ejoGDBiAU6dOYcmSJahZs2a2x7t37w5/f3+sXLnSoBGSJ438/PywatUqg0ZIWbGXLPwdKBO7yeJ0Ot0X2XO57bbbsHPnTixatAg333wz7HY7Vq5cic6dO6NMmTIGjZQAIDU1FTfeeCMqV66M5cuXw263uy+8p5TCddddhxYtWmDhwoXui8kSXQv+Tjc3vreVhb3k4e9AmdhNFu6PyGKm/REeoWFCSin4+/vjww8/xMGDB/Hkk0/izJkzyDr31KtXL5w7dw4pKSkGjtR3edro/PnzbGQC7CULfwfKxG7yZN15yMjIAACsWbMGzZs3x0MPPYS1a9di+PDhGDt2LJKTk40aJkHf2StRogTmz5+PDRs2YMSIEQDg3nnQNA133nknzpw5AwCczKBrxt/p5sb3trKwlzz8HSgTu8nD/RE5zLY/wgkNE9I0DWlpaahYsSLWrFmDzZs3Y9CgQdi6dSscDgcAYMeOHShXrlyOmUzyDjaShb1kYS+Z2E2erDt3fn5+7sO6V69ejebNm6Nnz5749NNPsXTpUlSpUsWoYRL0nT2Hw4EmTZpg4cKF+Oyzz/Dggw/i9OnT7ufExMSgbNmy7tcb0bXg73RzYx9Z2EseNpOJ3eTh/ogcZtsf4SmnTMjhcMBut+P8+fNIS0vD5cuXcfvtt6NMmTLIyMhAREQE1q9fj99//x3NmjUzerg+iY1kYS9Z2EsmdpPF1Ss+Ph7nzp1DvXr1AMB9yPDYsWOxaNEi/Pbbb4iMjDR4tOTqcuHCBaSmpmLHjh0YOHAgatasibCwMJQrVw4rVqzApk2b0LRpU6OHSxbA3+nmxj6ysJc8bCYTu8nC/RFZzLY/wilJk3G9oA8fPoxmzZph/fr1iIiIwJYtWzBmzBh069YNbdq0wZYtW/gL2CBsJAt7ycJeMrGbLK5eR44cQZMmTbBt2zb3Y35+fpg3bx5mzJiBtWvXcufBBFw7D4cPH0b9+vWxZcsW3HLLLYiOjkaPHj1QrVo1VKxYEX/99RcnM6hI8He6ubGPLOwlD5vJxG6ycH9EFjPuj/AIDYOcPn0aiYmJqF+/fo7Hjh8/jqZNm6Jfv36YM2cOlFI8HM4AbCQLe8nCXjKxmywF6ZX1HKcHDhyAn58fatWq5cXRUkxMDH744Qf8+++/uP3229GiRQuUL18eAHDs2DG0bNkSvXv3xty5c+F0OmG3293nq83tgopEV8Pf6ebGPrKwlzxsJhO7ycL9EVkk7Y/wlW2Af/75B23btsWLL76I6OjoHI9v3boVjzzyiPsFzV/A3sdGsrCXLOwlE7vJUtBeWdWtW5c7D14WFRWFG2+8Ed9++y1WrlyJUaNG4eOPP4bD4UB6ejq+/fZbPPDAA5g7dy40TYPdbs/253kRcCoo/k43N/aRhb3kYTOZ2E0W7o/IIm1/hEdoeNnJkyfRr18/XLx4ESVKlEDTpk0xZswYNGnSxP2c9PR0+Pv7GzhK38ZGsrCXLOwlE7vJwl6yHDlyBN26dUO/fv3w0ksvwd/fHxMmTMCXX36JqKgoBAYGIjExESEhIUYPlSyCvyPMjX1kYS952EwmdpOFvWSRuD/C6Uov27t3L4KCgrBw4UI8/vjj2L59O959913s3r3b/Ry+oI3FRrKwlyzsJRO7ycJecjgcDqxYsQItWrTAqFGj3J8kHDNmDNLS0vDvv/8CgKl2Hkg+/o4wN/aRhb3kYTOZ2E0W9pJD7P6IIq+6fPmy2rhxo/v2xx9/rFq2bKkeeeQRtWvXLvf9TqdTKaWUw+Hw+hh9HRvJwl6ysJdM7CYLe8myYMECNWPGjGz3nT59WoWGhqqff/45x/Nd3YgKi78jzI19ZGEvedhMJnaThb1kkbg/wgkNA1wZfsGCBe4XdlRUlFJKqcmTJ6udO3caMTxSbCQNe8nCXjKxmyzsJZOr2+XLl1XDhg3V5s2b3Y+tWLFCHT161KihkcXwd4S5sY8s7CUPm8nEbrKwl0xS9kd4DY1idvLkSfz9999IS0tDzZo10apVKwCA0ieT3IfyLFy4EDNnzkTLli2RlJTkPk9ZZGSkkcP3CWwkC3vJwl4ysZss7CVL1l41atRA69atAeiHe7surpeWloYWLVpgwYIFaNOmDZ577jnMnz8fmzdvRo0aNYwcPgnE3xHmxj6ysJc8bCYTu8nCXrJYYn/EWzMnvmjXrl0qIiJCtW3bVpUvX161bt1aLVu2LNtzsh5W9dFHHyl/f38VEhKitm/f7uXR+iY2koW9ZGEvmdhNFvaSxZNeSikVHx+vKlSooP744w/1yiuvqMDAQLVlyxYDRkzS8XeEubGPLOwlD5vJxG6ysJcsVtkf4UXBi8nBgwfRo0cP3HPPPVi7di3WrFmDxo0bY/Xq1XA4HFD/HRhjs9mglILD4cDOnTtRpkwZ/PHHH2jevLmxK+AD2EgW9pKFvWRiN1nYSxZPewGAn58fqlevjueffx5TpkzB77//7v7kFJGn+DvC3NhHFvaSh81kYjdZ2EsWS+2PeGvmxJekpqaqcePGqXvvvVelpqa67//oo49UuXLl1Llz53L8mb/++ktpmmaq2S4rYyNZ2EsW9pKJ3WRhL1kK2ishIUHVrFlThYWFqR07dnh7uGQB/B1hbuwjC3vJw2YysZss7CWL1fZH/IyeULEip9OJ6tWro1GjRggICIBSCpqmoUOHDihTpgzS09Nz/Jk2bdogLi4OoaGh3h+wD2IjWdhLFvaSid1kYS9ZCtorJCQEjz76KPr27YuGDRsaNGqSjL8jzI19ZGEvedhMJnaThb1ksdr+CCc0ikFgYCDuuusu1K5dO9v9oaGh8Pf3z7aRbN++HS1atACgbyzkHWwkC3vJwl4ysZss7CVLQXpt3boVrVu3xvPPP+/tYZKF8HeEubGPLOwlD5vJxG6ysJcsVtsf4TU0isipU6fw119/Yc2aNXA6ne4NxOFwQNM0AEBiYiLi4+Pdf2bixIm45ZZbcP78effMGBUfNpKFvWRhL5nYTRb2kqWwvW699VZ3L6KC4O8Ic2MfWdhLHjaTid1kYS9ZLL0/4p0zW1nbzp07Vc2aNVX9+vVVSEiIatiwoVqyZIk6f/68Ukopp9OplFJq3759qkKFCiouLk698sorqmTJkmrr1q1GDt1nsJEs7CULe8nEbrKwlyzsRd7Gbc7c2EcW9pKHzWRiN1nYSxar9+KExjU6c+aMatiwoXruuefUwYMH1YkTJ1T//v1Vo0aN1KRJk9SZM2fczz19+rRq0aKF6t+/vwoICBCxgVgBG8nCXrKwl0zsJgt7ycJe5G3c5syNfWRhL3nYTCZ2k4W9ZPGFXpzQuEbR0dGqVq1aOYI/++yzqmnTpurNN99UFy9eVEoptWfPHqVpmipZsqTavn27AaP1TWwkC3vJwl4ysZss7CULe5G3cZszN/aRhb3kYTOZ2E0W9pLFF3rxGhrXKD09HRkZGbh06RIA4PLlywCA119/HV26dMGsWbNw4MABAEDZsmXx+OOP4++//0bz5s2NGrLPYSNZ2EsW9pKJ3WRhL1nYi7yN25y5sY8s7CUPm8nEbrKwlyy+0EtTysxX+JChbdu2KFOmDH766ScAQGpqKkqUKAEAaNOmDerWrYvPPvsMAJCSkoLAwEDDxuqr2EgW9pKFvWRiN1nYSxb2Im/jNmdu7CMLe8nDZjKxmyzsJYvVe/EIjQK6ePEikpOTkZSU5L5vzpw5iI6OxsCBAwEAJUqUQEZGBgCgY8eOuHjxovu50jYQidhIFvaShb1kYjdZ2EsW9iJv4zZnbuwjC3vJw2YysZss7CWLL/bihEYB7NmzB3369EGnTp3QqFEjfPrppwCARo0aYcaMGfjxxx/Rr18/pKenw2bTf7RnzpxB6dKlkZGRAR4MU/zYSBb2koW9ZGI3WdhLFvYib+M2Z27sIwt7ycNmMrGbLOwli6/28jN6AFLs2bMHHTt2xIMPPojWrVtj27ZtGDx4MCIjI9GiRQvceeedKF26NB5//HE0a9YMDRs2REBAAFatWoU///wTfn78URc3NpKFvWRhL5nYTRb2koW9yNu4zZkb+8jCXvKwmUzsJgt7yeLLvXgNDQ/ExcVhwIABaNiwIWbMmOG+v0uXLmjatClmzpzpvi85ORmvvvoq4uLiEBgYiBEjRiAyMtKIYfsUNpKFvWRhL5nYTRb2koW9yNu4zZkb+8jCXvKwmUzsJgt7yeLrveROxXhReno6EhIScM899wAAnE4nbDYbateujbi4OACAUgpKKQQFBeGNN97I9jwqfmwkC3vJwl4ysZss7CULe5G3cZszN/aRhb3kYTOZ2E0W9pLF13vJXwMvqFSpEj755BPcdNNNAACHwwEAqFatmnsj0DQNNpst2wVYNE3z/mB9FBvJwl6ysJdM7CYLe8nCXuRt3ObMjX1kYS952EwmdpOFvWTx9V6c0PBQvXr1AOgzWf7+/gD0ma4zZ864nzN16lTMmzfPfdV4q2wkUrCRLOwlC3vJxG6ysJcs7EXexm3O3NhHFvaSh81kYjdZ2EsWX+7FU04VkM1mg1LKvQG4Zr0mTpyIV199Fdu3bxd9URUrYCNZ2EsW9pKJ3WRhL1nYi7yN25y5sY8s7CUPm8nEbrKwlyy+2ItHaBSC6zrqfn5+CA8Px1tvvYU333wTW7duxXXXXWfw6AhgI2nYSxb2kondZGEvWdiLvI3bnLmxjyzsJQ+bycRusrCXLL7Wy1rTM17imuny9/fH3LlzERwcjN9//x0tW7Y0eGTkwkaysJcs7CUTu8nCXrKwF3kbtzlzYx9Z2EseNpOJ3WRhL1l8rReP0LgG3bt3BwBs3LgRrVu3Nng0lBs2koW9ZGEvmdhNFvaShb3I27jNmRv7yMJe8rCZTOwmC3vJ4iu9NOU6JoUK5eLFiyhdurTRw6B8sJEs7CULe8nEbrKwlyzsRd7Gbc7c2EcW9pKHzWRiN1nYSxZf6MUJDSIiIiIiIiIiIiIiMj2ecoqIiIiIiIiIiIiIiEyPExpERERERERERERERGR6nNAgIiIiIiIiIiIiIiLT44QGERERERERERERERGZHic0iIiIiIiIiIiIiIjI9DihQUREREREREREREREpscJDSIiIiIiIiIiIiIiMj1OaBAR0TVZsGABNE1zfwUGBqJq1aro3r07Zs6cieTk5EL9vRs3bsRLL72EhISEoh0wERERERFZBvdHiIh8Cyc0iIioSLz88stYvHgxZs2ahVGjRgEAxowZg6ZNm2LXrl0F/vs2btyIyZMncweCiIiI/p+9+45vqnr/AP5J0k0XZZVROqCUYdlTZMkoQ2SIDJGtIAiIoH7FnwiIsgRkOHCCIksQcAGCTJkyRJAlu6yyWtoyupL7+yPe26ZJ27S0yb05n/frxYvk5ObmPM9zA7k5uecQEeWJ5yNERGJwc3YHiIjINXTo0AH169dX7o8fPx5bt27FU089haeffhonT56Et7e3E3tIRERERESuiucjRERi4BUaRERUZJ588klMmDABly5dwnfffQcAOHr0KAYOHIiIiAh4eXkhODgYgwcPxp07d5TnTZo0Ca+//joAIDw8XLl8/OLFi8o23333HerVqwdvb28EBQWhd+/euHz5skPjIyIiIiIi9eL5CBGR6+GABhERFal+/foBADZt2gQA2Lx5M86fP49BgwZhwYIF6N27N1asWIGOHTtCkiQAQPfu3dGnTx8AwIcffoglS5ZgyZIlKFWqFADg/fffR//+/REZGYk5c+ZgzJgx2LJlC5o3b85LwomIiIiISMHzESIi18Ipp4iIqEhVqFABAQEBOHfuHABgxIgRGDdunMU2jRs3Rp8+fbBr1y40a9YMNWvWRN26dbF8+XJ07doVYWFhyraXLl3CxIkT8d577+Gtt95S2rt37446dergk08+sWgnIiIiIiJx8XyEiMi18AoNIiIqcr6+vkhOTgYAi3lrU1JScPv2bTRu3BgAcPjw4Tz3tWbNGphMJvTs2RO3b99W/gQHByMyMhLbtm0rmiCIiIiIiEiTeD5CROQ6eIUGEREVuXv37qF06dIAgPj4eEyePBkrVqzAzZs3LbZLTEzMc19nzpyBJEmIjIy0+bi7u/ujd5iIiIiIiFwGz0eIiFwHBzSIiKhIXblyBYmJiahcuTIAoGfPntizZw9ef/111K5dG76+vjCZTGjfvj1MJlOe+zOZTNDpdNiwYQMMBoPV476+voUeAxERERERaRPPR4iIXAsHNIiIqEgtWbIEABATE4OEhARs2bIFkydPxjvvvKNsc+bMGavn6XQ6m/urVKkSJElCeHg4qlSpUjSdJiIiIiIil8DzESIi18I1NIiIqMhs3boVU6ZMQXh4OPr27av8gkmSJIvt5s6da/XcYsWKAQDu3r1r0d69e3cYDAZMnjzZaj+SJOHOnTuFFwAREREREWkWz0eIiFwPr9AgIqJCsWHDBpw6dQoZGRm4ceMGtm7dis2bNyM0NBQ//fQTvLy84OXlhebNm2PmzJlIT09H+fLlsWnTJly4cMFqf/Xq1QMA/N///R969+4Nd3d3dO7cGZUqVcJ7772H8ePH4+LFi+jatSv8/Pxw4cIFrF27FkOHDsVrr73m6PCJiIiIiMiJeD5CRCQGDmgQEVGhkC/Z9vDwQFBQEKKjozF37lwMGjQIfn5+ynbLli3DqFGj8PHHH0OSJLRr1w4bNmxAuXLlLPbXoEEDTJkyBQsXLsTGjRthMplw4cIFFCtWDG+++SaqVKmCDz/8EJMnTwYAhISEoF27dnj66acdFzQREREREakCz0eIiMSgk7JfH0dERERERERERERERKQyXEODiIiIiIiIiIiIiIhUjwMaRERERERERERERESkehzQICIiIiIiIiIiIiIi1eOABhERERERERERERERqR4HNIiIiIiIiIiIiIiISPU4oEFERERERERERERERKrHAQ0iIiIiIiIiIiIiIlI9DmgQEREREREREREREZHqcUCDiIiIiIiIiIiIiIhUjwMaRERERERERERERESkehzQICIiIiIiIiIiIiIi1eOABhERERERERERERERqR4HNIiIiIiIiIiIiIiISPU4oEFERERERERERERERKrHAQ0iIiIiIiIiIiIiIlI9DmgQEREREREREREREZHqcUCDiIiIiIiIiIiIiIhUjwMaRERERERERERERESkehzQICKH0Ol0aNmypbO7UaTUGGPLli2h0+mc3Y18GzhwIHQ6HS5evOjsrgAo+jxOmjQJOp0O27dvt2hX2zG1ePFi6HQ6LF68OF/Pmzt3Ljw8PFRTz8KSnp6OiIgI9OzZ09ldISIiItK8gn7WLCo5fUYvLNu3b4dOp8OkSZMs2tV2Dnfx4kXodDoMHDgwX8/766+/YDAYsGzZsqLpmBM9//zzCA0NRUpKirO7QiQkDmgQaZxOp8vXH3s56wvlxx9/HDqdDnv37s11uzNnzkCn0yEqKspBPVOnov6Q7WrkfNn7J/vJBeVfQkICpkyZgsGDByMsLExpP3PmDKZOnYrmzZujXLly8PDwQEhICPr3749Tp07luL/r169jyJAhKFu2LLy8vBAVFYX3338f6enpFttJkoQNGzZg+PDhqFmzJgICAuDj44NatWph6tSpOZ58LFiwAIMGDULNmjXh5uaW6/vL3d0d//d//4dVq1Zh3759+c4NERERFR75S1edToeYmBib2+zbt69AX8w6miRJWLNmDbp3744KFSrA09MTfn5+qFWrFl599VWcOHHC2V3UFHngwN4/avpBkZaNHTsWVatWRe/evZW2O3fu4PPPP8fTTz+NiIgIeHp6omTJkujQoQN+++23HPeVmpqKd999F5GRkfDy8kK5cuUwdOhQ3Lx502rbI0eOYMKECWjcuDFKly4NT09PREREYMSIEbh69arN/f/8888YNWoUmjZtimLFiuV5LvjOO+/g6tWrmDt3rt35IKLC4+bsDhDRo5k4caJV29y5c5GYmGjzMbUbMmQI9u7di6+//hpNmjTJcbuvv/4aADB48GBHdS1PJ0+ehI+Pj7O7YeHbb7/FgwcPnN2NfJs2bRrefPNNlC9fvlD3a+vk5MiRI/jxxx/RokULq8cddTIzcuRI9O7dGxUrVnTI6znShx9+iPj4eLz++usW7RMmTMDKlSvx2GOPoUuXLvD398exY8ewZMkSrF69Ghs3bkTz5s0tnhMXF4dGjRrhypUr6NatGyIjI7Fjxw68/fbb+PPPP7Fu3Tpl4DY1NRUdO3aEp6cnWrZsiZiYGKSkpOC3337D//3f/2HdunXYvn271Xt29OjRAICyZcuiVKlSiIuLyzW+AQMG4K233sKECROwefPmR00XERERFYJNmzZh69atePLJJ53dlXyLj4/Hs88+i61btyIwMBBt27ZFREQE0tLScPz4cXzyySeYP38+tmzZ4nJfvHfr1g2NGzdG2bJlC3W/YWFhVufGd+/exbx58xAaGmo1wJX1RzhFqWHDhjh58iRKlizpkNdzpK1bt2L79u346quvoNdn/pZ61apVGD58OMqVK4fWrVujfPnyuHLlCn744Qds3LgRM2fOtDpvMJlM6NKlC3777Tc0btwYzzzzDM6cOYMvv/wSW7Zswb59+1CqVCll+5deegn79+9Hw4YN0bt3b3h6emL//v349NNPsWrVKvzxxx+oWrWqxWvMnj0bO3bsgL+/P8qVK4ezZ8/mGl+VKlXQpUsXTJ8+HaNGjUKxYsUKIWtEZDeJiFxOaGio9Khv7wEDBkgApAsXLhRKnwBILVq0yHO75ORkydfXV/Lz85Pu379vc5uMjAypXLlykpubm3T9+vVC6Z9WTZw4UQIgbdu2zdld0axFixZJAKSJEyfmuE2LFi0e+T1VEPa+bxxFztWiRYvs2j49PV0qW7as1LRpU5v7Onz4sFX78uXLJQBS9erVrR7r37+/BED69NNPlTaTyST17t1bAiAtW7ZMaU9LS5Pee+89KT4+3mIfaWlpUufOnSUA0syZM61e45dfflH+XRk2bJhd76/Ro0dLOp1OOnPmTK7bERERUdG5cOGCBEAKCwuT9Hq9VL9+fclkMllss3fvXgmANGDAAOd0Mg/p6elS8+bNJQDS888/LyUmJlptc+3aNWnQoEHSunXrnNBD1yEfL7l91nbWuZazzj1yIucqP++bHj16SN7e3lbH8JYtW6SffvpJMhqNFu2nTp2SAgICJHd3d+nq1asWj3399dcSAKlPnz4W7+lPP/1UAiANHTrUYvv58+fb/Fw+ffp0CYDUsWNHq8d27twp/fvvv5LJZFLOR3I7P5QkSVqzZo0EQPryyy9z3Y6ICh+nnCISyO3btzFmzBiEh4fD09MTpUuXRs+ePfHPP/9YbBcWFoZvvvkGABAeHm7z0tu1a9eiT58+qFy5Mnx8fBAQEIBmzZrhhx9+eKQ++vr6omfPnkhOTsaqVatsbrNx40Zcu3YNHTt2RHBwMK5du4aJEydaXFIaFhaGESNG2LwEFQDS0tLw4YcfokGDBvDz84Ovry+qV6+OsWPHIiEhwWLbmzdvYty4cYiKioK3tzeCgoLQqFEjzJo1y2I7W5cny1N3XbhwAfPnz0fVqlXh6emJ0NBQTJ48GSaTyWL7xMREzJgxAy1atFCm4SlXrhz69++Pc+fOWWzbsmVLTJ48GQDQqlUrpU5Zf1GU0/yrGRkZmDNnDmrVqgVvb28EBASgVatW+Pnnn622zTqX7aZNm/D444/Dx8cHJUqUwIABA3Dnzh2r52zbtg0dOnRAuXLl4OnpiTJlyqBZs2b4/PPPrYthg60pz7LOMXvw4EG0bdsWfn5+CAgIQLdu3RwyPVp6ejomTZqEsLAweHp6okqVKvjkk0+stsvvMZmfqcP+/fdfvPHGG6hbty5KlCgBLy8vVKlSBW+++Sbu3btntb18DNjbd8D8y8CXXnoJZcqUgY+PDxo0aIC1a9fmnaBsNm7ciOvXr+PZZ5+1emzgwIGoU6eOVXvv3r1RpUoVnDhxArdv31bak5OTsXLlSkRERGDYsGFKu06nw/Tp0wEAX3zxhdIuTwdVvHhxi/27u7tj/PjxAIAdO3ZYvX6nTp0QHBycrzh79uwJSZKUfzeJiIjIeaKiotCvXz8cPHgQ33//vd3PS05OxsSJE1GjRg14e3sjMDAQMTEx2LVrl8V2r776KnQ6HQ4ePGjR3rVrV+h0Ojz//PMW7fJnWPlze26WLFmCnTt3onnz5vjmm2/g7+9vtU3ZsmXx9ddfo3379krbtm3bMHjwYERFRcHX1xe+vr6oX79+jp+9Dx8+jB49eqBixYrw9PREqVKl0KBBA7z//vtW2968eROvvvoqKleurEwP9Mwzz1idQwLmKUUHDRqknG8GBQWhVq1aGDNmDCRJyjP+nNbQkM+zbty4gQEDBqBkyZLw9vZG48aNHTb17rJly1C7dm14e3ujbNmyeOWVV/Dw4UOLbdLS0rBgwQLExMQgJCREOefu3r07/vrrL6t95rSGhi35OU8ELM8v7Ok7ABiNRsyYMQOVK1eGl5cXKleujGnTplmds+YlISEBP/74I2JiYqyO4SeffBKdO3e2uGoDML9ve/XqhfT0dOzZs8fiMfkz/rRp0yzObYcNG4aIiAgsXbrUIp5Ro0ahcuXKVv167bXX4O3tbfMcoFmzZoiMjMzXNN2dOnWCj4+PatZ8IRIJBzSIBHHr1i00btwY8+bNQ1hYGMaOHYsnn3wSa9asQaNGjSw+qI8ZMwa1atUCALzyyiuYOHEiJk6caHEp7vjx43H8+HE88cQTeOWVV/Dss8/i9OnT6NGjBxYsWPBIfR0yZAiAzGmlslu0aJHFdjt37sTs2bNRpkwZ9OnTB6NGjUKlSpXw6aefokmTJkhMTLR4/sOHD/Hkk09i7NixSExMxKBBgzB8+HBUqVIFn332GS5duqRse/r0adSuXRtz5sxB6dKlMXr0aDz33HPw8fHB1KlT7Y7p9ddfx5QpU9CkSRO89NJLAMwfMidMmGCx3cmTJ/HOO+/A29sb3bp1w5gxY1C/fn0sW7YMDRs2tOjbwIED0aJFCwDmaW/kOo0ZMybXvkiShB49emDcuHFISUnByy+/jOeeew5///03nn76aXz44Yc2n/fTTz+hc+fOKFeuHEaMGIFKlSrh22+/RZcuXSy2+/XXX9G6dWvs378fMTExGDduHJ5++mmkpqZiyZIlducsJwcOHEDz5s3h4eGBYcOGoX79+li3bh3atGlT5Iuy9enTB19//TViYmIwZMgQxMfH4+WXX7b4Ih3I/zGZH2vWrMFXX32FiIgIDBgwAC+99BKCgoIwY8YMtG3b1motifz2/cGDB2jZsiU+++wzVKpUCa+88opygrF69ep89XXLli0AgMaNG+free7u7gAAN7fMmTH37t2L1NRUtG3b1upEIzQ0FFFRUdi9ezeMRmOB9v8o6tWrB3d3dyVeIiIicq53330Xnp6eePvtt3P8bJRVfHw8mjRpgnfffRfFixfHSy+9hGeeeQaHDh1Cq1atsG7dOmXbVq1aATAPIshMJhN27txp1Z71vvy83Hz11VcAgLffftvqC9/sPD09ldszZszAzp070aBBA4wcORLPP/88bt++jWHDhmHcuHEWzzty5Agef/xxbNiwAU888QTGjh2LHj16wMfHx2oA5Ny5c6hXrx7mzp2LSpUqYdSoUejYsSM2btyIxo0bY//+/cq2165dQ8OGDbF06VLUrl0br776Kvr27YuyZcvik08+seszWm7u3r2LJ554AsePH0e/fv3QvXt3HDx4EDExMTYHVwrTRx99hKFDh6JGjRoYPnw4ihcvjvnz5+OFF16w2C4+Ph5jxoxRpj599dVX0bJlS6xfvx6PP/44Dhw4UOA+5Oc8sSB9B4ChQ4fizTffhMlkwssvv4yYmBjMmTMHr7zySr76unPnTqSnpxfKOUBKSgr279+PqKgohIaGWmyv0+nQtm1b3L9/32qA0RadTgd3d/dCOwfw8PBAvXr1sG/fPty/f79Q9klEdnLyFSJEVARsTTk1aNAgCYA0fvx4i/Zff/1VAiBVrlzZ4rLPvKacOnfunFVbcnKyFB0dLQUEBFhNF4V8Tp1TtWpVSafTSWfPnrVov3XrluTh4SEFBwdL6enpkiRJ0o0bN6Tk5GSrfXzzzTcSAOm9996zaB83bpwEQOrXr5+UkZFh8djdu3ct9lW/fn0JgPT5559b7f/y5ct5xijnMTw8XLp27ZpFHIGBgZKfn5+Umppq8fp37tyxeq2tW7dKer1eeuGFFyza87oM2tblynJeWrRoYfHaly5dkkqWLCm5ublZ1FeeZsjNzU3atWuX0p6RkSG1bNlSAiDt3btXae/evbsEQDpy5IhVf27fvm2zn9nZOv62bdsmAZAASCtWrLDYvl+/fhIAafny5XbtP6v8TDnVqFEji8umT506Jbm5uUlRUVEW2+f3mMypjraOqStXrljUTTZ58mQJgPTdd989Ut/lvrz44osW7Rs3blTyb++UUw0aNJD0er2UkpJi1/aSJEn79++XAEgNGjSwaP/oo48kANKsWbNsPu+pp56SANj8tym74cOHSwCkjz/+ONft7J1ySpIkqU6dOpK7u3u+YiUiIqLCI0+LExMTI0mSJL322msSAGnBggXKNjlNOfXcc89JAKQvvvjCov3GjRtSSEiIVKpUKenhw4eSJElSQkKCpNfrpQ4dOijbHTp0SAIgtW7dWgIgnT59WnmsWbNmkre3t83Pb1mlp6dL7u7ukpubm/Ja9jp//rzN/bVt21YyGAzSpUuXlPaxY8dKAGxOWZX9s/rjjz8uGQwGaePGjRbtp0+flvz8/KTo6Gilbf78+RIAae7cuVb7tXV+Y0tO05vKn0FHjBhhcc765ZdfSgCkYcOG2bX/rPIz5VRAQIB06tQppf3BgwdSlSpVJL1ebzE9UkpKinTlyhWr/fzzzz+Sr6+v1KZNG4t2+fwm+3mIrXO4gp4n2tt3uS+1atWS7t27p7RfuXJFKlmyZL6mnHr99dclANLmzZvt2l6SJCkxMVEqU6aM5OXlZXEc/vPPPxIA6amnnrL5vFmzZkkApK+++irP11i5cqUEQHr22Wdz3c7eKackSZJeffVVCYC0devWPLclosLDKzSIBJCWlobly5ejRIkSePvtty0e69ixI9q2bYuzZ89i9+7ddu8zIiLCqs3X1xcDBw5EYmLiI/36BDBffSFJktVVGt999x3S0tLQv39/5ZcVpUuXhq+vr9U++vXrB39/f/z+++9KW0ZGBj7//HMEBARg3rx5MBgMFs8JCAhQ9vXnn3/i4MGDaN68OV588UWr/VeoUMHueCZMmGCxuF3JkiXRpUsXJCcn4/Tp0xavHxQUZPX8Vq1aoUaNGhaxFJQ8Lc7MmTPh4eGhtFesWBGvvvoqMjIysHTpUqvnPffcc2jatKly32AwYMCAAQBgs97e3t5WbSVKlHjk/jdv3hy9evWyaJMXh3/U4y4v06ZNs7hsOioqCk2bNsXp06eRnJystOfnmMyv8uXLW9RNNnLkSADIcd/29v3bb7+Fh4cH3n33XYvnx8TEoHXr1vnq65UrVxAYGGjxC8LcJCYmYsCAAdDr9Zg5c6bVY4D5PWKLHFteV79s2LABn332GapVq6Zc5VUYypQpg/T09BynuSMiIiLHeuuttxAYGIgpU6bYnJZTdvv2baxcuRJPPvmk1a/WS5cujddffx23bt1SPmMFBgaiTp06+OOPP5CRkQEg8yoM+fPT1q1bAZivDN+/fz+aNGli8/NbVnfu3EF6ejpKliwJLy+vfMUaHh5u1ebm5oaXXnoJRqPR6qoRIO/P6n/99Rf27NmDAQMGICYmxmK7KlWq4MUXX8SxY8esro6wtV9b5zf5VaxYMcyYMcPiypUBAwbAzc2tyM8B5CuWZd7e3ujTpw9MJhMOHTqktHt6eqJ8+fJWz69RowZatWqlXLlQEAU9T7S3799++y0A4J133rFY4Lp8+fL5vkLjypUrAMyfj+310ksv4caNG3jrrbcsjsPCOge4fPkyRo8eDW9vb0yZMsXufuVFjlGOmYgcgwMaRAI4deoUUlJS0LBhQ/j4+Fg9Ll/+fOTIEbv3efPmTYwdOxbVqlWDj4+Psn6DfEnztWvXHqnP/fv3h7u7O7799luLOTvl6abkL7Bla9asQUxMDEqVKgU3NzfodDro9XokJSVZ9OXUqVNITk5GgwYNrObWz+7PP/8EALRr1+6RYgHMU9JkJw+I3L1716J9+/bt6Nq1K8qWLQt3d3clt8eOHXvkvALmkxMfHx80bNjQ6rHcjgV7Y+jduzcA8zRDI0eOxNq1ay3WQnhU+cllYcvPa9t7TOaXPNDXvHlzBAUFwWAwQKfTKR/8c9q3PX1PSkrChQsXULlyZZvrSDRr1ixffb1z5w4CAwPt2vbhw4fo1q0bTp06hSlTplitR1MYDhw4gF69eiEgIACrVq2ye6DFHvIJZmEe60RERFRwxYsXx5tvvombN29arX2X1YEDB2A0GpGamopJkyZZ/dm3bx8A83mErFWrVrh3757yRfq2bdtQrVo1PP744wgNDVUGEHbv3o20tDS7ppt6FPL6H7Vq1YKvr69y/vDMM88AsPx82LNnT+j1enTr1g2DBw/G8uXLcfXqVat9ynHfuHHDZl7kfMh/d+7cGcWKFcPLL7+MXr16YdGiRTh//nyhxVilShWrHwy5ubmhTJkyqjoHOHLkCJ577jlUrFgRHh4eSi1+/vlnpKWlPdJnxYKcJ9rb97///huA7c/7BTkHAGD3ecD48eOxfPlytG/fHm+99Va+Xsve/nTs2BE3b97E559/bjHA86h4DkDkHIUzcZyL2LlzJz744AMcOnQI169fx9q1a9G1a9d87eO3337DxIkTcfz4cXh5eaF58+aYPXu2xSK9RI6WlJQEIOdfSMhXDsjb5SU+Ph4NGjRAbGwsmjZtijZt2iAwMBAGgwFHjhzBjz/+iNTU1Efqc+nSpdG5c2esWbMGv/32Gzp06ICDBw/i6NGjeOKJJyw+hMyePRuvvfYaSpUqhXbt2qFChQrKL4Pmzp1r0Rf5lxu2fjmTXX62zYutBf3kK0yyzie7atUq9OrVC76+voiJiUFYWJgyYLR48eIc50bNj6SkJISEhNh8LLdjwd4Ynn32Waxbtw5z5szBwoUL8fHHH0On06FVq1aYPXs2ateu/Uj9t7cfRcHe187PMZlfo0ePxkcffYSQkBA8/fTTKFu2rPLF/OTJk3Pctz19l+teunRpm/vIz6+sAPMvwOxZ1yQlJQVdunTBtm3bMH78eJsnMvKvsnL69ZXc95x+vXXw4EG0a9cOer0ev/32G2rUqGFvGHaRFyK0NWhMREREziF/bpo9ezZGjBhhc5v4+HgA5sGH3K5YzzpHfqtWrTBr1ixs27YNDRs2xB9//IF+/fopj61fvx5A/tbPKFGiBNzd3XHnzh2kpqba/cOLtLQ0tGzZEocPH0adOnXQr18/lChRAm5ubrh48SK++eYbi8+HjRo1wvbt2zF16lQsW7ZM+cFYgwYNMGPGDKWvcl5+/fVX/Prrr3nmJSwsDPv27cOkSZOwfv16ZUH2qlWr4t1338Wzzz5rVzw5sfVZFjB/nlXLOcCePXvw5JNPAjD/KC4yMlIZYFq3bh3+/vvvAp8HFPQ80d6+JyYmQq/Xo2TJklbbF+QcAIBd5wETJkzA9OnTlfU9bc2gIPfPlrzOAe7cuYPWrVvj+PHj+PTTT/H888/bHYc9eA5A5Bwc0Mji/v37qFWrFgYPHozu3bvn+/kXLlxAly5dMHbsWCxduhSJiYl49dVX0b17dxw+fLgIekxkH/lDzI0bN2w+HhcXZ7FdXr766ivExsZiypQpVlNYTZ8+HT/++OMj9DbTkCFDlAWQO3ToYLUYOGCeQmrKlCkoW7Ysjhw5YvFFrCRJVtPWyL8SsfUrpOzys21hmTRpEry8vHDo0CFERkZaPLZixYpCeQ1/f/8cp8XJ77GQky5duihTau3evVupY/v27XHq1Cm7f62jRfk9JvPj5s2b+Pjjj1GzZk3s3bvX4oNzXFwcJk+e/Eh9l+ue0/GR078hOSlVqlSel18/fPgQXbp0webNm/HGG29g6tSpNreT3w9nzpyx+fiZM2fg4eGBihUrWj128OBBtG3bFiaTCZs2bUKDBg3yFYc95JP+UqVKFfq+iYiIqGC8vb0xefJkDBkyBJMnT1YGHbKSP/+MGzcu1ys5smrWrBnc3Nywbds2tG3bFklJScpAQKtWrbB48WIcP34c27dvR7FixWxeGZ2dm5sbGjZsiN27d2Pnzp1o27atXX358ccfcfjwYQwZMgRffvmlxWMrVqxQppvN3v8NGzYoU2L9/PPP+OSTT9CpUyf8888/iIiIUPKyYMECZWrTvDz22GNYvXo10tPTcejQIWzYsAHz589Hr169UK5cOYvpa13R+++/j9TUVPzxxx944oknLB7bt2+fchVEQRT1eWJAQABMJhNu375t9Xm2IOcAQObn45xMmDAB7733Hlq2bImff/7Z5nRlERER0Ov1uZ4DALDKCZA5mPH333/j448/xrBhw/IVhz14DkDkHJxyKosOHTrgvffeQ7du3Ww+npqaitdeew3ly5dHsWLFlF82yA4dOgSj0Yj33nsPlSpVQt26dfHaa6/hyJEjBZ4nkagwVK1aFV5eXjhw4AAePHhg9bh8HGf95bz8ywhbv3Y5d+4cAPOX1tn98ccfhdBjs5iYGJQvXx4///wzrly5guXLl8PPz8/i1z23b99GYmIimjRpYvWr8oMHDyq/mJBFRUXB398fBw4cQEJCQq6vL594bNq0qZAiytu5c+dQrVo1qw9k169ft3nJdm51ykmdOnXw4MEDZUqtrGwdC4/Cz88P7du3x+eff46BAwfixo0b2L9/f6HsW63ye0zmx/nz5yFJEtq0aWP1K6DCeO/5+/sjPDwcZ8+eVQa3HuU1oqOjkZKSgtjYWJuPZx3MeO211zBjxowc99W4cWN4eHhg8+bNkCTJ4rFLly7h9OnTaNq0qfKLM5k8mGE0GrFx40Y0atQoXzHY6/Tp0yhfvnyhzBFNREREhWfAgAGoUaMGvvjiC5w9e9bq8QYNGkCn02Hv3r1279PPzw/16tXD7t27sXHjRuVqZADKL/R//vlnHDhwAI8//jjc3d3t2q/8w62pU6dafd7JTv6l/6Ocm3l7e6Nly5aYPXs23nrrLTx8+BCbN28GAOUzU37yInN3d0fjxo0xefJkzJ8/H5Ik4Zdffsn3frTm3LlzCAoKshrMePDgwSP/yDW/54n5VatWLQC2j5mCnAMAsFgrMjt5MKNFixb49ddfc7zCwdvbGw0bNsTp06etrkKRJAmbN29GsWLFUL9+fYvHsg5mLFiwIMcrtB6VHKMcMxE5Bgc08mHkyJHYu3cvVqxYgaNHj+LZZ59F+/btlRHhevXqQa/XY9GiRTAajUhMTMSSJUvQpk0buz/AEBUFDw8P9OnTB7dv38a0adMsHtu4cSN+++03VK5c2eIXM/KXcpcvX7baX2hoKABg165dFu3Lli1TLq8uDAaDAQMHDkRaWhp69+6NhIQE9O7d22KRstKlS8Pb2xuHDx+2GKxJSEjAqFGjrPbp5uaGYcOGITExEa+88orVQEBiYqKyaGCDBg3QoEED7Ny5E1988YXVvoriyo3Q0FCcPXvW4lcwKSkpGD58uM2B0dzqlBN5Ie/x48db7PPy5cuYM2cO3Nzc0Ldv34KGgJ07d9ocYJF/9Z/fRQ61Jr/HZH7I7709e/ZYrC1z5coVjB8//pH2LevXrx/S0tLwzjvvWLRv2rQJW7Zsyde+WrRoAQA2B7HkaaY2b96MsWPH4oMPPsh1X/7+/ujduzfOnz+Pzz77TGmXJEmJ/cUXX7R4zqFDh9C2bVtkZGRgw4YNaNKkSb76b6/Y2FjExcWhefPmRbJ/IiIiKjiDwYCpU6ciPT0dkyZNsno8ODgYPXv2xJ49e/DBBx/YHEjYv3+/1Q/DWrVqhYcPH2LBggWoVauW8rm8QoUKqFy5MubMmYP09PR8rZ/Rr18/NGvWDNu3b8egQYOQnJxstc2NGzfw4osvYuPGjQByPjfbsWOHzXOYvXv32pwKSD7/kD+rN2zYEI0aNcLy5cuxcuVKq+1NJhN27Nih3D906JDNaWuz79eVhYaGIiEhAcePH1fajEYjXnvtNdy6deuR952f88T8kq9eevfddy2mV7t69SrmzZuXr33ldg4AmBcef++999CsWbNcBzNkQ4cOBWA+f836/vzss89w/vx59O3b1+Lqjvj4eLRp0wZ///035s2bZ/cVRgWxf/9+lC1b1uYVIkRUdDjllJ1iY2OxaNEixMbGoly5cgCA1157DRs3bsSiRYswdepUhIeHY9OmTejZsyeGDRsGo9GIJk2aFOoXvEQFNWPGDOzYsQPvvfce9uzZg0aNGuHixYtYtWoVfHx8sGjRIuj1mWOcTz75JGbNmoWhQ4fimWeeQbFixRAaGop+/fqhX79+mDFjBkaNGoVt27YhNDQUf//9N7Zs2YLu3btjzZo1hdbvwYMHY+rUqcp8tlmnmwIAvV6PESNGYPbs2ahVqxY6d+6MpKQkbNiwAaGhocr7Nat3330X+/btw5IlS7Bv3z506NABnp6eOH/+PDZu3Ihdu3YpVygsXboULVu2xNChQ7FkyRI0adIEKSkpOH78OP766y9lwbPCMmrUKIwaNQp16tRBjx49kJGRofwivVatWlaXKbdq1Qo6nQ5vvfUWjh8/joCAAAQGBub6oa1fv35Ys2YNfvzxR9SsWRNPPfUU7t+/j5UrVyI+Ph6zZ89GREREgWMYPXo0rl27hieeeAJhYWHQ6XTYtWsX/vzzTzRu3NjqF0uupiDHpL3Kli2LZ555Bj/88APq16+P1q1b48aNG/jll1/QunVr5Rd6j+KNN97AmjVr8MUXX+D48eNo3rw5Ll++jO+//x6dOnXKdQ7l7ORpGDdv3mw1b/JLL72EzZs3Izg4GH5+fja/YBg4cKDFGlTTp0/Htm3bMGLECPz++++oXLkyduzYgX379qFz587KgvSA+USmbdu2uHv3Ltq3b4/NmzcrvziUBQYGYsyYMRZt06dPVxa3lH+ROH36dCxevBgA0LVrV6v1teT95nfdLSIiInKMp59+Gk888YTVl/6yTz75BKdPn8Ybb7yhfOYPDAzE5cuXcfDgQZw5cwbXr1+3+OK1VatWmD59Om7dumU1L3+rVq2UwYT8DGi4ublh3bp1ePbZZ/HNN9/gp59+Qrt27RAeHo60tDScOHEC27dvR3p6uvKanTt3RlhYGGbOnIl//vkHjz32GE6fPo1ffvkF3bp1w+rVqy1eY8aMGdi2bRuaN2+O8PBweHl54fDhw9iyZQsiIiIsZqxYvnw5WrVqhd69e2Pu3LmoW7cuvL29ERsbi7179+LWrVvK4MiSJUvw2WefoXnz5qhUqRL8/f1x4sQJrF+/HkFBQRg0aJDdedCqUaNGYdOmTXjiiSfQs2dPeHl5Yfv27bh69SpatmxpMcNHQfadn/PE/GrVqhUGDRqERYsWITo6Gt26dUNqaipWrlyJxo0b5+sKm5o1ayIiIsLqszcALF68GFOmTFGmWLP1o6aWLVuiZcuWyv0BAwZg5cqVWL58OS5cuIAWLVrg7NmzWLNmDcLDw/Hee+9ZPL979+44cuQIqlativj4eJvnGWPGjLGYBnndunVYt24dAPN08nLbxYsXAZhnvXjzzTct9nHu3DlcuHABw4cPtyMrRFSoJLIJgLR27Vrl/i+//CIBkIoVK2bxx83NTerZs6ckSZJ0/fp1KTIyUnr99delw4cPSzt27JBatGghtW7dWjKZTE6KhEQUGhoq2Xp737p1Sxo9erQUGhoqubu7SyVLlpR69OghHTt2zOZ+Zs6cKUVGRkru7u4SAKlFixbKY0eOHJHatWsnFS9eXPLz85NatGgh/f7779KiRYskANKiRYss9pX9+fnRqlUrCYBUo0YNm4+npaVJ77//vhQZGSl5enpKFStWlMaNGyclJydLoaGhUmhoqNVzUlJSpFmzZkm1a9eWvL29JV9fX6l69erSuHHjpISEBItt4+LipFdeeUWKiIiQPDw8pKCgIKlRo0bSnDlz8oxxwIABEgDpwoULVn2YOHGiBEDatm2b0mYymaSFCxdKNWrUkLy8vKTg4GBpyJAh0s2bN6UWLVrYrOvixYul6OhoydPTUwJgEW9Oz0lPT5dmzZqlPE+u4Y8//mi1bU41lSRJ2rZtmwRAmjhxotK2YsUKqWfPnlKlSpUkHx8fKSAgQKpVq5Y0Y8YMKTk52WofttjKm63Xkl24cEECIA0YMMCu/Wclx2drv7Kc8phTX/N7TNo6FiTJ9jGVnJwsjRs3TgoLC5M8PT2lyMhIacqUKVJaWprN7fPbd0mSpDt37khDhw6VSpUqJXl5eUn16tWT1qxZk+uxkJMOHTpIxYsXl1JSUmz2K7c/2fMhSZJ07do1afDgwVKZMmUkDw8PJf7U1FSL7eRjIrc/tv5tyKtfto6Tli1bSqVLl5bS0tLszgsREREVLvn//piYGJuP7969W/n/3NZnxgcPHkgzZ86U6tWrJxUrVkzy9vaWwsPDpa5du0rffvutlJ6ebrH9/fv3lfOkn3/+2eKxZcuWSQAkX19fq+fZw2QySatXr5a6du0qlStXTvLw8JB8fHykxx57TBo9erR04sQJi+3Pnz8vPfPMM1KpUqUkHx8fqUGDBtKKFStsfn7euHGj1L9/fykqKkry8/NTzoPeeust6datW1Z9iY+Pl95++23pscceU86bIiMjpeeee05as2aNst2+ffukYcOGSY899pgUGBgoeXt7S5GRkdLIkSOlS5cu2RV3Qc4lczrfy4t8vOR2jprTZ/Tc+rp69Wqpbt26ko+Pj1SyZEmpZ8+e0rlz5/J1fmPr83t+zxML0veMjAxp2rRpynlvRESENHXqVOns2bP5PteaMWOGBEDav3+/zX7l9/N2SkqKNGnSJKlSpUqSh4eHFBwcLL3wwgtSXFyc1bby9yG5/cl+/pNXv2wdJ5MmTZIASEeOHLE7L0RUOHSSlMfEjILS6XRYu3at8mvLlStXom/fvjh+/LgyZ73M19cXwcHBmDBhAjZu3IgDBw4oj125cgUhISHYu3cvGjdu7MgQiIiInG7Lli1o06YNvvvuu0eaykytzpw5g6ioKEyaNMlqmi4iIiIiIhHFx8cjIiICzz77rM2pz7QuIyMDkZGRCA8Px9atW53dHSLhcA0NO9WpUwdGoxE3b95E5cqVLf4EBwcDMC/0lHXKHiBzwd6sc50TERGJonXr1mjfvj3ee+89l/y/8N1330XZsmUxbtw4Z3eFiIiIiEgVgoKCMH78eHzzzTdWi3m7AjmuWbNmObsrRELiGhpZ3Lt3D2fPnlXuX7hwAUeOHEFQUBCqVKmCvn37on///pg9ezbq1KmDW7duYcuWLahZsyY6deqETp064cMPP8S7776LPn36IDk5GW+99RZCQ0NRp04dJ0ZGRETkPPPmzcOyZctw9epVhISEOLs7hSY9PR1RUVEYOHAgihUr5uzuEBERERGpxiuvvILU1FTExsYqi9e7Cp1Ohy+++AJ169Z1dleIhMQpp7LYvn27zQW7BgwYgMWLFyM9PR3vvfcevv32W1y9ehUlS5ZE48aNMXnyZERHRwMAVqxYgZkzZ+Lff/+Fj48PmjRpghkzZqBq1aqODoeIiIiIiIiIiIiIyGVwQIOIiIiIiIiIiIiIiFSPa2gQEREREREREREREZHqcUCDiIiIiIiIiIiIiIhUT/hFwU0mE65duwY/Pz/odDpnd4eIiIiIyCkkSUJycjLKlSsHvZ6/e3IUno8QEREREdl/PiL8gMa1a9cQEhLi7G4QEREREanC5cuXUaFCBWd3Qxg8HyEiIiIiypTX+YjwAxp+fn4AzIny9/d3cm/MjEYjTp06hapVq8JgMDi7O04hcg5Ejl0mcg5Ejl3GHJiJnAeRY5eJnAORY5c5KwdJSUkICQlRPh+TYzj7fITvOfVjjbSF9dIW1kubWDdtYb20xZn1svd8RCdJkuSgPqlSUlISAgICkJiYqJoBDSIiIiIiR+PnYudg3omIiIiI7P9czMlxVUiSJCQlJUHksSaRcyBy7DKRcyBy7DLmwEzkPIgcu0zkHIgcu4w5IEfi8aZ+rJG2sF7awnppE+umLayXtmihXhzQUCGTyYTz58/DZDI5uytOI3IORI5dJnIORI5dxhyYiZwHkWOXiZwDkWOXMQfkSDze1I810hbWS1tYL21i3bSF9dIWLdSLAxpERERERERERERERKR6wi8Kbi+j0Yj09HSHvZYkSUhJSRF2sRyRc/CosXt4eECv51glERERERERERGpnyO/d6XcFeV3su7u7oWyTw5o5EGSJMTFxeHu3bsOfU2DwYBLly5Bp9M57HXVROQcPGrser0e4eHh8PDwKILeOY6Xl5ezu+A0IscuYw7MRM6DyLHLRM6ByLHLmANyJB5v6scaaQvrpS2slzaxbtqSU72c8b0r5a6ov5MNDAxEcHDwI+1bJ6l5hQ8HyGv19OvXr+Pu3bsoXbo0fHx8hPtynbTFZDLh2rVrcHd3R8WKFXm8EhERkd3y+lxMRYN5JyIiIlHxe1dxSJKEBw8e4ObNmwgMDETZsmWttrH3czGv0MiF0WhU3lQlSpRw2OtKkgSj0QiDwSDsG1nkHDxq7KVKlcK1a9eQkZEBd3f3Iuhh0TOZTEhISEDx4sWFmz5L5NhlzIGZyHkQOXaZyDkQOXYZc0COxONN/VgjbWG9tIX10ibWTVtyqpezvnel3BXld7Le3t4AgJs3b6J06dIFnn6K7/pcyHO3+fj4OPy109LSHP6aaiNyDh4ldnmqKaPRWFjdcThJknD58mWIeAGZyLHLmAMzkfMgcuwykXMgcuwy5oAciceb+rFG2sJ6aQvrpU2sm7bkVC9nfu9KuSvK72Tlej/Kmikc0LCDaFcIkLbxeCUiIiIiIiIiIi3g91hiKYx6c0CDiIiIiIiIiIiIiIhUjwMaKqXFOQB1Oh3WrVtXaPsr7BxMmjQJtWvXLtR95qRly5YYM2ZMgZ+vxfoXNj8/P2d3wWlEjl3GHJiJnAeRY5eJnAORY5cxB+RIPN7UjzXSFtZLW1gvbWLdtIX10ha1fy+p7t4JSqfTwcvLq8CX4Oh0ulz/TJo0KcfnXrx4ETqdDkeOHClY53PQuXNntG/f3uZjf/zxB3Q6HY4ePWoRw6PkwJbXXnsNW7ZsKbT9AcD27duh0+lw9+5di/Y1a9ZgypQpBdpnUcSuNQaDAZUqVSrw4kBaJnLsMubATOQ8iBy7TOQciBy7jDkgR+Lxpn6skbawXtrCemkT66YtrlivgQMHQqfTYfr06Rbt69atc8r3edu2bUPHjh1RokQJ+Pj4oHr16hg3bhyuXr2a731p4XtJDmiokCRJSE9PL/DiRtevX1f+zJ07F/7+/hZtr732WiH3OG9DhgzB5s2bceXKFavHFi1ahPr166NmzZpK26PmwBZfX1+UKFGi0PaXm6CgoAKPPhdF7FpjMpkQFxcHk8nk7K44nMixy5gDM5HzIHLsMpFzIHLsMuaAHInHm/qxRtrCemkL66VNrJu2uGq9vLy8MGPGDCQkJDi1H5999hnatGmD4OBg/PDDDzhx4gQWLlyIxMREzJ49O9/708L3khzQUKlHWek9ODhY+RMQEACdTqfcL126NObMmYMKFSrA09MTtWvXxsaNG5XnhoeHAwDq1KkDnU6Hli1bAgAOHDiAtm3bomTJkggICECLFi1w+PBhu/v01FNPoVSpUli8eLFF+71797Bq1SoMGTIEd+7cQZ8+fVC+fHkUK1YMtWvXxvLlyy22N5lMmDlzJipXrgxPT09UrFgR77//vvL4lStX0KdPHwQFBaFYsWKoX78+9u/fD8B6yqmBAweia9eumDVrFsqWLYsSJUrg5Zdftsj9kiVLUL9+ffj5+SE4OBjPPfccbt68CcB8NUurVq0AAMWLF4dOp8PAgQMBWE85lZCQgP79+6N48eLw8fFBhw4dcObMGeXxxYsXIzAwEL/99huqV6+O4sWLo0OHDrh+/bqyzfbt29GwYUMUK1YMgYGBaNq0KS5dumR3DbREkiTExcWp+h/PoiJy7DLmwEzkPIgcu0zkHIgcu4w5IEfi8aZ+rJG2sF7awnppE+umLa5aL3kQYdq0ablut2vXLjRr1gze3t4ICQnB6NGjcf/+fQDARx99hMcee0zZVr7CY+HChRav8/bbb9vc95UrVzB69GiMHj0aX3/9NVq2bImwsDA0b94cX375Jd555x0AsPjO1cfHB9HR0Vbfua5evRrR0dHw8fFBcHAw2rZtq/QTAL788ktUq1YNXl5eqFq1Kj755BPlsbS0NIwcORJly5aFl5cXQkND88zLo+CAhmDmzZuH2bNnY9asWTh69ChiYmLw9NNPK1+u//nnnwCA33//HdevX8eaNWsAAMnJyRgwYAB27dqFffv2ITIyEh07dkRycrJdr+vm5ob+/ftj8eLFFv+ArVq1CkajEX369EFKSgrq1auHX3/9FceOHcPgwYPRv39/pU8AMH78eEyfPh0TJkzAiRMnsGzZMpQpUwaAeXCkRYsWuHr1Kn766Sf8/fffeOONN3IdAd62bRvOnTuHbdu24ZtvvsHixYstBl3S09MxZcoU/P3331i3bh0uXryoDFqEhITghx9+AACcPn0a169fx7x582y+zsCBA3Hw4EH89NNP2Lt3LyRJQseOHS0GTx48eIBZs2bh22+/xW+//YbY2FjlapqMjAx07doVLVq0wNGjR7F3714MHTpU1Zd/ERERERERERERuSKDwYCpU6diwYIFNmekAYBz586hffv2eOaZZ3D06FGsXLkSu3btwsiRIwEALVq0wIkTJ3Dr1i0AwI4dO1CyZEls374dgPl7yb179yo/OM9u1apVSEtLwxtvvGHz8cDAQACw+M71n3/+wdChQ9GvXz/lO9fr16+jT58+GDx4ME6cOIENGzagW7duyne4S5cuxTvvvIP3338fJ0+exNSpUzFhwgR88803AID58+fjp59+wvfff4/Tp09j6dKlCAsLy29K7eZWZHt2YfU/r4+4e3FF+hqSJFl9WR3sG4yDQw8+0n5nzZqF//3vf+jduzcAYMaMGdi2bRvmzp2Ljz/+GKVKlQIAlChRAsHBwcrznnzySYv9fP755wgMDMSOHTvw1FNP2fXagwcPxgcffIAdO3Yob8RFixbhmWeeQUBAAAICApQv8CVJwvDhw7Ft2zZ8//33aNiwIZKTkzFv3jx89NFHGDBgAACgUqVKeOKJJwAAy5Ytw61bt3DgwAEEBQUBACpXrpxrn4oXL46PPvoIBoMBVatWRadOnbBlyxa8+OKLSp9lERERmD9/Pho0aIB79+7B19dXeZ3SpUsr/0hkd+bMGfz000/YvXs3Hn/8cQDmfwhCQkKwbt06PPvsswDM/0gtXLgQERERePjwIV5++WVlHY6kpCQkJibiqaeeQqVKlQAA1apVsyvvREREREREREREmrCxPvCwaL93tck7GGifv+9du3Xrhtq1a2PixIn46quvrB6fNm0a+vbtq8ziEhkZifnz56NFixb49NNP8dhjjyEoKAg7duxAjx49sH37dowbN075wfSff/6J9PR05fvE7M6cOQN/f3+ULVs2136WL1/eYgmCUaNG4bffflO+c71+/ToyMjLQvXt3VKxYEWXKlEGDBg2U76YnTpyI2bNno3v37gDMM/ycOHECn332GQYMGIDY2FhERkbiiSeegE6nQ2hoaL7ymF8c0CiAuHtxuJqc/0VVnC0pKQnXrl1D06ZNLdqbNm2Kv//+O9fn3rhxA2+//Ta2b9+Omzdvwmg04sGDB4iNjbX79atWrYrHH39cuQTq7Nmz+OOPP/Duu+8CAIxGI6ZOnYrvv/8eV69eRVpaGlJTU+Hj4wMAOHnyJFJTU9G6dWub+z9y5Ajq1KmjDDLYo0aNGhaLEpUtWxbHjh1T7h86dAiTJk3C33//jYSEBOVqj9jYWFSvXt2u1zh58iTc3NzQqFEjpa1EiRKIiorCyZMnlTYfHx9UqlQJkiTBYDCgbNmyyvRWQUFBGDhwIGJiYtC2bVu0adMGPXv2zPMfLK3S6XQICgoS8goUkWOXMQdmIudB5NhlIudAtNjvptzFpwc+xek7p5FqTEWaMQ19H+uL+kH1hckBOZdo7zktYo20hfXSFtYrn25sA678CFQZBfhVclo3WDdtyXe9HsYBD7XzveuMGTPw5JNP2lyz+O+//8bRo0exdOlSpU2SJJhMJly4cAHVqlVD8+bNsX37drRp0wYnTpzAiBEjMHPmTJw6dQo7duxAgwYNlO9Gs7P1g3hb8vrOtVatWmjdujWio6MRExODVq1aoXfv3ggKCsL9+/dx7tw5DBkyRPkBOGCeTSYgIACAeWaatm3bIioqCu3bt8dTTz2Fdu3a5SuP+cEBjQII9g3OeyMXel0AGDBgAO7cuYN58+YhNDQUnp6eaNKkCdLS0vK1nyFDhmDUqFH4+OOPsWjRIlSqVAktWrQAAHzwwQeYN28e5s6di+joaBQrVgxjxoxRXsPb2zvXfef1uC3u7u4W93U6nTJocf/+fcTExCAmJgZLly5FqVKlEBsbi5iYmHzHnZ++6HQ6eHp6Qq/XW0zPtWjRIowePRobN27EypUr8fbbb2Pz5s1o3LhxoffF2fR6PSpWrOjsbjiFyLHLmAMzkfMgcuwykXMgSuxGkxEf/fkR3t35LuIfxls8Vr9sfXSv3t1JPSPRiPKe0zLWSFtYL21hvfLBlA5s+W/2jsQTwJObnNYV1k1b8l0vbyd9/1nA123evDliYmIwfvx4ZZp62b179zBs2DCMHj3a6nlyTlq2bInPP/8cf/zxB+rUqQN/f39lkGPHjh3K96a2VKlSBYmJibh+/XquP3rO6ztXg8GAzZs3Y8+ePdi0aRMWLlyISZMmYf/+/cqgxxdffGHxY235eQBQt25dXLhwARs2bMDvv/+Onj17ok2bNli9enXeCSwADmgUwKNO+5QXSZKQlpYGDw+PQh1t9vf3R7ly5bB7926LN8Pu3bvRsGFDAICHhwcA88hdVrt378Ynn3yCjh07AgAuX76M27dv57sPPXv2xCuvvIJly5bh22+/xfDhw5UYd+/ejS5duuD555+HJElISUnBv//+q1wJERkZCW9vb2zZsgUvvPCC1b5r1qyJL7/8EvHx8fm6SiMnp06dwp07dzB9+nSEhIQAAA4etKx9TvnKqlq1asjIyMD+/fuVS8Tu3LmD06dP27zKQ66/rcWS6tSpgzp16mD8+PFo0qQJli1b5pIDGiaTCVeuXEGFChWg14u11I/IscuYAzOR8yBy7DKRcyBC7PfS7qHPD33wy7+/2Hw8JSMFsbGxLp0DUg8R3nNaxxppC+ulLaxXPiSfzbwdt9l5/QDrpjX5rlc+p31Sg+nTp6N27dqIioqyaK9bty5OnDiR65T4LVq0wJgxY7Bq1Spliv6WLVvi999/x+7duzFu3Lgcn9ujRw+8+eabmDlzJj788EOrx+/evYvAwECL71wBc02yfucKmH9g3bRpUzz++OP43//+hypVqmDt2rUYO3YsypUrh/Pnz6Nv37459sXf3x+9evVCr1690KNHD7Rv377QvqPNju96lcrtC/JH8frrr2PGjBlYuXIlTp8+jTfffBNHjhzBK6+8AsC8FoS3tzc2btyIGzduIDExEYB5MGHJkiU4efIk9u/fj759+xboighfX1/06tUL48ePx/Xr1y1GLiMjI5XRwJMnT2LEiBG4ceOG8riXlxf+97//4Y033sC3336Lc+fOYd++fcocdX369EFwcDC6du2K3bt34/z58/jhhx+wd+/eAuWqYsWK8PDwwIIFC3D+/Hn89NNPypoWstDQUOh0Ovzyyy+4desW7t27Z7WfyMhIdOnSBS+++CJ27dqFv//+G88//zzKly+PLl262Hzt7PW/cOECxo8fj7179+LSpUvYtGkTzpw547LraEiShPj4eJuDOq5O5NhlzIGZyHkQOXaZyDlw9divJV9Ds0XNLAYznq/5PA4NPYRzo8/hyqtXMLbxWJfOAamLq7/nXAFrpC2sl7awXvmQdDLvbRyEddMWEeoVHR2Nvn37Yv78+Rbt//vf/7Bnzx6MHDkSR44cwZkzZ/Djjz8qi4ID5h9oFy9eHMuWLbMY0Fi3bh1SU1Otlg7IKiQkBB9++CHmzZuHIUOGYMeOHbh06RJ2796NYcOGKd9jZv/OddiwYRbfue7fvx9Tp07FwYMHERsbizVr1uDWrVvK946TJ0/GtGnTMH/+fPz77784duwYFi1ahDlz5gAA5syZg+XLl+PUqVP4999/sWrVKgQHB+e43vCj4oCGYEaPHo2xY8di3LhxiI6OxsaNG/HTTz8hMjISAODm5ob58+fjs88+Q7ly5ZQv3L/66iskJCSgbt266NevH0aPHo3SpUsXqA9DhgxBQkICYmJiUK5cOaX97bffRt26dZW52sqUKYOuXbtaPHfChAkYN24c3nnnHVSrVg29evVS1pnw8PDApk2bULp0aXTs2BHR0dGYPn26xRoZ+VGqVCksXrwYq1atQvXq1TF9+nTMmjXLYpvy5ctj8uTJePPNN1GmTBmLf5CyWrRoEerVq4ennnoKTZo0gSRJWL9+vdWUVznx8fHBqVOn8Mwzz6BKlSoYOnQoXn75ZQwbNqxAsREREZHjnYs/h6ZfN8WRuCMAgADPAGzutxlLui1B3bJ1EVE8AuX9y8PXw9e5HSUiIiLKLumU5X0X/nKaqCDeffddZRp7Wc2aNbFjxw78+++/aNasGerUqYN33nnH4vtQnU6HZs2aQafT4YknnlCe5+/vj/r166NYsWK5vu6IESOwadMmXL16Fd26dUPVqlXxwgsvwN/fX1nXI+t3ri1btlR+EC7z9/fHzp070bFjR0RFReHdd9/FrFmz0KFDBwDACy+8gC+//BKLFi1CdHQ0WrRogcWLFyM8PBwA4Ofnh5kzZ6J+/fpo0KABLl68iPXr1xfZFVQ6yZWHx+yQlJSEgIAAJCYmwt/f3+KxlJQUXLhwAeHh4fDy8nJYnyRJwsOHD+Ht7S3sAkci5+BRY3fWcVuYjEYjjh07hujo6AIPSGmVyLHLmAMzkfMgcuwykXPgqrH/c/MftF3SFnH34gAAYYFhWP/celQrZX21pbNykNvnYio6zs67q77nXAlrpC2sl7awXvmwpx9w8bvM+88mAu7O+bzAumlLTvVyhe+vXFFRfyebW93t/VzMNTRUyt5f7rsykXMgcuyAeXQ6ODhYuMEsQOzYZcyBmch5EDl2mcg5cMXY/7z6J9p/1x4JKQkAgOqlqmNzv80o51fO5vaumANSLx5v6scaaQvrpS2sVz5kn3Iq9Y7TBjRYN21hvbRH7d9LckBDhXQ6neoPnKImcg5Ejl2m1+sRHBzs7G44hcixy5gDM5HzIHLsMpFz4AqxS5KE03dOY8/lPfjn5j/44vAXuJdmXmerQbkG2NB3A0r4lMjx+a6QA9IOHm/qxxppC+ulLayXnSST9ZRTqbcB33CndId10xbWS1u08L0k19BQIUmSkJKS4tKL5eRF5ByIHLvMaDTi3LlzVouji0Dk2GXMgZnIeRA5dpnIOdB67J8e+BQhH4ag2sfVMOSnIfhw34fKYEbLsJbY0n9LroMZgPZzQNrC4039WCNtYb20hfWy04MrQMZ9y7bUO87pC1g3rWG9tEUL30vyCg2Vyr6IjIhEzoHIscuSk5Od3QWnETl2GXNgJnIeRI5dJnIOtBr74iOLMWL9CJuP9X6sN75++mt4u3vbtS+t5oC0iceb+rFG2sJ6aQvrZYfEk9Ztqbcd348sWDdtYb20Re3fS3JAg4iIiIjoEe2K3YWhPw9V7rcOb422EW1Rr1w91ChVA2X9yjqxd0RERESPIPv6GYBTr9AgIrFxQMMOah+VIspKzZeEERERuaLD1w+jy4ouSDelAwBebvAyPur4kZN7RURERFRIbA5oOPcKDXId/N5VLIVRbw5o5MLDwwN6vR7Xrl1DqVKl4OHhAZ1OV+SvK0kSTCYTUlJSHPJ6aiRyDh4ldkmScOvWLU0s4JMbnU6HkJAQ4WoPiB27jDkwEzkPIscuEzkHWot9/5X9iPkuBompiQCANhFtMLf93Efap9ZyQNrG4039WCNtYb20hfWyU9Jp6zYnDmiwbtqSU72c9b0r5a6ovpOVJAlpaWm4desW9Ho9PDw8CrwvnST4z7mTkpIQEBCAxMRE+Pv7Wz2elpaG69ev48GDB07oHVH+6XQ6VKhQAb6+vs7uChERkUv749If6Liso7Lod9OQpljfdz38Pa0/U2pBXp+LqWgw70REpHq/1gAST1i2VXwWeOJ75/SHXAa/dxWPj48PypYta3NAw97PxbxCIw8eHh6oWLEiMjIyYDQaHfKaRqMRly5dQmhoKAwGg0NeU21EzsGjxu7u7q75nBmNRpw5cwaRkZGajyW/RI5dxhyYiZwHkWOXiZwDrcS+5fwWPL3iaTxIN598tQprhZ/6/ARfj0f/QYFWckCugceb+rFG2sJ6aQvrZac085WocPcH0pPMt514hQbrpi251csZ37tS7oryO1mDwQA3N7dHvvKDAxp2kKfvcdQUPkajEWlpafDy8hL2H2aRcyBy7FmlpKQ4uwtOI3LsMubATOQ8iBy7TOQcqD32745+hxd+egGpxlQAQPvK7bGm5xp4u3sX2muoPQfkWni8qR9rpC2sl7awXnZI/29Aw7s8YEwBTGlOXxScddOW3Orl6O9dKXda+F5S7+wOEBERERFpQYYpA+N+G4d+a/spgxldorpgXa91hTqYQURERKQaJiOQYZ5eE+4BgGdJ820uCk5ETqKqAY2dO3eic+fOKFeuHHQ6HdatW5fnc7Zv3466devC09MTlStXxuLFi4u8n0REREQklviH8ei4tCPm7JujtL1Y90WsenYVPN08ndgzIiIioiKUkZR52yPrgMYdQOxleYnISVQ1oHH//n3UqlULH3/8sV3bX7hwAZ06dUKrVq1w5MgRjBkzBi+88AJ+++23Iu5p0dLr9YiIiIBer6ryOJTIORA5dpnIORA5dhlzYCZyHkSOXSZyDtQU+/mE85i/fz5e+OkF1F5YG5vPbwYAuOnd8GmnT/F558/hbij8S+PVlANyfTze1I810hbWS1tYLzvI62cA/12hUcJ825QKZNx3SpdYN21hvbRFC/VS1RoaHTp0QIcOHezefuHChQgPD8fs2bMBANWqVcOuXbvw4YcfIiYmpqi6WeR0Ol2uK7mLQOQciBy7TOQciBy7jDkwEzkPIscuEzkHaoh9/5X9GLlhJA5eO2j1WCmfUljdczWahzYvstdXQw5IHDze1I810hbWS1tYLzukZxvQQJarMtLuAO6+Du8S66YtrJe2aKFe6h1qscPevXvRpk0bi7aYmBjs3bvXST0qHEajEceOHYPRaHR2V5xG5ByIHLtM5ByIHLuMOTATOQ8ixy4TOQfOjv3ojaNo9107m4MZLcNa4sCLB4p0MANwfg5ILDze1I810hbWS1tYLztkHdDwCAA8SmTed9I6GqybtrBe2qKFeqnqCo38iouLQ5kyZSzaypQpg6SkJDx8+BDe3taLM6ampiI1NVW5n5RkngvQaDQqhdLpdNDr9TCZTJCyzAcot2cvaE7ter0eOp3OZjsAmEwmm+1GoxEZGRnK8wwGAyRJstreYDBY9TGndmfHZKvvucVkKwdaj8neOgGwiN0VYspvnWzlQOsx2Vsn+diXJMnuWNUeU259t9Uu/3tsKwdajUnuY37qBOT8b4FWY7K3TvL7QL7tCjHl1ndb7bnlQKsxyX3Mq05ZPwM4OqZLdy+h/XftkZRq/nxYvWR19I3ui1ZhrVCjdA34e/lbfGa0NyZ72rPGlDUHjqyTmk9aqGix9urHGmkL66UtrFcesk85pffKvJ/ivIXBWTdtYb20Re310vSARkFMmzYNkydPtmo/fvw4fH3Nl8kFBQWhYsWKuHLlCuLj45VtgoODERwcjIsXLyI5OVlpDwkJQYkSJXDmzBmkpKQo7REREfD398eJEycsDoSoqCh4eHjg2LFjFn2Ijo5GWloaTp06hfj4eBw/fhxubm6Ijo5GcnIyzp8/r2zr5eWFqlWrIiEhAZcvX1ba/fz8UKlSJdy8eRNxcXFKu7NjOn36tNJmMBjyjCk2NlbJgb+/v0vEZG+dypcvj/v37+P48ePKl/tajym/dQoMDERiYqJFDrQek711kr/EN5lMOHHihEvEBOSvTnLN7927h4sXL7pETAWpU1hYGB4+fGjxPtB6TPbWSZIkPHz4EABcJiYgf3WSJAnp6ekA4DIxAfbVSZIk5TNAzZo1HRbT0fijeO3Aa7iVcgsAUKtkLXza6FN4u3kD8UB6sXTACw459uQcnD17FtWrV3dYne7duwciIiIiC9mnnHLL8kVn2h3H94eIhKeTbP0kVAV0Oh3Wrl2Lrl275rhN8+bNUbduXcydO1dpW7RoEcaMGYPExESbz7F1hUZISAji4+OV+cGc/QvY9PR0HD9+HDVq1IDBYNDcLyvtac8rpoyMDKscaD0me+skSRKOHj2qxO4KMeW3TrZyoPWY8nOFxvHjxxEdHa18ia31mHLre05XaJw4cQKPPfaYVQ60GpPcx/xeoZHTvwVajSk/V2jIX2Znp9WYcut7Tldo5JQDrcYk99GeKzTkzwDu7u5FHpPRaMSXh7/E6N9GI82YBgCIKhGFHQN2oKRPyUKJyZ727FdoyDnw8PBwWJ2SkpIQFBSExMRE1c+b60qSkpIQEBDgtLzL0wpER0cr/9+QurBG2sJ6aQvrZYd/PwYOjjTfbvwNoNMDe/uZ79ebB0SNdniXWDdtYb20xZn1svdzsaav0GjSpAnWr19v0bZ582Y0adIkx+d4enrC09PTql3+0jwr+YTT1rZF2e7u7o6qVavC3d1d+TJPp9PZ3D6nPua3vahjstWeW0y2cqD1mGyx1S5JklXshdnH/LY749gr6hyo+f2k1+tRtWpVGAwGq9hz24+aY8pvu16vR1RUVI450GJMsvzUKbf3gVZjsrddfh/IXxQ/ah/z266G91Nh50ANMdnbLsee9dgvqpiSUpMw7JdhWPHPCqWteWhzrHp2FUoXK53vvj9quxxT1hzk1PeCtOfVF55gikn+fzen44acjzXSFtZLW1gvO2RfQ0PvkXn/fqzj+wPWTWtYL23RQr1U1bN79+7hyJEjOHLkCADgwoULOHLkCGJjzf9Ajh8/Hv3791e2f+mll3D+/Hm88cYbOHXqFD755BN8//33ePXVV53R/ULl4eGR90YuTuQciBy7TOQciBy7jDkwEzkPIscuEzkHjoj90LVDqPtZXYvBjJENRuL3fr/nOJjhSCLXnxyPx5v6sUbawnppC+uVB4s1NPyBwGjzVRoAcH4RkJ5s+3lFjHXTFtZLW9ReL1UNaBw8eBB16tRBnTp1AABjx45FnTp18M477wAArl+/rgxuAEB4eDh+/fVXbN68GbVq1cLs2bPx5ZdfIiYmxin9LywmkwnHjh2zmopAJCLnQOTYZSLnQOTYZcyBmch5EDl2mcg5KOrYJUnC/P3z0eSrJjiXcA4A4O/pj1XPrsKCjgvgbnAvktfND5HrT47H4039WCNtYb20hfWyQ/Y1NHwqAKF9zffT4s1TUjkY66YtrJe2aKFeqppyqmXLljbnEJctXrzY5nP++uuvIuwVEREREbmC+IfxGPzjYPx4+kelrWH5hljxzAqEFw93Ys+IiIiInCjjIWDwAmxNdZp9QAMAHnsbuLQUkEzAqVlAlZGAu69j+kpEwlPVgAYRERERUWEwSSasObkG+67sw+k7p3H69mmcTzgPo5S5MPa4JuMwtfVUeBjUfUk1ERERUZG58iOwqydQqhnw5GbrQY30pMzb8oCGfxUgtA9wcSmQegeI2wyEdHNcn4lIaBzQICIiIiKXcubOGQz+aTB2xe6y+XgJ7xL4pus36FSlk4N7RkRERKQyp+cBpjTgxhbg/gXAN8Ly8eyLgsvKPWUe0ACA5DNF308iov/opNzmeBJAUlISAgICkJiYCH9/f2d3B4B5bmeTyQS9Xg+drcv9BCByDkSOXSZyDkSOXcYcmImcB5Fjl4mcg0eN/YcTP6Df2n54mPHQot3bzRtVSlRBg3INMLHlRFTwr1BYXS50zqq/Gj8Xi8DZeRf53xutYI20hfXSFuHrZTICqwOAjPvm++0PA0F1LLf5NRpI/AcweAO9HmS23zkI/NbAfLvSi0Cjzx3TZ7BuWsN6aYsz62Xv52JeoaFSaWlp8PLycnY3nErkHIgcu0zkHIgcu4w5MBM5DyLHLhM5BwWN/cvDX2LYL8NgkswL2EUUj8AHbT9A/XL1UcG/AvQ6fWF3tciIXH9yPB5v6scaaQvrpS1C1yvxn8zBDMByeiml7b8rNNwDLNv9KmXevne28PuWB6HrpkGsl7aovV7aOasTiMlkwunTp1W9mnxREzkHIscuEzkHIscuYw7MRM6DyLHLRM5BQWI3SSZM2j4JL/78ojKY0a9mPxx96Si6V+uOigEVNTWYIXL9yfF4vKkfa6QtrJe2CF+v23st7+c2oOGRbUDDozjgWcJ8O9mxAxrC101jWC9t0UK9eIUGEREREWlWYkoinl/7PH759xelbWzjsfig3QeaGsQgIiIicrjb+yzvZx/QkExAerL5dvYrNADAt7J5UfAHl4GMh4Cbd9H0k4goC57lEREREZEmnbh1Ag2/bKgMZuh1esxsMxOz2s3iYAYRERFRXrJfoZGRbUAjPRnAf0vv2hrQ8Kucefv+hULtGhFRTniFhkoZDAZnd8HpRM6ByLHLRM6ByLHLmAMzkfMgcuwykXOQW+wnb53E7+d/x/Fbx7H02FLcS7sHACjuVRwreqxAu0rtHNXNIiVy/cnxeLypH2ukLayXtghbr9Q7QPK/lm3Zr9CQp5sCcr5CQ5Z8FgioXnj9y4OwddMo1ktb1F4vnSRJkrM74Uz2rp5ORERERI5nNBlx8NpBbDi7AWtPrcXRG0ettqlVphbW9FqDiOIRTuih6+DnYudg3omIyCmu/grseMqyrcZbQK33M+/fPQasr2m+XWkI0OhLy+0vLAH29jffrjsHqPpq0fWXiFyevZ+LeS2+CkmShKSkJIg81iRyDkSOXSZyDkSOXcYcmImcB5Fjl4mcg6yx335wG42+bITGXzXG5B2TrQYzdNBhYO2B2DNkj0sNZohcf3I8Hm/qxxppC+ulLULXK/v6GYD1FRpp+bxCw0GErpsGsV7aooV6cUBDhUwmE86fP6/q1eSLmsg5EDl2mcg5EDl2GXNgJnIeRI5dJnIO5Njvp95HlxVdcOj6IYvHG1dojDnt5mD34N2488YdLOqyCD7uPk7qbdEQuf7keDze1I810hbWS1uErlf29TOA/E855eecAQ2h66ZBrJe2aKFeXEODiIiIiFTFKBkx6KdB2HN5DwAg2DcY77Z8F+0rt0dIQIiTe0dERESkcSYjcGe/+bbBGzA+NN/O74CGZ0nA3d/8vHuOG9AgIrFxQIOIiIiIVCPdmI63D72NjVc3AgCKuRfDr8/9irpl6zq5Z0REREQuIvE4kHHPfLt0S+D6BvPt3AY0PGwMaOh05mmnEg4D9y8CxjTA4FEUPSYiUnDKKZXy8vJydhecTuQciBy7TOQciBy7jDkwEzkPIscuEzEHacY09FnTRxnMcNO74ftnvxdyMEPE+pPz8HhTP9ZIW1gvbRGyXneyrJ8R/CSg++/rwfyuoQEAvuHmvyUT8PBa4fUxD0LWTcNYL21Re710kppX+HAAe1dPJyIiIqKi1Xt1b6w8vhIA4GHwwOpnV6NzVGcn90oc/FzsHMw7ERE53L5BwPnF5tttdwPbOwHpdwG/KkDn05nbHRkPnJhuvv3kFvPgR3YHRwP/LvhvX3uAUk2KsudE5MLs/VzMKzRUyGQy4c6dO6pefKWoiZwDkWOXiZwDkWOXMQdmIudB5NhlouZgeP3h8HbzhrebN37s9aOwgxmi1p+cg8eb+rFG2sJ6aYuw9ZIXBNe7A0F1zetgADau0EjIvO0RaHtf3mUzb6dcL7Qu5kbYumkU66UtWqgXBzRUSJIkXL58GSJfPCNyDkSOXSZyDkSOXcYcmImcB5Fjl4magxZhLbCm5xrMbzQfbSPaOrs7TiNq/ck5eLypH2ukLayXtghZr9R4IOm/qzCK1wUMXjkPaKTczLztVdr2/rzLZd5+8N+UU6Z04M+XgH1DgIyHhdPvLISsm4axXtqihXpxUXAiIiIiUo22EW1x7P4xZ3eDiIiIyDXdzfI5q0RD89/ygIbxAWDKAPT/fV2YeitzW89Stvdn6wqNC98CZz8z3y7TEgjv98jdJiKS8QoNIiIiIiIiIiIiESSfybztH2X+2z3LXPUZyZm35Ss03AMAg6ft/WUd0Hj434DG9U1ZXu9cwftKRGQDBzRUys/Pz9ldcDqRcyBy7DKRcyBy7DLmwEzkPIgcu0zkHIgcu4w5IEfi8aZ+rJG2sF7aIly97p3NvO0Xaf4764BG1mmn5AGNnK7OACynnHp4DZBMwI0tWfYRV/C+5kK4umkc66Utaq8Xp5xSIYPBgEqVKjm7G04lcg5Ejl0mcg5Ejl3GHJiJnAeRY5eJnAORY5cxB+RIPN7UjzXSFtZLW4SsV3LWAY3K5r9tDWgY04D0u+bbOa2fAQAeQYDeAzClma/QuHsUSL2T+fjDwl8oXMi6aRjrpS1aqBev0FAhk8mEuLg4Va8mX9REzoHIsctEzoHIscuYAzOR8yBy7DKRcnA35S72XN6j3Bcp9pwwB+RIPN7UjzXSFtZLW4SslzygoXMDfCqab9sa0Mi6fkZuAxo6HeAVbL798DoQt8XycXlAoxAXGBaybhrGemmLFurFAQ0VkiQJcXFxql5NvqiJnAORY5eJnAORY5cxB2Yi50Hk2GUi5ODU7VMY8esIlJ9THt1WdkNqRioAMWLPC3NAjsTjTf1YI21hvbRFuHpJUuaUU77hmYt/Zx3QSEs0/23vgAaQuY5G6i3g2gbLx1KuA+e+An4oCRybUvC+ZyFc3TSO9dIWLdSLAxpERERE5DAmyYS3t76Nah9Xw6cHP8WD9Ae4ef8mVvyzwtldIyIiInJtKXFAxn3zbd/Kme22rtCQ188Acl9DA7BcR+PmtmyveQPY/wKQFg8ceyf/fSYiyoZraBARERGRQ6RkpGDguoFYeXyl0lbMvRgG1BqAx0Med2LPiIiIiASQbGNBcABwD8i8nWFjQMPeKzQA86LgWZnSLe8bUwCDV959JSLKAQc0VEin0yEoKAg6nc7ZXXEakXMgcuwykXMgcuwy5sBM5DyIHLvMVXMw+MfBymCGXqfHxBYTMbrRaAR6BSrbuGrs+cEckCPxeFM/1khbWC9tEa5ethYEB+y4QiMfAxoyN18g4551e1qC7e3zQbi6aRzrpS1aqBcHNFRIr9ejYsWKzu6GU4mcA5Fjl4mcA5FjlzEHZiLnQeTYZa6Yg60XtmL5P8sBAD7uPljxzAp0jupstZ0rxp5fzAE5Eo839WONtIX10hbh6nUvHwMaqfm5QqOcdVuFbsDFJdbtaXcfeUBDuLppHOulLVqoF9fQUCGTyYTY2FhVryZf1ETOgcixy0TOgcixy5gDM5HzIHLsMlfLQYYpA6M3jFbuf9ThI5uDGYDrxV4QzAE5Eo839WONtIX10hbh6pV8JvN2nmtoZF0UPK81NLINUPhVAUo0sL1tWkLe/cyDcHXTONZLW7RQLw5oqJAkSYiPj1f1avJFTeQciBy7TOQciBy7jDkwEzkPIscuc6UcpBnTMHHbRBy/dRwA0KBcAwyoPSDH7V0p9oJiDsiReLypH2ukLayXtghXL3nKKZ0B8A3LbC/sKaeCW+d8FUYhDGgIVzeNY720RQv14oAGERERERWJNSfXIHJBJKbumqq0LeiwAHodP4JSwU2bNg0NGjSAn58fSpcuja5du+L06dMW26SkpODll19GiRIl4Ovri2eeeQY3btyw2CY2NhadOnWCj48PSpcujddffx0ZGRkW22zfvh1169aFp6cnKleujMWLF1v15+OPP0ZYWBi8vLzQqFEj/Pnnn4UeMxERUaG4d878d7FQQO+e2Z7rlFM6wLNE7vv1yjZ4UaZoBzSISGw8myQiIiKiQrfs2DL0+L4HYhNjlbbxT4xHowqNnNgrcgU7duzAyy+/jH379mHz5s1IT09Hu3btcP/+fWWbV199FT///DNWrVqFHTt24Nq1a+jevbvyuNFoRKdOnZCWloY9e/bgm2++weLFi/HOO+8o21y4cAGdOnVCq1atcOTIEYwZMwYvvPACfvvtN2WblStXYuzYsZg4cSIOHz6MWrVqISYmBjdvZvlVKxERkRpkPMgcrPAJsXwstys0PEsA+jyW4PUqZb7qAwCgA8q04oAGERUZLgquQjqdDsHBwapeTb6oiZwDkWOXiZwDkWOXMQdmIudB5NhlWs/B2pNr0X9tf0gwX6bcrlI7TGoxCU1CmuT5XK3HXhiYg9xt3LjR4v7ixYtRunRpHDp0CM2bN0diYiK++uorLFu2DE8++SQAYNGiRahWrRr27duHxo0bY9OmTThx4gR+//13lClTBrVr18aUKVPwv//9D5MmTYKHhwcWLlyI8PBwzJ49GwBQrVo17Nq1Cx9++CFiYmIAAHPmzMGLL76IQYMGAQAWLlyIX3/9FV9//TXefPNNB2al4Hi8qR9rpC2sl7YIVa/UO5m3PUtaPubmm3k7+4BGXguCA4BODwQ1AO7sM0835RkEGLxsb1sIAxpC1c0FsF7aooV6cUBDhfR6PYKDg53dDacSOQcixy4TOQcixy5jDsxEzoPIscu0nIONZzei1+peMEpGAMCwesPwaadP7f5ArOXYCwtzkD+JiYkAgKCgIADAoUOHkJ6ejjZt2ijbVK1aFRUrVsTevXvRuHFj7N27F9HR0ShTpoyyTUxMDIYPH47jx4+jTp062Lt3r8U+5G3GjBkDAEhLS8OhQ4cwfvx45XG9Xo82bdpg7969OfY3NTUVqampyv2kJPMXR0ajEUaj+X2j0+mg1+thMpks5i+W2+Xt8mrX6/XQ6XQ22wEoiz2WKlUKkiQpr5V9EUiDwQBJkmy2Z+9jTu2Ojimvdi3FJEmSUiOj0egSMblinbL2sVSpUtDpdDn2XYsx5dau9ZjKlCkDk8lk8Rytx2Sr3ZB6W7lt8igB6b/9GQwGmCRA5+YHXUYypPQkmFKTYDA+AABIHiVhsuf/p2Y/wHTlF0jlnwKMRkDnCb27P3TyAIn82ql3oJOkR46pVKlS0Ov1rlcnVzz2DIYc32dajskV6yR/Hsz6ucORMWV/PCcc0FAho9GIixcvIiwsDAaDIe8nuCCRcyBy7DKRcyBy7DLmwEzkPIgcu0yrOdh+cTu6reyGdFM6AKBfzX74pNMn+fp1j1ZjL0zMgf1MJhPGjBmDpk2b4rHHHgMAxMXFwcPDA4GBgRbblilTBnFxcco2WQcz5Mflx3LbJikpCQ8fPkRCQgKMRqPNbU6dOpVjn6dNm4bJkydbtR8/fhy+vuZfyAYFBaFixYq4cuUK4uPjlW2Cg4MRHByMixcvIjk5WWkPCQlBiRIlcObMGaSkpCjtERER8Pf3x4kTJyxOEKOiouDh4YFjx45BkiQkJyfDz88PNWvWRFpamsWaJAaDAdHR0UhOTsb58+eVdi8vL1StWhUJCQm4fPmy0u7n54dKlSrh5s2bSi4dHVNW0dHRmo/p6NGjSo10Op1LxOSKdZJjkt9TjRs3htFodImYXLFOsurVq+P8+fN4+PCh8nlF6zHlWKeSmQMaNxNNiDt2zCImP/jAA8kw3ruKq2cPIfS/be+meuLSf6+Re0zlcMHQGslnbgIwX90R7VEahmwDGndvXIBbcvIjxSRJEu7fv48mTZrg/v37rlUnFzz2qlevjlOnTiEtLU15n2k9JleskxzTuXPnlM8d3t7eDo3p3r17sIdOUvOS5Q6QlJSEgIAAJCYmwt/fP+8nOIDRaMSxY8cQHR0t7EmsyDkQOXaZyDkQOXYZc2Amch5Ejl2mtRykG9Mxa88sTN4xGalG8y/Pe1TvgeXPLIdbXnMuZ6O12IuCs3Kgxs/FeRk+fDg2bNiAXbt2oUKFCgCAZcuWYdCgQRZXQQBAw4YN0apVK8yYMQNDhw7FpUuXLNbDePDgAYoVK4b169ejQ4cOqFKlCgYNGmRxBcb69evRqVMnPHjwAAkJCShfvjz27NmDJk0yp1N74403sGPHDuzfv99mn21doRESEoL4+Hgl7478xZ7RaMTx48dRo0YNuLu7K+1ZufKvELUQU3p6ulIjg8HgEjG5Yp3kPsrvKfnfcFeIKa92LcckSRKOHTumvL9cIaYc63T5e2DPc+bHas+GFPWKRd91O5+G7tqv5sfrfwb9wWHm25VHQKo3v0Ax6be1ge7mdos2qVxnoMWPjxST/D6rWbOm0h+LWLVcJxc89gDg6NGjNt9nWo3JFeskx5T9c4cjY0pKSkJQUFCe5yO8QoOIiIiICuRCwgUsPbYUS44uwb93/lXaO0V2wtLuS/M9mEGUHyNHjsQvv/yCnTt3KoMZgPkXYGlpabh7967FVRo3btxQpvIKDg7Gn3/+abG/GzduKI/Jf8ttWbfx9/eHt7e3coJna5vcpgzz9PSEp6enVbu8v6zkE05b2xZmu06ng8FgsPh1cnbyNtnl1Mf8thd2TPa0aykmua/ZvwjKTksx2duuxZh0Op3yx1ViyqtdqzEZjUab7y9AuzHl2J5lyim9d2kgy+N6vR4Ibgv8N6Chv/Rdlm3LWGyrbG/Pa3pb/3+oS78L5PL/jb3t8v9ZLlcnuF5Mub3PtBoT4Hp1Aiw/E2atl6Niyulxq/3btRURERERURZfHv4SVT6qggnbJiiDGXqdHuOajMMPPX+Ah8HDyT0kVyVJEkaOHIm1a9di69atCA8Pt3i8Xr16cHd3x5YtW5S206dPIzY2VrmSokmTJjh27Bhu3rypbLN582b4+/ujevXqyjZZ9yFvI+/Dw8MD9erVs9jGZDJhy5YtFldsEBERqUKWAQ2rRcEBoGzbzNu3/si87Vel4K9Ztr35b68s0zOm3y34/oiIwCs0VEmn0yEkJCRf8027GpFzIHLsMpFzIHLsMubATOQ8iBy7TM05kCQJE7ZNwPt/vG/R3qxiM8yJmYP65eo/0v7VHLujMAe5e/nll7Fs2TL8+OOP8PPzU+btDQgIgLe3NwICAjBkyBCMHTsWQUFB8Pf3x6hRo9CkSRM0btwYANCuXTtUr14d/fr1w8yZMxEXF4e3334bL7/8snL1xEsvvYSPPvoIb7zxBgYPHoytW7fi+++/x6+//qr0ZezYsRgwYADq16+Phg0bYu7cubh//z4GDRrk+MQUEI839WONtIX10hah6pXXgIZ/NcC7HPDwWpbtSgAhXQv+muH9geK1AZ8Q4NcaQEockJZQ8P39R6i6uQDWS1u0UC+uoaHBuYKJiIiInMEkmdB/bX8sPbZUaRtRfwT+98T/UDGgohN7RoVBK5+Lczq5WrRoEQYOHAgASElJwbhx47B8+XKkpqYiJiYGn3zyicVUUJcuXcLw4cOxfft2FCtWDAMGDMD06dPh5pb5m6/t27fj1VdfxYkTJ1ChQgVMmDBBeQ3ZRx99hA8++ABxcXGoXbs25s+fj0aNGtkdj1byTkREGrerFxD7vfn20xcA3zDrbfYOAC58m3m/+ptA7WmF8/q/VAeSTgJuxYCe9i38S0RisfdzMaecUiGj0YhTp05ZLZQiEpFzIHLsMpFzIHLsMubATOQ8iBy7TK050Ov0KO9XHgCggw7z28/Hx50+LtTBDLXG7kjMQe4kSbL5J+tAg5eXFz7++GPEx8fj/v37WLNmjdW6FqGhoVi/fj0ePHiAW7duYdasWRaDGQDQsmVL/PXXX0hNTcW5c+esBjMA81oely5dQmpqKvbv35+vwQw14PGmfqyRtrBe2iJUvfK6QgMAgttk3tbpgcjhhff6HsXNf2fcB0zpj7QroermAlgvbdFCvTjllEqlpKQ4uwtOJ3IORI5dJnIORI5dxhyYiZwHkWOXqTUH09pMw60Ht9Alqgu6VO1SJK+h1tgdiTkgR+Lxpn6skbawXtoiTL3kAQ29p/kqCVuC2wJ6D8CUBlToBhQrxCtw5QENwDztlFfpR9qdMHVzEayXtqi9XhzQICIiIiK76XV6fN3la2d3g4iIiIjyQx7Q8CwJ5DQ3vncw0OwH4MZ2oPobhfv6hTygQUTi4oAGEREREeXqQsIFhBcPd3Y3iIiIiKggJMlyQCM35Z8y/yls2Qc0iIgKiGtoqJBer0dERAT0enHLI3IORI5dJnIORI5dxhyYiZwHkWOXqSkHG89uROSCSPxv8/+QklH0lx6rKXZnYQ7IkXi8qR9rpC2sl7YIU6+Me+ZppIC8BzSKSiEOaAhTNxfBemmLFuql3p4JTKfTwd/fH7qcLgEUgMg5EDl2mcg5EDl2GXNgJnIeRI5dppYcJKYk4sWfX4RRMmLmnpn44cQPRf6aaondmZgDciQeb+rHGmkL66UtwtTLngXBi1ohDmgIUzcXwXppixbqxQENFTIajTh27JiqV5MvaiLnQOTYZSLnQOTYZcyBmch5EDl2mVpy8Prm13El6QoAoE1EGzwX/VyRv6ZaYncm5oAciceb+rFG2sJ6aYsw9XKxAQ1h6uYiWC9t0UK9OKChUmo+aBxF5ByIHLtM5ByIHLuMOTATOQ8ixy5zdg42n9uMLw5/AQDw9fDFF52/cNivdJwduxowB+RIPN7UjzXSFtZLW4Sol+oGNO4+8u6EqJsLYb20Re314oAGEREREVm4nHgZ/db2U+7PbDMTYYFhzusQERERERWcKgY0AjNvc1FwInoEHNAgIiIiIsWD9AfourIrbty/AcA81dSw+sOc3CsiIiIiKjBVDGgU3pRTRCQ2DmiokF6vR1RUlKpXky9qIudA5NhlIudA5NhlzIGZyHkQOXaZs3Jw58EddF/ZHYevHwYARBSPwIpnVkCvc1w/WH/mgByLx5v6sUbawnppizD1yjqg4aX9AQ1h6uYiWC9t0UK93JzdAbLNw8PD2V1wOpFzIHLsMpFzIHLsMubATOQ8iBy7zNE52B27G71/6K0sAu7r4Yufev+EEj4lHNoPgPUHmANyLB5v6scaaQvrpS0uWS9jGmDIEpcLXqHhknVzYayXtqi9XuodahGYyWTCsWPHYDKZnN0VpxE5ByLHLhM5ByLHLmMOzETOg8ixyxydg9/P/442S9oogxklfUrip94/oUbpGg55/axYf+aAHIvHm/qxRtrCemmLS9ZrVy9gdQBw6fvMNjUMaBh8AL27+fYjDmi4ZN1cGOulLVqoFwc0iIiIiAT2+/nf0Xl5Z6RkpAAAWoS2wN8v/Y1W4a2c3DMiIiIiypeUW0Ds94AxBTj7WZb2m5m3PRx/9S0AQKfLvEqDa2gQ0SPggAYRERGRgNKN6Zi8fTLaf9deGczoWrUrNvXbhHJ+5ZzcOyIiIiLKt7T4zNv3YzNvPzBfhQuPIMDN27F9yooDGkRUCLiGBhEREZFg7qfdR7vv2mHP5T1KW5eoLljZYyU8DOqeL5WIiIiIcpB1oODBZUCSAEjAw6vmNp8KTumWwv2/AY2MZMCUAehtfC159xiQfBYo39n240QkPJ0kSZKzO+FMSUlJCAgIQGJiIvz9/Z3dHQCAJEkwmUzQ6/XQ6XTO7o5TiJwDkWOXiZwDkWOXMQdmIudB5NhlRZ2Dl399GZ8c/AQAYNAZ8H/N/g9vN38b7gb3Qn+t/GL9nZcDNX4uFoGz8873nPqxRtrCemmLy9Xr2gZge8fM+91vmAc11gab75frCLT81Tl9A4BtHYHrG/7r2y3AK9t6HslngfU1AeNDoO4coOqrNnfjcnVzcayXtjizXvZ+LuaUUyqVlpbm7C44ncg5EDl2mcg5EDl2GXNgJnIeRI5dVlQ52HBmgzKY4e3mjV2Dd2Fyq8mqGMyQsf7MATkWjzf1Y420hfXSFpeqV9pdy/sPLgMPr2Ted/YVGvKUU4DtaacOjDAPZgDA2S9y3ZVL1U0ArJe2qL1eHNBQIZPJhNOnT6t6NfmiJnIORI5dJnIORI5dxhyYiZwHkWOXFVUO7jy4g8E/DVbuz2o3C40rNC7U13hUrD9zQI7F4039WCNtYb20xeXqlX2Q4H5s5voZAOCtogGN9LuWjyWdBuI2Z943PshxNy5XNxfHemmLFurFyeiIiIiIBCBJEl769SXE3YsDAMRUisHw+sOd3CsiIiIiKjTZBwkeXAZ0hsz7Tr9CIzDzdtbBF1M68Ncbltum3AQkE6Djb7GJyBIHNIiIiIgEsPTYUqw+sRoAEOQdhK+7fM05bImIiIhcSfYrNB5cBnRZvvpz+oCGjSmn0u4Cf/QAbmyx3Nb4EHh4HfAp77DuEZE2cJhTpQwGQ94buTiRcyBy7DKRcyBy7DLmwEzkPIgcu6wwcxCbGIuR60cq9xd2WohyfuUKbf+FjfVnDsixeLypH2ukLayXtrhUvfKackqNAxrHJmUOZug9AJ+Kmdskn8lxVy5VNwGwXtqi9nrpJEmSnN0JZ7J39XQiIiIiLTJJJrT5tg22XdwGAHi+5vNY0m2Jk3tFasTPxc7BvBMRUaH5owdw+YfM+yWbAHpP4OZ28/1nkwB3P6d0DQBweS3wR3fz7VpTgRrjgY0NgfgDAHRA2z+AhCPAwf9+iNPwC6DyC87qLRE5mL2fi3mFhgpJkoSkpCSIPNYkcg5Ejl0mcg5Ejl3GHJiJnAeRY5cVZg7m7ZunDGaE+IdgQYcFj7zPosT6MwfkWDze1I810hbWS1tcrl65XaHh7u/cwQzA9hUaqbfMf3sGAaWaAr6VM7e5d9bmblyubi6O9dIWLdSLAxoqZDKZcP78eVWvJl/URM6ByLHLRM6ByLHLmAMzkfMgcuyywsrB8ZvHMX7LeOX+4q6LEegV+Ii9K1qsP3NAjsXjTf1YI21hvbTF5eqVfUDj4TXg/kXzbWdPNwXkMaBRyvy3f2TmNsm2BzRcrm4ujvXSFi3UiwMaRERERC4ozZiG59c+j1RjKgDg1cav4snwJ53cKyIiIiIqMml3szVIgJRhvumtwgGNjIdAxn3zfXlAw6di5kLmuayhQUTi4oAGERERkQuavH0yjsQdAQBUL1UdU1tPdW6HiIiIiKhoZb9CIys1XqGRejvzvtd/Axp6N8A33Hw7+Syg4mlviMg5OKChUl5eXs7ugtOJnAORY5eJnAORY5cxB2Yi50Hk2GWPkoMt57dg+u7pAAB3vTu+6/YdvNy0k1PWnzkgx+Lxpn6skbawXtriMvWSTEB6Ys6Pq2FAw80X0BnMt9MSMqebAjKv0AAy19EwPgBS4mzuymXqJgjWS1vUXi/VDWh8/PHHCAsLg5eXFxo1aoQ///wz1+3nzp2LqKgoeHt7IyQkBK+++ipSUlIc1NuiYTAYULVqVRgMBmd3xWlEzoHIsctEzoHIscuYAzOR8yBy7LJHycHyY8vRcVlHmCTznKeTW05GnbJ1CruLRYb1Zw7IsXi8qR9rpC2sl7a4VL3SkwDkcjWDGgY0dLrMqzTS7gIpWQc0Smbe9su6job1tFMuVTcBsF7aooV6qWpAY+XKlRg7diwmTpyIw4cPo1atWoiJicHNmzdtbr9s2TK8+eabmDhxIk6ePImvvvoKK1euxFtvveXgnhcuk8mEO3fuqHrxlaImcg5Ejl0mcg5Ejl3GHJiJnAeRY5cVJAeX7l7Ciz+9iOfWPIc0YxoAoGNkR7zR9I2i6maRYP2ZA3IsHm/qxxppC+ulLS5Vr6zTTZV5EvAuZ/m4GgY0gCwDGrldoRGRefveBatduFTdBMB6aYsW6qWqAY05c+bgxRdfxKBBg1C9enUsXLgQPj4++Prrr21uv2fPHjRt2hTPPfccwsLC0K5dO/Tp0yfPqzrUTpIkXL58GZLA8wSKnAORY5eJnAORY5cxB2Yi50Hk2GX5zcEnBz5B5IJIfPnXl0rbC3VewLpe62DQq/eXNbaw/swBORaPN/VjjbSF9dIWl6pX1gXB/SKBTv8AVccBBi/APwoo3cJpXbPgHmj+Oz0RSLmR2e6VZUDDq3Tm7bR4q124VN0EwHppixbq5ebsDsjS0tJw6NAhjB8/XmnT6/Vo06YN9u7da/M5jz/+OL777jv8+eefaNiwIc6fP4/169ejX79+Ob5OamoqUlNTlftJSUkAAKPRCKPRCADQ6XTQ6/UwmUwWxZPb5e3yatfr9dDpdDbbAViNdMntRqMRkiQpzzMYDJAkyWp7g8Fg1cec2p0dk62+5xaTrRxoPSZ76wTAInZXiCm/dbKVA63HZG+d5GM/e/xajim3vttql59rKwdajUnuY37qZCsHWo/J3jrJ7wP5tivElFvfbbXnloPsff/9/O8YtWGUMsWUv6c/JjafiNENR0OHzH9TnR2T3Pe86pT1M4Da62RvTPa0Z40paw4cGVP2x4mIiEhDsl6h4VHc/KfuLKD2NAA682LbaqAsDC4B985ltme9QsMjKPN2qvWABhGJTSX/mgG3b9+G0WhEmTJlLNrLlCmDU6dO2XzOc889h9u3b+OJJ56AJEnIyMjASy+9lOuUU9OmTcPkyZOt2o8fPw5fX18AQFBQECpWrIgrV64gPj7zH87g4GAEBwfj4sWLSE5OVtpDQkJQokQJnDlzxmL9joiICPj7++PEiRMWJ4hRUVHw8PDAsWPHLPoQHR2NtLQ0nDp1CvHx8Th+/Djc3NwQHR2N5ORknD9/XtnWy8sLVatWRUJCAi5fvqy0+/n5oVKlSrh58ybi4jIXTnJ2TKdPn1baDAZDnjHFxsYqOfD393eJmOytU/ny5XH//n0cP35c+XJf6zHlt06BgYFITEy0yIHWY7K3TvIXWCaTCSdOnHCJmID81Umu+b1793Dx4kWXiKkgdQoLC8PDhw8t3gdaj8neOkmShIcPHwKAy8QE5K9OkiQhPT0dAHKN6cbDG+i9vbcymDG41mD0L9cfAR4B+Oeff1QVk711kiRJ+QxQs2ZNVdfJ3piysufYk3Nw9uxZVK9e3WEx3bt3D0RERKRR6Xczb3sEZt7Wuzu6J7lTBjRguT5G1is0PLMMaGQdqCEiAqCTVHL9yLVr11C+fHns2bMHTZo0UdrfeOMN7NixA/v377d6zvbt29G7d2+89957aNSoEc6ePYtXXnkFL774IiZMmGDzdWxdoRESEoL4+Hj4+/sDcP4v9tLT03Hp0iWEhobCYDC4/K8QbfU9IyPDKgdaj8neOkmShAsXLqBixYrKAjxajym/dZIkCefPn1fq7wox5ecKjdjYWISFhSlfYms9ptz6ntMVGpcvX0ZoaKhVDrQak9zH/F6hkdO/BVqNKT9XaMTGxiI8PNwqJ1qNKbe+53SFRk45UD4vZKSj1betsOfKHgBAh8od8HOfn63WglRLTHLf7blCQ/4M4O7urrRrOSZ72rNfoSHnwMPDw2ExJSUlISgoCImJicrnYip6SUlJCAgIcFrejUYjLl68iLCwMFUv/igy1khbWC9tcYl6mTKAa+uBW7uAkx+Y2xp+BlQe6tx+5eTP4cDZhebbPhWBB7Hm210vZ67zkXwO+Lmy+XZoH6DpMotduETdBMJ6aYsz62Xv52LVDGikpaXBx8cHq1evRteuXZX2AQMG4O7du/jxxx+tntOsWTM0btwYH3zwgdL23XffYejQobh3755ywpgbZ59AEBERERXER39+hFEbRgEAQgNCcXjYYQR5B+XxLKKc8XOxczDvRET0SE7OBv56zbKt6UogtKdz+pOXI28BJ6ZZt/dKAQye5ttpCcDq/z7Xlo0BWm10XP+IyGns/VysmkXBPTw8UK9ePWzZskVpM5lM2LJli8UVG1k9ePDAatBCHjlSyThNgZhMJsTFxVn9ck8kIudA5NhlIudA5NhlzIGZyHkQOXZZXjmITYzF+C2Z64590/UblxnMYP2ZA3IsHm/qxxppC+ulLS5Rr7//z7ot67ROamOrb25+mYMZAOAeAPy3FpytNTRcom4CYb20RQv1Us2ABgCMHTsWX3zxBb755hucPHkSw4cPx/379zFo0CAAQP/+/S0WDe/cuTM+/fRTrFixAhcuXMDmzZsxYcIEdO7cWdOXMEmShLi4OE0PyjwqkXMgcuwykXMgcuwy5sBM5DyIHLsstxxIkoThvw7HvTTzegdD6w5Fi7AWju5ikWH9mQNyLB5v6scaaQvrpS0uUa9s0/QC0N6ARtb1MwBAp8/cLs16QMMl6iYQ1ktbtFAv1SwKDgC9evXCrVu38M477yAuLg61a9fGxo0blYXCY2NjLa7IePvtt6HT6fD222/j6tWrKFWqFDp37oz333/fWSEQERERFanl/yzH+jPrAQBlfctiZtuZTu4RERERETmNdwXg3lnLtqyLgquNrQENz1I2tgsyD2bYGNAgIrGpakADAEaOHImRI0fafGz79u0W993c3DBx4kRMnDjRAT0jIiIicq7bD27jlY2vKPc/6fQJArwCnNgjIiIiInKq1JvWbWq+QsM3zLrNs6SNtiDgHoC0u4DJCOi1OxMLERUuVU05RWY6nQ5BQUHQ2bpsUBAi50Dk2GUi50Dk2GXMgZnIeRA5dllOOXj1t1dx+8FtAMAz1Z5B16pdndC7osX6MwfkWDze1I810hbWS1s0Xy9jCpCeZN3uruIfvBSvA3iXtWzLPuUUYL5CAwAgAemJFg9pvm6CYb20RQv10klqnhDLAexdPZ2IiIjImX759xd0Xt4ZABDoFYiTL59EsG+wk3tFroSfi52DeSciogK7fwn4Mcy6/TmVf9X350vA2c8y71d7HaiTbRrV3X2BS8vMtzufAfwqO65/ROQU9n4u5hUaKmQymRAbG6vq1eSLmsg5EDl2mcg5EDl2GXNgJnIeRI5dlj0Hdx7cwYs/v6g8PrvdbJcdzGD9mQNyLB5v6scaaQvrpS2ar9fDG5m3dW7mqZtqT3def+xVoavlfVtraHgGZd5OtVxHQ/N1EwzrpS1aqBcHNFRIkiTEx8erejX5oiZyDkSOXSZyDkSOXcYcmImcB5Fjl2XPwagNoxB3Lw4A0DGyIwbVHuTM7hUp1p85IMfi8aZ+rJG2sF7aovl6pWQZ0HhsAvDMLaD6/5zXH3uVaWV539Yi5h5ZBjSyLQyu+boJhvXSFi3UiwMaRERERCr2w4kfsPyf5QDMU0190fkLVc9nSkREREQOknVBcK8yzutHfhk8AbdimffdfK23yWVAg4jExgENIiIiIpW6ef8mXvr1JeX+gg4LUM6vnBN7RERERESqkfUKDS0NaADAk1sBvSdQLBQo39n68VymnCIisbk5uwNkTafTITg4WOhfX4qcA5Fjl4mcA5FjlzEHZiLnQeTYZTqdDmXKlMHIDSNx+8FtAEDXql3RN7qvk3tW9Fh/5oAci8eb+rFG2sJ6aYvm65V1DQ2v0s7rR0GUbAj0SAB0evMVG9nlcoWG5usmGNZLW7RQLw5oqJBer0dwsGsu9GkvkXMgcuwykXMgcuwy5sBM5DyIHLtMp9PhoxMfYc2pNQCAEt4lsLDTQlV/qCwsrD9zQI7F4039WCNtYb20RfP10vIVGgDg5p3zY7kMaGi+boJhvbRFC/XilFMqZDQace7cORiNRmd3xWlEzoHIsctEzoHIscuYAzOR8yBy7ABgNBnxyoZXMHXXVKVt4VMLUcZXgyepBSB6/QHmgByLx5v6sUbawnppi+brpfUBjdzkMuWU5usmGNZLW7RQL16hoVLJycnO7oLTiZwDkWOXiZwDkWOXMQdmIudB1Nj/uPQHRm0Yhb9v/K20fdzxY/So3sOJvXI8UeufFXNAjsTjTf1YI21hvbRF0/WSBzQMPoC7jYW1tSyPRcE1XTcBsV7aovZ6cUCDiIiISAW+OvwVXvj5BeW+Hnp80fkLDK472Im9IiIiIiLVkgc0XO3qDADwKJ5528aABhGJi1NOERERETnZn1f/xIj1I5T7dYLr4KtmX2FArQFO7BURERERqZYpPfOLflcc0NC7Ae7+5tsc0CCiLHiFhgrpdDqEhIQIsfBnTkTOgcixy0TOgcixy5gDM5HzIFrstx/cRo/veyDNmAYAGF5/OObFzENSYpIwOchKtPrbwhyQI/F4Uz/WSFtYL23RdL1Sbmbe9nbBAQ3APO1UepLVGhqarpuAWC9t0UK9OKChQnq9HiVKlHB2N5xK5ByIHLtM5ByIHLuMOTATOQ+ixf7KxldwOekyAKBpSFPMaz8P7gZ3oXKQlWj1t4U5IEfi8aZ+rJG2sF7aoul6ufKC4DKPIOD+RfMVGpIE/PcFq6brJiDWS1u0UC9OOaVCRqMRp06dUvVq8kVN5ByIHLtM5ByIHLuMOTATOQ8ixX7o2iEsO7YMAFDCuwS+f/Z7uBvchcpBdiLHLmMOyJF4vKkfa6QtrJe2aLpeIgxoeP63MLhkBDIyFynWdN0ExHppixbqxQENlUpJSXF2F5xO5ByIHLtM5ByIHLuMOTATOQ+ixP7mljeV2xNbTEQ5v3LKfVFyYIvIscuYA3IkHm/qxxppC+ulLZqtV9YppzxLO68fRckjKPN2yi2LhzRbN0GxXtqi9npxQIOIiIjICTad24Tfz/8OAAgPDMew+sOc3CMiIiIi0oz0pMzbHoFO60aR8q2UeTvppPP6QUSqwgENIiIiIgdLyUjBKxtfUe6//+T78DB4OLFHRERERKQpGfczb7sVc14/ilJgzczbCX87rx9EpCoc0FAhvV6PiIgI6PXilkfkHIgcu0zkHIgcu4w5MBM5DyLEPmn7JJy6fQoA0LB8Q/R6rJfF4yLkICcixy5jDsiReLypH2ukLayXtmi6XiIMaBTPMqBx96hyU9N1ExDrpS1aqJebsztA1nQ6Hfz9/Z3dDacSOQcixy4TOQcixy5jDsxEzoOrx37g6gF8sOcDAICHwQNfP/019DrLD4uunoPciBy7jDkgR+Lxpn6skbawXtqi6XqJMKDhVwXQewKmVIsBDU3XTUCsl7ZooV7qHWoRmNFoxLFjx1S9mnxREzkHIscuEzkHIscuYw7MRM6DK8eempGKgT8OhEkyATAvBF6jdA2r7Vw5B3kROXYZc0COxONN/VgjbWG9tEXT9TIKMKChdwMC/vusnPwvkPEQgMbrJiDWS1u0UC8OaKiUmg8aRxE5ByLHLhM5ByLHLmMOzETOg6vGPmXnFJy4dQIAUK9sPbzR9I0ct3XVHNhD5NhlzAE5Eo839WONtIX10hbN1ivjQeZtg4sOaACZ005JJiDxuNKs2boJivXSFrXXiwMaRERERA5w6NohTN81HQDgrnfHoi6L4Kbn7J9EREREVAAiTDkFWC4MnmXaKSISFwc0iIiIiIpYmjENg34cBKNk/qXLhOYTEF0m2sm9IiIiIiLN4oBG/h2bAmxpDSSeeLT9EJFTcUBDhfR6PaKiolS9mnxREzkHIscuEzkHIscuYw7MRM6DK8b+/s73cezmMQBA7eDaePOJN3Pd3hVzYC+RY5cxB+RIPN7UjzXSFtZLWzRdL4s1NHyc14+iZmNAw2bdMh4Ct/cDpgzb+3l4HTj2DnBjK3BqThF2mLLT9PtMQFqol3p7JjgPDw9nd8HpRM6ByLHLRM6ByLHLmAMzkfPgSrH/df0vTN01FQDgpnfD4i6L4W5wz/N5rpSD/BI5dhlzQI7E4039WCNtYb20RbP1kq/Q0Lub/7gqr1KAV7D5duJJpdmqbltbA5saA3/lsEZdyo3M2w+vF3InKS+afZ8JSu314oCGCplMJhw7dgwmk8nZXXEakXMgcuwykXMgcuwy5sBM5Dy4UuypGakY9OMgZPz3S7H/a/Z/qBVcK8/nuVIO8kvk2GXMATkSjzf1Y420hfXSFk3XSx7QcOUFwWU+5c1/p94CJMm6bhkPgNt7zbdPf2h7H+lJmbfT7hZZV8mapt9nAtJCvQptQEOSJGzduhUbNmxAcnJyYe2WiIiISLNe3/w6/r7xNwCgZpmaeKvZW07uERERERG5BHlAw5XXz5B5ljT/LRmB9ETrx1NvWd5/cNV6m6wDGul3C61rROR4BRrQ+L//+z+0atVKuS9JEtq1a4e2bduiU6dOiI6Oxrlz5wqtk0RERERas/bkWiz4cwEAwNPgiSXdlsDDoO5Ld4mIiIhII0Qc0ACA1NvWj2dvu3PAehteoUHkMgo0oPHDDz+gYcOGyv3Vq1djy5YteO+99/DLL7/AaDRi0qRJhdVHIiIiIs3Ye3kveq7qiZ6reypt89rPQ80yNXN5FhERERFRPog0oOFRIvO2rQGNlGxt8RzQIHJlbgV50tWrV1G5cmXl/po1a1C9enWMHz8eADB8+HB8+umnhdNDAen1ekRHR6t6NfmiJnIORI5dJnIORI5dxhyYiZwHrcaemJKINza/gc8Pf27R3rNGTwytNzRf+9JqDgqDyLHLmANyJB5v6scaaQvrpS2arZcxDZDMa7QJMaCR7QoNq7rl9woN4wNzDnn1tENo9n0mKC3Uq0A9c3NzQ2pqKgDzdFNbtmxB+/btlcfLlCmD27dtjJiS3dLS0pzdBacTOQcixy4TOQcixy5jDsxEzoPWYr+QcAE1F9a0GMwo5VMKE5pPwDddv4FOp8v3PrWWg8Ikcuwy5oAciceb+rFG2sJ6aYsm62W8n3lbhAENL+sppyzqln1AI/4gIEmWbVkHNADba3FQkdHk+0xgaq9XgQY0HnvsMXz33XdISEjAokWLcOfOHXTq1El5/NKlSyhZsmQue6DcmEwmnD59WtWryRc1kXMgcuwykXMgcuwy5sBM5DxoLfaUjBT0WNUDsYmxAIBi7sWwoMMCXH71Mt5t9S683LzyvU+t5aAwiRy7jDkgR+Lxpn6skbawXtqi2XplCDagke0KDau6ZV8UPC0BuJdtbd/sAxicdsphNPs+E5QW6lWgKafeeecddO7cWRm0aNq0qcUi4b/++isaNGhQOD0kIiIiUrExG8fg8PXDAIDIoEhs6rcJYYFhzu0UEREREbmujAeZtw3iDWhYsdV25wDglzldvvUVGncLpWtE5HgFGtBo27YtDh8+jM2bNyMwMBC9evVSHktISEDz5s3x9NNPF1oniYiIiNTou6Pf4bNDnwEAvNy8sLrnag5mEBEREVHRuHsciD8EFKuY2SbgFRpWbLUlHAHC+mTezz6gwSs0iDSrQAMaAFC9enVUr17dqr148eL48MMPH6lTBBgMBmd3welEzoHIsctEzoHIscuYAzOR86CF2I/fPI5hvwxT7n/a6VPULFOz0PavhRwUFZFjlzEH5Eg83tSPNdIW1ktbNFGvpNPA/heAW7vM9z2CMh8TdEDDom42BzmyTUPFKzScShPvM1KovV46Scq+Sk7+3Lt3DwkJCbC1m4oVK9p4hrokJSUhICAAiYmJ8Pf3d3Z3iIiISAPupd1Dgy8a4NTtUwCAwbUH46suXzm5V0SPhp+LnYN5JyKiPO3qBcR+b/uxx94Bak52bH8czZgGrPQ03y7VFGi7y/LxXx8DEo9btlXoAjRfl3l/YwPzYuGyhp8DlV8sku4SUcHY+7m4QIuCp6SkYPz48ShdujQCAgIQFhaG8PBwqz9UMJIkISkpyeYgkShEzoHIsctEzoHIscuYAzOR86CF2P+3+X/KYEbNMjXxUcePCnX/WshBURE5dhlzQI7E4039WCNtYb20RTP1yr7AdVYiXKFh8ADc//tyM/W2dd3kqzE8S2U+Jy3Bch+2ppx6eB0wphZJlymTZt5nBEAb9SrQgMaIESMwc+ZMNGvWDLNnz8bXX39t8w8VjMlkwvnz51W9mnxREzkHIscuEzkHIscuYw7MRM6D2mM/EncECw8tBAAUcy+G1c+uhre7d6G+htpzUJREjl3GHORt586d6Ny5M8qVKwedTod169ZZPD5w4EDodDqLP+3bt7fYJj4+Hn379oW/vz8CAwMxZMgQ3Lt3z2Kbo0ePolmzZvDy8kJISAhmzpxp1ZdVq1ahatWq8PLyQnR0NNavX1/o8RYlHm/qxxppC+ulLZqp18O4nB8TYUADyJx2KvW2Zd0kE5B6x/yYTwhg+O9zeWq85fOzD2hcXAKsLQ/8Uo2DGkVMM+8zAqCNehVoDY01a9bghRdewGeffVbY/SEiIiJSLUmSMHL9SJgk84e7Cc0nILJEpJN7RSSe+/fvo1atWhg8eDC6d+9uc5v27dtj0aJFyn1PT0+Lx/v27Yvr169j8+bNSE9Px6BBgzB06FAsW7YMgPmS93bt2qFNmzZYuHAhjh07hsGDByMwMBBDhw4FAOzZswd9+vTBtGnT8NRTT2HZsmXo2rUrDh8+jMcee6yIoiciIqFIJiDlRs6PG3wc1xdn8iwJ3DtvHqgwGTPb0xMByZi5jUcQ8PAqkJbHgMbdY+a/718wL7Re6vGi6zsRFaoCDWjodDrUrVu3sPtCREREpGpLjy3F7su7AQBVSlTBmMZjnNshIkF16NABHTp0yHUbT09PBAcH23zs5MmT2LhxIw4cOID69esDABYsWICOHTti1qxZKFeuHJYuXYq0tDR8/fXX8PDwQI0aNXDkyBHMmTNHGdCYN28e2rdvj9dffx0AMGXKFGzevBkfffQRFi5cWIgRExGRsFLvAFJGzo+LcoWGR4n/bkhAepbppFKyLAjuWRLwKG49oGHKAIwPct53ys1C7SoRFa0CTTnVpUsX/P7774XdF8rCy8vL2V1wOpFzIHLsMpFzIHLsMubATOQ8qDH2h+kPMX7LeOX+vPbz4OnmmcszHo0ac+AoIscuYw4e3fbt21G6dGlERUVh+PDhuHPnjvLY3r17ERgYqAxmAECbNm2g1+uxf/9+ZZvmzZvDw8ND2SYmJganT59GQkKCsk2bNm0sXjcmJgZ79+4tytAKHY839WONtIX10hbV1ysll+mmAHEGNOQppwAg9ba5bsaUzPUzAMCrFOAZZL5tTAEyHppvZyTnvu9UDmgUNdW/z8iC2utVoCs0JkyYgJ49e2Lo0KEYNmwYKlasCIPBYLVdUFDQI3dQRAaDAVWrVnV2N5xK5ByIHLtM5ByIHLuMOTATOQ9qjX3BnwtwJekKAKBjZEe0r9w+j2cUnFpz4Agixy5jDh5d+/bt0b17d4SHh+PcuXN466230KFDB+zduxcGgwFxcXEoXbq0xXPc3NwQFBSEuDjzF0dxcXEIDw+32KZMmTLKY8WLF0dcXJzSlnUbeR+2pKamIjU1c67upCTzFBhGoxFGo3nKDJ1OB71eD5PJZLEgo9wub5dXu16vh06ns9kOQJkbOTLSPHWe/FrZ50w2GAyQJMlme/Y+5tTu6JjyatdSTEBmjYxGo0vE5Ip1ytrHyMhI6PX6HPuuxZhya9d6TFFRUTCZTBbPUVVMD65D999tyaMEdGl3LB436r2ALM9x1TrBs4SSB6TeRqTfAxjWNbQYrDC5B0HnXlzZzphyG/AuB6QkwPpbyywe3uD7qYhjyul9puWYXLFOcj+yfu5wZEzZH89JgQY05KD++usvfPXVVzluZ28nyJLJZEJCQgKKFy9u8SFWJCLnQOTYZSLnQOTYZcyBmch5UGPsdx7cwdQ/pgIA9Do9ZrSZUaSvp8YcOIrIscuYg0fXu3dv5XZ0dDRq1qyJSpUqYfv27WjdurUTewZMmzYNkydPtmo/fvw4fH19AZh/GFaxYkVcuXIF8fGZU2YEBwcjODgYFy9eRHJy5hc4ISEhKFGiBM6cOYOUlBSlPSIiAv7+/jhx4oTFuVlUVBQ8PDxw7NgxSJKEtLQ0eHh4oGbNmkhLS8Pp06eVbQ0GA6Kjo5GcnIzz588r7V5eXqha9f/Zu+8wJ6r1gePfJNs7S1vKIkUEgUUQFbGABcUudgF7vV75KWIvF8Vr7+jVay9XxYq90i2ABQHpSFuaLG37wrYkvz9mJ2WT7GazKTM57+d5eHYymSTnfd+ZsJuTc05fSkpK2LJli2t/ZmYmvXr1YufOnV4dO9GMyVNBQYHpY1q6dKmrRhaLJS5iisc66THp19TBBx9MfX19XMQUj3XS9e/fn127drFjxw4sFoshY+qTVEjDMtdUJvQgs1GHxrrCIvbtcMcVj3UqKCjAYcshseH21lWz6bTzP9js3iMvtu2uIbPORk7D7bXLf6U6ZX9SqtfS5FdFanbK9RTBmPr378/WrVvZs2eP6zoze0zxWCc9pvXr17t+70hNTY1qTJWVlQTD4mzcvRKE++67z3UCNuXee+9t6VNHXXl5OdnZ2ZSVlZGVlRXr5gBaR9CyZcsoKCjwO/JFBSrnQOXYdSrnQOXYdZIDjcp5MGLsE7+fyNO/PA3AFYOu4LUzA3+hIxyMmINoUTl2XaxyYMTfi4NhsVj49NNPGT16dJPHtW/fngceeIBrr72W119/nZtvvtk1dRRAfX09KSkpfPTRR5x11llccskllJeX89lnn7mOmTNnDscddxzFxcW0adOGbt26MXHiRCZMmOA65t577+Wzzz7jzz//9NsOfyM08vPzKS4uduU9mt/Ys9vtrFixgv79+5OYmOja7ymev4Vohpjq6upcNbLZbHERUzzWSW+jfk3p7+HxEFNz+80ck9PpZNmyZa7ry5AxrX4Cy593aO3v/X9Y1z7ndb/9pKWQ3a/ZWA0VUyjn3rqXsfz+D5piP+IDLHt+xbrmKe32sbOhw3DYNQ/b7BGBH9jtPBxHvC/XU4RiAli6dKnf68ysMcVjnfSYGv/eEc2YysvLyc3NbfbvkZBGaNx3332hPEwIIYQQwnRW7VrFc79pfzimJKQw+Vjfb1YLIYxN/1Zgp06dABg2bBilpaX88ccfDBkyBIDZs2fjcDgYOnSo65i7776buro61wf9M2bMoE+fPrRp08Z1zKxZs7w6NGbMmMGwYcMCtiU5OZnkZN/1d/Q/GD0FGqETqKMr1P0WiwWbzeb17eTG9GMaC9TGlu4Pd0zB7DdTTHpbG38Q1JiZYgp2vxljslgsrn/xElNz+80ak91u93t9gYFiqt7hfq7cg3yPT84CP88VT3UCtPUxmmFL7QApbd2368u03Diqmn5g9U65niK4v6nrzKwxQfzVCbx/J/SsV7RiCvbLXGEZw75v3z727dsXjqcSQgghhDAMp9PJDd/dQL2jHoDbj7ydrlldY9wqIURlZSVLlixhyZIlAGzcuJElS5awefNmKisrufXWW/nll18oLCxk1qxZnHnmmey///6MGjUKgAMPPJCTTjqJq6++mt9++4158+Yxfvx4LrzwQjp37gzA2LFjSUpK4sorr2TFihV88MEHTJkyhYkTJ7raceONN/Ldd9/x5JNPsnr1au677z4WLlzI+PHjo54TIYQQccpzUfDsAt/7bQouCt7AmdW/0THtIcljPd/ahilv6sqbfu5qWRRcCDMJuUNj8+bNXH755XTs2JGMjAwyMjLo2LEjV1xxBZs2bQpnG5WUmZkZ6ybEnMo5UDl2nco5UDl2neRAo3IejBL7J6s+YeaGmQB0z+nO7UfeHrXXNkoOYkHl2HWSg6YtXLiQwYMHM3jwYAAmTpzI4MGDmTRpEjabjaVLl3LGGWdwwAEHcOWVVzJkyBB++uknr5ER7777Ln379uX444/nlFNO4aijjuLll1923Z+dnc306dPZuHEjQ4YM4eabb2bSpElcc801rmOOOOIIpk6dyssvv8xBBx3Exx9/zGeffcaAAQOil4wwkPPN+KRG5iL1MhfD18urQ6MvWBp9gzlBzQ6Niran4TjsVd9jvDo0GqaWbLZDY0fT94tWM/x1JrwYvV4hraGxevVqjjrqKEpLSznhhBM48MADXfunT59OmzZt+Pnnn+nTp0/YGxxuZp0rWAghhBCRNWP9DM758BwqarVFyz45/xPOOvCsGLdKiMiR34tjQ/IuhBDCr50/w75tsOxeKF+jdVycXwmf5Hl8AG+BMXYIYp1b06stg087gX0fJLWBMwshIRPe8/iu9oW1sPMHmH2Cdrv/XXDQg7DqSVh8i7bPmgyOGp+n58JasCb67tfVVUJiRtjCEUL4Cvb34pBGaNxxxx1YrVYWL17Mt99+y1NPPcVTTz3FN998w5IlS7Bardxxxx0hN151DoeDoqIiv4voqELlHKgcu07lHKgcu05yoFE5D0aIfeqyqZwy9RRXZ8apvU9ldN/RUXt9I+QgVlSOXSc5ENEk55vxSY3MReplLoatV+VGmDUC5l2odWYApORpP5M91pJISFejMwMgKRuG/Q/2vxbHiQsp2rMXh9MJwz+HjP21jgtrotbZoavxM+VUejf/z1+9K/Br/349fJQFyx9ofRwKMux1JvwyQ71C6tD44YcfuOGGGygo8J27b8CAAYwfP565c+e2tm3KcjqdFBUV+awerxKVc6By7DqVc6By7DrJgUblPMQ69m3l27ji8ytc62aM7juaD8/70LVYbjTEOgexpHLsOsmBiCY534xPamQuUi9zMWy9imaCs9GHiamdtJ8pHdz7Gh8T77qdC4e9iDN9P3fdup4BZ6zVRmNA82toJAb41ndNgHU0HHWw7mXACWueAaOdKyZg2OtM+GWGeoXUoVFXV0dqamrA+9PS0qirqwu5UUIIIYQQsfLQTw9RY9eGoV9y0CV8fN7HpCWmxbhVQgghhBBCGXUVvvv8jdCw741Oe8ykuTU0nHb/jwu0MHjFenBqX3SiZg9U/NX6NgohWiWkDo3Bgwfz6quvUlZW5nNfeXk5r732GgcffHCrGyeEEEIIEU2bSjfxyqJXAMhIyuDJE5/EZrU18yghhBBCCCHCaO9W332pDR0aKe197xNuiVnuhdP9jdBIDpC/QAuDV6zxvr1rfuvaJ4RotYRQHjR58mROOukk+vbty+WXX84BBxwAwJo1a3jrrbfYs2cPzz//fFgbqhKLxUJubm5Up7YwGpVzoHLsOpVzoHLsOsmBRuU8xDL2B358gDqHNsr0xqE30i6tXdTbAFJ/VWPXSQ5ENMn5ZnxSI3ORepmLYeu1z0+Hhj5CI6ltdNtiQE3WzWKBpBxtNIW/NTQGPQzfz9ZGavS7A1Y+ou0PNEKjfLX37d3zoNflrY5BJYa9zoRfZqhXSB0axx13HN988w233norjzzyiNd9gwYN4u233+bYY48NSwNVZLVa6dYtwCJFilA5ByrHrlM5ByrHrpMcaFTOQ6xif3XRq7y2+DUAspKzmDhsYtTboJP6qxm7TnIgoknON+OTGpmL1MtcDFuvqi2++/RRB4kZ0W2LATVbt6RcrUPD3wiNnEFwxkatQ6Oq0KNDI8AIjXIZodFahr3OhF9mqFdIU04BjBw5ksWLF/P333+zYMECFixYwN9//82iRYs4/vjjw9lG5TgcDjZv3mzo1eQjTeUcqBy7TuUcqBy7TnKgUTkPsYj9hd9f4Oovr8aJtvDZ3UffTW5qbjOPihypv5qx61TIQW1tLVVVVbFuhkCN883spEbmIvUyF8PWy98IjXZDtZ8J6dFtiwE1Wzd9HY26MnDYtZ8ACRlgtUF6PmR0915gPdgRGuWr3CM/RFAMe50Jv8xQr5A7NHR5eXkMHTqUoUOHkpeXF442Kc/pdFJcXGzo1eQjTeUcqBy7TuUcqBy7TnKgUTkP0Y594d8LGf/NeNftiYdP5NYjbo3Kawci9Vczdl085eD999/npptu8to3efJkMjIyyMnJ4ayzzqKysjJGrRMQX+dbvJIamYvUy1wMWS9HPezbrm1n7A/7jYEDboAOI7R9trTYtc0gmq2b58LgdaXukRqJmd7HJTfToeF0+nZoAOxe0KL2qs6Q15kIyAz1CmrKqf/9738AXHzxxVgsFtft5lxyySWht0wIIYQQIgrunn23a2TGrUfcyqMjHzX0fKFCmMmTTz7J4MGDXbfnz5/P5MmTOfXUUznwwAN57rnnePDBB3n44Ydj2EohhBDCQKqLtOmQAHL6w5FTve9vN8y93e286LXLTJI9OjR2/+qeTiqzj+9xFpuWb39TTtXshtoSbduSAM76huecD11ODX+7hRBBCapD47LLLsNisXDhhReSlJTEZZdd1uxjLBaLdGgIIYQQwtDmFs5l+vrpAPTI6cEDxz0gnRlChNH69eu59NJLXbenTp1KXl4en376KQkJCTgcDqZNmyYdGkIIIYRur8d0U6ldfe/POgAOfwP2/AYDJkWvXWaS1Ma9Xfiue7vzyd7HWayQ3F7rRKrxM0LDc/2MLqfC1s+17eI/wtdWIUSLBdWhsXHjRgCSkpK8bovIsFgs5OXlKf2Biso5UDl2nco5UDl2neRAo3IeohW70+nkrll3uW5PPmYySbakiL5msKT+asaui6cc1NTUkJKS4ro9ffp0Tj75ZBIStD9D+vXrxwsvvBCr5gni63yLV1Ijc5F6mYsh6+XZoZHmp0MDoOdl2j9FNVs3zymnNnmMcGncoQHaOhrVRdqUU04neD6n53RTHUfCrp+1xcZLFvseKwIy5HUmAjJDvYLq0Nhvv/2avC3Cy2q1Kr8eico5UDl2nco5UDl2neRAo3IeohX7Iz8/woKt2vy3/dv3Z2zB2Ii/ZrCk/mrGrounHPTo0YOZM2dy1VVXsXDhQtatW8eDDz7oun/Hjh1kZGTEsIUins63eCU1Mhepl7kYsl5eHRr5sWuHgTVbt8zevvtSu0D2AN/9yW21n45asO/1XnS9wmOERnZfaDMYimZqnR/7tkNa59ACUIwhrzMRkBnqFdKi4D179uSLL74IeP9XX31Fz549Q26U6ux2O+vXr8dut8e6KTGjcg5Ujl2ncg5Ujl0nOdConIdoxP7Swpe4a7Z7dMajIx/FZrVF7PVaSuqvZuy6eMrBtddey4cffsjAgQM58cQT6dq1K6eddprr/nnz5tG/f/8YtlDE0/kWr6RG5iL1MhdD1mvvFvd2oBEaimu2bt3Og8wDvPd1PsX/iArP0Rw1xe7t0uWw0WMN4cw+WoeGrmRxyxuuKENeZyIgM9QrpA6NwsJCKisrA95fWVnJpk2bQm6UgIqKilg3IeZUzoHKsetUzoHKseskBxqV8xDJ2OcWzuW6r69z3X505KOceoDxFvWT+qstXnLwf//3f7z00kv06tWLM888k+nTp5OamgpAcXExRUVFjBs3LsatFPFyvsUzqZG5SL3MxXD1CmbKKdF03WzJcOjz3vv8TTcF3h0atQ0dGnu3waxjtJEYAB2P1WohHRohM9x1Jppk9HoFNeWUP03No/X777+Tk5MT6lMLIYQQQkSE3WHnxu9uxIkTgNuOuI3bjrwtxq0SIr5dffXVXH311T77c3NzWbhwYQxaJIQQQhiYV4dGl9i1w+zyRkL3i6DwHUjJ0277k+ynQ6PwHW2tDIC2h8HR07TRHdKhIYQhBN2hMWXKFKZMmQJonRkTJkzg7rvv9jmurKyM0tJSxo41zjzUQgghhBAAbyx5g6U7lgJwSOdDeHjkwzFukRBqqKmpYdGiRezcuZMjjzySdu3axbpJQgghhDHpU04ltwdbSmzbYnaHvwFdz4CcQZCY6f8Yf1NOVe9y7xv8OCS10bYze4MtTVtro1g6NISIlaA7NDp06OCa37awsJAuXbrQpYt3T7HFYiE9PZ0hQ4bwz3/+M7wtVYjFYiE/P9/Qq8lHmso5UDl2nco5UDl2neRAo3IeIhV7RU0F98y+x3X7yROfxGoJafbNiJP6qxm7Lt5y8Oyzz3LfffdRWlqKxWJhxowZHHfccezevZu+ffvy2GOPccUVV8S6mcqKt/MtHkmNzEXqZS6Gq5fDDvv+1rZluqmAgq6bNUFbT6Mp/qacqveYbicxy+P5bJAzEPb8AlUbobYUknJa0nQlGe46E00yQ72C/it+zJgxfPnll3z55ZeMGDGCxx9/3HVb//fFF1/w3nvvccstt5CWlhZSg55//nm6d+9OSkoKQ4cO5bfffmvy+NLSUq6//no6depEcnIyBxxwAN98801Ir20UVquVtm3bYrUa80OWaFA5ByrHrlM5ByrHrpMcaFTOQ6Riv3fuveyo2gHA2QeezfD9hof1+cNJ6q9m7Lp4ysEbb7zBhAkTOOmkk3j99ddxOp2u+9q1a8dxxx3H+++/H8MWing63+KV1MhcpF7mYrh6VRWCs2Eh3vTusWyJoYW1bv6mnKrz6NBIaDSyI9dz2qklrX99BRjuOhNNMkO9QmrZnDlzOP7448PdFj744AMmTpzIvffey6JFizjooIMYNWoUO3fu9Ht8bW0tJ5xwAoWFhXz88cesWbOGV155xWfkiNnY7XZWr15t6NXkI03lHKgcu07lHKgcu05yoFE5D5GI/adNP/HML88AkGxL5tGRj4btuSNB6q9m7Lp4ysGTTz7JmWeeydSpUzn99NN97h8yZAgrVqyIQcuELp7Ot3glNTIXqZe5GK5e5Wvc29kHxq4dBhfWuvmbcsqzQ6PxVFU5B7m3y1a2/vUVYLjrTDTJDPUKeVFwgLq6OlavXk1ZWRkOh8Pn/uHDW/bNx6eeeoqrr76ayy+/HIAXX3yRr7/+mtdff5077rjD5/jXX3+d4uJi5s+fT2JiIgDdu3dveSAGVF1dHesmxJzKOVA5dp3KOVA5dp3kQKNyHsIZe1VtFZd/frlrIfAHj3uQ/XP3D9vzR4rUX23xkoN169Zxww03BLw/NzeXPXv2RLFFwp94Od/imdTIXKRe5mKoepWvdm9n9oldO0wgbHVrbsqpxiM0Mnq4t/X1TkSzDHWdiWYZvV4hdWg4HA7uvPNOXnjhBfbu3RvwuJb05NTW1vLHH39w5513uvZZrVZGjhzJggUL/D7miy++YNiwYVx//fV8/vnntG/fnrFjx3L77bdjs9mCD0gIIYQQccnpdHLDtzewvmQ9AEfmH8mEwyfEtlFCKCQnJ4fdu3cHvH/lypXk5eVFsUVCCCGEgXl2aGT1jV07VNLUlFMWm+/C7Gnd3NtVmyPbNiGEXyF1aDz00EM8/vjjXHvttRx11FFcfPHFPProo+Tk5PDCCy9gsVh47LHHWvScu3fvxm6307FjR6/9HTt2ZPXq1X4fs2HDBmbPns24ceP45ptvWLduHf/85z+pq6vj3nvv9fuYmpoaampqXLfLy8sBrfNF74CxWCxYrVYcDofXPL/6/sYdNYH2W61WLBaL3/2Az6gWfb/dbsfpdLoeZ7PZcDqdPsfbbDafNgbaH+uY/LW9qZj85cDsMQVbJ8Ar9niIqaV18pcDs8cUbJ30c79x/GaOqam2+9uvP9ZfDswak97GltTJXw7MHlOwddKvA327NTG9uvhVXl/yOgCpCam8evqr4MT1/Ea9nprKgVHq1NKY9DY2d+55/g4QLzEFs98zJs8cRDOmSAwrP+WUU3j55Zf55z//6XPfihUreOWVV2RBcCGEEELn1aEhIzSiwt+UU/oIjYRMaLwwcnq+e3uvdGgIEQshdWi8+eabnH/++fz3v/91DREfMmQIxx13HJdeeinDhg1j9uzZjBw5MqyNbczhcNChQwdefvllbDYbQ4YMYdu2bTz++OMBOzQefvhhJk+e7LN/xYoVZGRkANrQ927durF161aKi4tdx+Tl5ZGXl0dhYSEVFe7hZ/n5+bRt25a1a9d6Dcnp2bMnWVlZrFy50usPxD59+pCUlMSyZcu82lBQUEBtbS1r1qyhvr6elStXYrPZKCgooKKigg0bNriOTUlJoW/fvpSUlLBli3uIW2ZmJr169WLnzp0UFRW59hshJl2wMek5iKeYgqlTfn4+6enprFzpnovR7DG1tE65ublYrVavHJg9ppbUqWvXrgBxFVNL6mS1WunZsydVVVVs3LgxLmIKpU49e/YkOzvb6zowe0wtqVN2djZWq5UNGzaEFFOdo47vtn7Hv//8t+uYewbeQ/W2apZtW2aK6ykvLw+r1cry5csNW6dInXv67wDxFFNL61RfX8/69es58MADoxZTZWUl4fbAAw8wdOhQBgwYwOmnn47FYuGtt97i9ddfZ9q0aXTq1IlJkyaF/XVF8PT/d4288KPqpEbmIvUyF8PVS+/QSO0ESdmxbYuBhbVutlSwJoOjxneERuP1MwAS0iG5LdTs8T9CY8cP2vN0He3bGaIow11noklmqJfF6e8roc1ISUnh2Wef5ZprrqGyspKsrCy++uorTjnlFACefvppnnrqKa8/vJpTW1tLWloaH3/8MaNHj3btv/TSSyktLeXzzz/3ecyIESNITExk5syZrn3ffvstp5xyCjU1NSQlJfk8xt8Ijfz8fIqLi8nKygKM/Y29xvvj4VuIEpPEJDFJTBKTxBTOmGZumMllX1xGUaX7g97/O/T/eHrU06aNqfF+f22XmCSm1sZUXl5Obm4uZWVlrt+Lw2Hnzp3cddddfPLJJ5SWlgJap8w555zDI488QocOHcL2WmZUXl5OdnZ22PMuhBDCZGr2wLR22nbHY+H42bFtj0o+7Qz7tkNaVxi9BT7MgPoqyO4Hp67wPf7bg6FksTYl1QXVYG34vnj5GviqYaqwoz6EbudFLwYh4kCwvxeHNEKjbdu2rm9wZWRkkJWV5fUNOYCSkpIWPWdSUhJDhgxh1qxZrg4Nh8PBrFmzGD9+vN/HHHnkkUydOhWHw+H64/Cvv/6iU6dOfjszAJKTk0lOTvbZb7PZfNbdCNQTFWh9jnDtB20+4X79+rmOsVgsfo8P1MaW7o90TP72NxWT3W73yYHZY/LH335/sYezjS3dH4tzL9I5MPL1ZLfbWb58ud/Ym3oeI8fU0v12u51ly5YFzIEZY9K1pE5NXQdmjSnY/Xa7nRUrVrT4OgCorKtk7KdjKd7n/nb6qb1P5clRT/p9jFGvp1DfCwLtN0JMwe73PPf1aQjNHlOw+/WYPHPQVBvDHVNTv5u2RocOHXj11Vd59dVX2bVrFw6Hg/bt2xv6W18qaer/G2EMUiNzkXqZi6HqVe4evSkLgjct7HVLytU6NGqKwenQOjPAd0FwXXo3rUPDadcep09DtfFt9zE/nw9jW/wd8rhkqOtMNMsM9Qrpr4jBgwfz+++/u24fe+yxPPPMM8ybN4+ffvqJZ599loMOOqjFzztx4kReeeUV3nrrLVatWsV1111HVVUVl19+OQCXXHKJ16Lh1113HcXFxdx444389ddffP311zz00ENcf/31oYRlKJGYw9hsVM6ByrHrVM6ByrHrJAcalfMQauyPzXvM1ZlxRP4RzL10Ll+O+ZJEW2I4mxcVUn+1xWsO2rdvT8eOHamvr6eqqirWzREN4vV8iydSI3ORepmLYeolC4K3SFjrpq+jYd+rjZTR+ZtyCrwXBvdcRyO5XfjaFGcMc52JoBi9XiF1aFxzzTVeUzc9+OCDlJaWMnz4cEaMGEF5eTlPPvlki5/3ggsu4IknnmDSpEkMGjSIJUuW8N1337kWCt+8eTPbt293HZ+fn8/333/P77//zsCBA7nhhhu48cYbueOOO0IJSwghhBAmtr1iO0//ok0rlWRL4t2z32VE9xGub/kLIaLv/fff56abbvLaN3nyZDIyMsjJyeGss86KyNodQgghhOlIh0bsJHssDF61yb3d1AgN1/Ge62g0GpHhMPaHwkKYVUhTTp1xxhmcccYZrtv9+vVj/fr1zJ07F5vNxhFHHEFubm4TzxDY+PHjA04xNXfuXJ99w4YN45dffgnptYQQQggRPyb/MJl99fsA+Och/6R7TvfYNkgIwZNPPsngwYNdt+fPn8/kyZM59dRTOfDAA3nuued48MEHefjhh2PYSiGEEMIAPKecypYOjahKCtCh0dIRGvpi4rrK9ZB1QOvbJ4TwElKHhj/Z2dmceeaZ4Xo6pVmtVvr06aP0vMIq50Dl2HUq50Dl2HWSA43KeQgl9iVFS3hl0SsAZCZlcvfwuyPVvKiQ+qsZuy6ecrB+/XouvfRS1+2pU6eSl5fHp59+SkJCAg6Hg2nTpkmHRgzF0/kWr6RG5iL1MhdD1auqUPtpTYS0/Jg2xejCXrdAHRotHaFR36hDo/RP6dDAYNeZaJYZ6tWqDo2Kigo2bdpESUkJTqfvQjfDhw9vzdMrLdCi5ipROQcqx65TOQcqx66THGhUzkNLYnc6nYz/ZjwOpwOAu46+i3Zp5p+/VuqvtnjJQU1NDSkpKa7b06dP5+STTyYhQfszpF+/frzwwguxap5oEC/nWzyTGpmL1MtcDFOv2lLtZ1IuWIz7QaJRhLVunlNOeY64CGaERlUTIzRKlkK381rfvjhgmOtMBMXo9QrpHXLPnj2MGTOGtm3bctBBB3HMMcdw7LHHuv7pt0VoHA4Hy5Ytw+FwxLopMaNyDlSOXadyDlSOXSc50Kich5bG/u6yd5m3ZR4AB7Q9gJsOv6mZRxif1F/N2HXxlIMePXowc+ZMABYuXMi6des46aSTXPfv2LGDjIyMWDVPEF/nW7ySGpmL1MtcDFWvujLtZ2J2bNthAmGvW0unnErN00bSQNNTTpX+GZ72mZyhrjPRLDPUK6QRGldffTVffvklN9xwA0cffTRt2rQJd7uEEEIIIZq1o3IHN0+/2XX72ZOeJTkhOYYtEkJ4uvbaa7nxxhtZuXIlW7dupWvXrpx22mmu++fNm0f//v1j2EIhhBDCAJwOqCvXtqVDI/paOuWUxQqpXaFqYzNTTi0NXxuFEC4hdWhMnz6dm266icceeyzc7RFCCCGECIrD6eDiTy9mZ9VOAEb3Hc2o/UfFuFVCCE//93//R0pKCt988w1Dhgzh9ttvJzU1FYDi4mKKior4xz/+EeNWCiGEEDFWVwE0TOWelBPLlqgpuYUjNEBbR6NqI9SVap1RiVm+IzSqNmlTiUlNhQirkDo00tLS6N69e5ibIoQQQggRvEd/fpQZG2YAkJeRx0unvRTjFgkh/Ln66qu5+uqrffbn5uaycOHCGLRICCGEMBh9uimQERqx4DlCo7bYvZ3QxLSYngu37/0bsrN8R2gAlC6HDke1vo1CCJeQ1tC46KKL+PTTT8PdFtHAarVSUFBg6NXkI03lHKgcu07lHKgcu05yoFE5D8HEPm/zPP41518AWLDw7tnv0iG9Q7SaGHFSfzVj10kORDTJ+WZ8UiNzkXqZi2HqpS8IDpAkHRrNCXvdPDs0PAWacgogyWP6fb1DqvEIDYDKdaG3K04Y5joTQTFDvUIaoXHuuefyww8/cNJJJ3HNNdeQn5+PzWbzOe7ggw9udQNVVVtbS0pKSqybEVMq50Dl2HUq50Dl2HWSA43KeWgq9uJ9xYyZNga70w7APcPv4bgex0WzeVEh9Vczdl085aCoqIjXXnuNRYsWUVZW5rPAoMViYdasWTFqnYD4Ot/ildTIXKRe5mKIenmN0MiJWTPMJKx1Sw7QodHUlFOJWe5tff0TfyM0KtaH3q44YojrTATN6PUKqavlqKOOYvHixUyfPp3zzjuPww8/nEMPPdT175BDDuHQQw8Nd1uV4XA4WLNmjaFXk480lXOgcuw6lXOgcuw6yYFG5Tw0FbvT6eSKz69gS/kWAIbvN5xJIyZFu4kRJ/VXM3ZdPOVg6dKl9OvXjwceeID169czZ84cdu3axdq1a5k7dy5btmzB6XTGuplKi6fzLV5JjcxF6mUuhqmXTDnVImGvW0KmdweFrskODY86NR6hYfH4uFVGaBjnOhNBMUO9Qhqh8cYbb4S7HUIIIYQQzXrut+f4fM3nALRNbcvUs6eSYA3p1xkhRBTccccdZGRksGTJEtLS0ujQoQNTpkzhuOOO46OPPuK6667j3XffjXUzhRBCiNiSKadiy2KB9O5QutR7f1NTTjUeoeF0QH2ldju7oOG5nO4RGk6Hd0eHECJkIX0CcOmll4a7HUIIIYQQzTqk8yF0y+7G5rLNvDX6LbpkdYl1k4QQTZg3bx633XYb3bp1o7hYW2RT/7bXeeedx88//8ytt97KDz/8EMtmCiGEELElU07FXkYP3w6NlozQqK9y305upy0avnczVK6HRTfDulfgkGeh52VhbbYQKpKuQYPytyaJalTOgcqx61TOgcqx6yQHGpXzECj2I/KPYPG1i3lr9FucesCpUW5VdEn91RYvOXA4HHTs2BGAnJwcbDabq2MDoKCggD/++CNWzRMN4uV8i2dSI3ORepmLIerl2aEhIzSCEva6pXf33dfkouAedaot814QPDETMns13FcMq5/S1tf45fKwNNWMDHGdiaAZvV5BjdC44oorsFgsvPzyy9hsNq644opmH2OxWHjttdda3UAV2Ww2CgoKYt2MmFI5ByrHrlM5ByrHrpMcaFTOQ3Ox56bmcslBl0SxRdEn9Vczdl085aBHjx5s3LgRAKvVSo8ePZg5cybnn38+APPnzycnJyeGLRTxdL7FK6mRuUi9zMUw9fKcckrW0GhWROqW3sP7tjUJbEmBj2885ZTnguAJmdoojR1zwttGkzLMdSaCYoZ6BdWhMXv2bKxWKw6HA5vNxuzZs7FYLE0+prn7RWBOp5OKigoyMzOVzaPKOVA5dp3KOVA5dp3kQKNyHlSOXadyDlSOXRdPOTjxxBP56KOPePDBBwG47rrruPnmm9mwYQNOp5O5c+dy8803x7iVaoun8y1eSY3MReplLoapl9cIjZyYNcMsIlK3jEYdGk1NNwW+U041HqGRlh+edsUBw1xnIihmqFdQU04VFhayYcMGEhMTXbc3btzY5L8NGzZEtOHxzOFwsGHDBkOvJh9pKudA5dh1KudA5dh1kgONynlQOXadyjlQOXZdPOXg7rvv5r333qOurg6ACRMmcP/997Nnzx7Kysr417/+xQMPPBDjVqotns63eCU1Mhepl7kYpl61nmtoyAiN5kSkbo2nnGpquiloeoRGYiZk7h+2ppmdYa4zERQz1CukRcGFEEIIIYQQojlt2rRhyJAhrtsWi4V77rmHe+65J4atEkIIIQymrtS9LR0asRHOERoJmZDRy8+DLOB0gEWWNBaiNUK6ghYtWsQLL7wQ8P4XXniBJUuWhNomIYQQQgghhIn98ssvLFy4sMljFi5cyK+//hqlFgkhhBAG5jVCIyvwcSJyEjO9OymaG6GRkOHerisPvCi4FyfU721VM4UQIXZo3H333cycOTPg/bNnz5ZvXbVSSkpKrJsQcyrnQOXYdSrnQOXYdZIDjcp5UDl2nco5UDl2nZlzMGfOHI488kjWrFnT5HFr1qzhiCOO4Oeff45Sy0QgZj7fVCE1Mhepl7kYol76GhoJGWCVyVSCEZG6Jbdzb9uaeX6rzd3pUVfmuyh4Ypb38+nqK1vfThMyxHUmgmb0eoXUofHHH39w9NFHB7z/6KOPbvYbWSIwm81G3759sdlssW5KzKicA5Vj16mcA5Vj10kONCrnQeXYdSrnQOXYdWbPwYsvvsiQIUMYN25ck8eNGzeOQw89tMmR3yLyzH6+qUBqZC5SL3MxTL30KadkuqmgRKxunh0QtaXNH5/UUC9/i4IDZPXxfYzncYowzHUmgmKGeoXUoVFRUUFCQuAeY6vVSllZWcD7RdMcDgd79uwx9OIrkaZyDlSOXadyDlSOXSc50KicB5Vj16mcA5Vj15k9Bz///DNnnXVWUMeOHj2aH3/8McItEk0x+/mmAqmRuUi9zMUw9dKnnErKiWkzzCJidfPs0KjZ3fzx+vRgjRcF10du9LsTMhotDq7gCA3DXGciKGaoV0gdGr1792b69OkB7//uu+/o2bNnyI1SndPpZMuWLTidzlg3JWZUzoHKsetUzoHKseskBxqV86By7DqVc6By7Dqz52D37t106tQpqGPz8vLYtWtXhFskmmL2800FUiNzkXqZS0zr5aiDX6+Gn88He8O6CjJCIygRq1uLOzQa6lVf5T2iQx+h0eVUOGMtHHir+776ACM06iqgZCnE4XuHvC+aixnqFVKHxpVXXsnXX3/NxIkTKS0tde0vLS3lpptu4rvvvuPKK68MVxuFEEIIIYQQJpGVlUVRUVFQxxYVFZGVJYufCiGEUFDhVFj/Kmz+yL1PRmjEVofh7u3OpzR/vOcC7vu2eexvtKC41wLifkZolK2GL3vDtwfBX88F11YhFBZSh8YNN9zApZdeyjPPPEO7du3o1q0b3bp1o127dkyZMoWLLrqIm266KdxtFUIIIYQQQhjcoYceyscffxzUsR9//DGHHHJIhFskhBBCGNB2PzOfyAiN2OpxKXQ7D9oOhYOfaP54z3rt9ejQSGjUoeHZwdF4hEZlIcw+Dqp3aLfXv9aiJguhosALYTTBYrHwxhtvcMkllzBt2jQ2bNgAwJlnnsk555zDMcccE842KikzM7P5g+KcyjlQOXadyjlQOXad5ECjch5Ujl2ncg5Ujl1n5hxcffXVnHPOOdxyyy08/vjjWCwWn2OcTie33XYbixcvDrrzQ0SOmc83VUiNzEXqZS4xqZfTCTtm++6XDo2gRaRuVhsc9WHwx3uO0Ni71WN/EyM0Gq+h8fs/YN929+3SpbBvB6R2DL4dJiDvi+Zi9HpZnEaeECsKysvLyc7OpqysTIa7CyGEEEIIZYXz9+LLL7+ct956i379+jF27FgGDBhAZmYmFRUVLFu2jPfee4+VK1dyySWX8Oabb4YnAJOSv0eEEEJBpSvgmwG++/vdAYMejn57RGgW3QKrn/Tdf0EN2JLctwvfh/ljtO2Dn4a+E9z3fZQDdWXejx/2DvQYF+7WCmF4wf5eHNKUUxs3buTLL78MeP+XX35JYWFhKE8t0FaTLyoqMvRq8pGmcg5Ujl2ncg5Ujl0nOdConAeVY9epnAOVY9fFQw7eeOMNHnvsMYqKirjnnns466yzGDlyJGeddRb/+te/2L59O4888ghvvPFGrJuqvHg43+Kd1MhcpF7mErN67Zjlf7+M0AiKYa6zRD8fuFqTvDszABIDjNCw1/p2ZgDsmBme9hmEYeolgmKGeoXUoXHLLbfw7LPPBrz/+eef54477gi5UapzOp0UFRUZejX5SFM5ByrHrlM5ByrHrpMcaFTOg8qx61TOgcqx6+IlB7fccgtbt25l+vTpPPPMM9x///0888wzfP/992zdupXbbrvN73RUIrri5XyLZ1Ijc5F6mUvM6lUU4APrJOnQCIZhrjN/HVCe00u59nlM31PnsYZGzS73dqeTwZaqbW+foU1LFicMUy8RFDPUK6Q1NBYsWMCECRMC3n/88cfzzDPPhNgkIYQQQgghRDxISUlh5MiRjBw5MtZNEUIIIYzBUQ87f9C2balg3+e+LzEnJk0SIfLXAdV4/QwIPELDs0MjrSt0GA7bv4d926B8NWQfGL62ChFHQhqhUVJS0uTiIBkZGezZsyfkRgkhhBBCCCGEEEIIEXcqN0Jdubbd+WTv+/xNYSSMy1+9Evx8XhpohEa1R4dGSnvI8/gCyI45rW+fEHEqpA6Nbt26MW/evID3//TTT3Tt2jXkRqnOYrGQm5ur9BB8lXOgcuw6lXOgcuw6yYFG5TyoHLtO5RyoHLtOciCiSc4345MamYvUy1xiUq+a3e7t1MafnRl3ihcjMcx15m/KKX8jNBKCGKGR3B7aHem+XbK49e3T/Xk3fNkHimaH7zlbwDD1EkExQ71C6tAYM2YM7733Hs8++6zXAiF2u50pU6bwwQcfMHbs2LA1UjVWq5Vu3bphtYZUnrigcg5Ujl2ncg5Ujl0nOdConAeVY9epnAOVY9dJDkQ0yflmfFIjc5F6mUtM6uXZoZHcDoa9rW0ntYEOI6LXDhMzzHUW7AgNz06O+gAjNJLbQ04B0PAhcskS/69pr4YVD8HqKVC/t/k21pbCioeh4i9Y+Ujzx0eAYeolgmKGeoXUsjvvvJNjjz2WCRMm0KlTJ4YPH87w4cPp3LkzN910EyNGjODuu+8Od1uV4XA42Lx5s6FXk480lXOgcuw6lXOgcuw6yYFG5TyoHLtO5RyoHLtOciCiSc4345MamYvUy1xiUi/PDo2UdtB9HJy0CE5b4//b/cKHYa4zfyM0svr67rOlubfrAozQSGmvrbWRub92u2y5tt5KY4XvaiMuFk2AL3vD39813cZ9RbhG/lSsa/rYCDFMvURQzFCvkDo0kpOTmT59Oq+99hqHHXYYu3fvZvfu3Rx22GG8/vrrzJw5k+Tk5HC3VRlOp5Pi4mJDryYfaSrnQOXYdSrnQOXYdZIDjcp5UDl2nco5UDl2neRARJOcb8YnNTIXqZe5xKRetR5rzia3A4sFcgdrH2iLoBjmOvM3QqPrGb77rDZ3p4bnCI3GU04BtBmk/bRXa6MqGitf497e9zf8dJb3uhyN1ex0b+/d7L+TJMIMUy8RFDPUKyHUB1qtVi6//HIuv/zycLZHCCGEEEIIESfuvPNORowYwRFHHEFWlix0KoQQQniN0EhqG7t2iNZrPEIjMRs6DA9wbCbY93qvoVHt0dmQ4tGhsfkjbbvkT8ju5/08nucPaB0fJYsDv67ntFZOO+zdChnd/R8rhEkYdzIsIYQQQgghhKn95z//4dRTT6Vt27YMHjyYG264gY8++ogdO3bEumlCCCFEbDReQ0OYly3F+3bnU8Ca6P9YfWHwumZGaOQc5N7nbx2Nmj2++4r/CNxGzxEaAFUbAx8rhEmEPEKjqKiI1157jUWLFlFWVuYzr5bFYmHWrFmtbqCKLBYLeXl5hl5NPtJUzoHKsetUzoHKseskBxqV86By7DqVc6By7Lp4ykFZWRmLFy/mxx9/5Oeff+aDDz7gP//5DxaLhV69enH00UczfPhwLr300lg3VVnxdL7FK6mRuUi9zCUm9ZIOjVYzzHXW+PW7+JluSqevj+I1QqOhQyMxC2wNU/frU05BgA6N3b77murQ8ByhAVC5EToeG/j4CDBMvURQzFAvizOECbGWLl3KMcccw759++jTpw/Lli2jX79+lJaWsm3bNnr16kV+fj6zZ8+ORJvDqry8nOzsbMrKymQYvBBCCCGEUFa0fi9es2YNs2bN4tlnn+Wvv/7CYrFgt9sj9npGJ3+PCCGEYmYcDbt+1rYvqHZ/kC3MaarHh77nlkBSjv/jvOpeA7Yk+DgXaksgoxec0bBgt9MJn7TXRmKkdISzi7yf56u+2joathRwOsBRqy1Eftoq/6/7+3hY+7z7dv974KB/Q+lyWHYf5J8D3ceEErkQYRfs78UhTTl1xx13kJGRwZo1a5g5cyZOp5MpU6awZcsWPvjgA0pKSnjkkUdCbrzq7HY769evV/oPO5VzoHLsOpVzoHLsOsmBRuU8qBy7TuUcqBy7Lh5zsHfvXmbNmsV9993HP//5T2699Vb++usv+vTpw5VXXhnr5iktHs+3eCM1Mhepl7nEpF76N+wTMqUzI0SGus6GTIGEdK2jIFBnBmj11tVXgqNO68wA93RToI36yBmkbVfvgH2NOjT08yelE+QUaNvlq+HHs+GrA2HP742ObzRCo2qj1mkyeyRsmQa/Xgn1+4KJNGSGqpdolhnqFVKHxrx587j22mvp1q0bVqv2FPqUU+eddx7jxo3j1ltvDV8rFVRRUdH8QXFO5RyoHLtO5RyoHLtOcqBROQ8qx65TOQcqx66LlxzccsstDB06lJycHEaNGsWXX35JQUEBb7/9Njt27GDVqlW8/PLLsW6m8uLlfItnUiNzkXqZS9TrpX8gnSwLgreGYa6zPjfAeeXaqIemJGa4t+srvNfCSGnvfazeUQHaaAydw+7RCdIOcoe479v6qdax8dd/vJ+rutEaGpUb4e+vtc4SAPu+qKyrYZh6iaAYvV4hraHhcDjo2LEjADk5OdhsNoqLi133FxQU8Nprr4WnhUIIIYQQQghTeuqpp7DZbJxzzjnccccdDBo0KNZNEkIIIWLH6YDahs/PZP2M+GEJ4vviniM06irBWea+ndyoQyO9m3t77xaPx5Vq5xBoHWKeHRq6wqkw7C33bX8jNFY87L2vYj1k92s2BCGMIqQRGj169GDjRq33zmq10qNHD2bOnOm6f/78+eTk5ISlgUIIIYQQQghzevzxxznttNOYNWsWQ4YMoWvXrowZM4YXXniBZcuWxbp5QgghRHTVlnp8IC0dGkpJaDxCw6OjofEIjbR897Znh4bnqI7GIzQ893tqPEJj33bYPd97X+WGwO0WwoBC6tA48cQT+eijj1y3r7vuOl599VVGjhzJ8ccfz1tvvcXYsWPD1kjVWCwW8vPzDb2afKSpnAOVY9epnAOVY9dJDjQq50Hl2HUq50Dl2HXxlIObb76ZTz/9lF27drFs2TL+9a9/kZCQwGOPPcagQYPIzc3l9NNPj3UzlRZP51u8khqZi9TLXKJeL326KZAOjVYw5XWW2GgNjWqPDo3GIzQCdmh4nj9tIXuA7+tUF7nXxHDYoXaP7zGNVa5v/phWMGW9FGaGegU95VRJSQlt2rQB4O6772bMmDHU1dWRmJjIhAkTqKqqYtq0adhsNv71r39x1113RazR8c5qtdK2rdpzKaqcA5Vj16mcA5Vj10kONCrnQeXYdSrnQOXYdfGag379+tGrVy/69OlD7969ee+991izZg3ffPNNrJumtHg93+KJ1MhcpF7mEvV6SYdGWJjyOvMcoVHXeIRGB+9jPTs0qpoYoWFLhv53w6rHwVHr8ZhCyD5Qm95MHxHUWGonbbQGRLxDw5T1UpgZ6hX0CI28vDzOOussPv74Y9LS0hgyZAiJiYmA1nNzzz33sHjxYhYuXMh9991HUlJSxBod7+x2O6tXrzb0avKRpnIOVI5dp3IOVI5dJznQqJwHlWPXqZwDlWPXxVMOysvL+eabb7jzzjs58sgjyc7O5vjjj+ehhx6iXbt23HHHHXz11VexbqbS4ul8i1dSI3OReplL1OslHRphYcrrrPEIjZomRmikdARLw3fQmxqhAXDQA3DBPuh/j/s+fQopz9dovM7H8C/Alup9fISYsl4KM0O9gh6hce655/LFF1/wxRdfkJmZydlnn824ceM47rjjDD0Exayqq6tj3YSYUzkHKseuUzkHKseukxxoVM6DyrHrVM6ByrHr4iUHubm5OJ1OMjMzOeKII7j33ns56qijOOyww0hOTo5180SDeDnf4pnUyFykXuYS1Xr5+0BahMR011njERrVTayhYbVBWheo2uTdoVHbaISGzmKFjB7u25Xausder9FxJBRN17b73AhtD4GMnlC2Qjve6QhucfMQma5eijN6vYLu0Hj33XfZt28fn332GVOnTuXdd9/lrbfeomPHjowZM4axY8cyZIifxWiEEEIIIYQQSnr66ac5+uijOeigg+RLUEIIIUTjKYOEOnzW0Njhvt14hAZAWjetQ6O2GOr3QkKad4dYUqMOMc8OjaqGDo0ajwXB80bC/lfBvh3Q+x8Nj+mldWg4amDvNkj3mOpKCANrUddbamoqY8aM4csvv6SoqIgXXniB3r1788wzz3DYYYfRt29fHnjgATZsiOxQJSGEEEIYh91h57qvrmPVrlWxbooQwmD+7//+j0GDBklnhhBCCAEy5ZTKGo/Q2Let4YZFW8+iMX8LgzfVIZbR072tTyFV3Widjm7nQZ/xYE0I/BghTCDksURt2rTh2muv5YcffmDz5s088sgjpKWlMWnSJHr37s0RRxwRznYqxWq10rNnT6zWyA31MjqVc6By7DqVc6By7DrJgcZMeXhywZO8+MeLDH5pMG8uebPVz2em2CNF5RyoHLsu3nJQXl7OI488wqhRoxg8eDC//fYbAMXFxTz11FOsW7cuxi1UW7ydb/FIamQuUi9ziXq9pEMjLEx5nSV4jNCoK3N3UqTmgTXR9/h0fx0aTUxZltrVve6Ga8opjxEa/kaBZPRyb0dwYXBT1kthZqhXWFrWpUsXbr31Vt566y3OPPNMnE4nv/76azieWkkWi4WsrCylv8mmcg5Ujl2ncg5Ujl0nOdCYJQ+rdq1i0pxJANQ56ujTtk+rn9MssUeSyjlQOXZdPOVg69atDB48mEmTJrF161aWLl1KZWUloK2v8dJLL/Hcc8+1+Hl//PFHTj/9dDp37ozFYuGzzz7zut/pdDJp0iQ6depEamoqI0eOZO3atV7HFBcXM27cOLKyssjJyeHKK690tU23dOlSjj76aFJSUsjPz+exxx7zactHH31E3759SUlJoaCggG+++abF8cRSPJ1v8UpqZC5SL3OJer2kQyMsTHmdpXVxb1dugH1F2nZq1wDHe3RoVPkbodGoQ8Nqg/RuDcdvBKfTe1HwlA6+r5EZnQ4NU9ZLYWaoV6s7NPTRGQcddBCDBg3i888/54gjjuA///lPONqnJLvdzrJlywy9mnykqZwDlWPXqZwDlWPXSQ40ZshDvaOeyz6/jBp7DQATD5/IsPxhrX5eM8QeaSrnQOXYdfGUg1tvvZWKigqWLFnCDz/8gNPp9Lp/9OjRzJw5s8XPW1VVxUEHHcTzzz/v9/7HHnuMZ599lhdffJFff/2V9PR0Ro0a5bXA4bhx41ixYgUzZszgq6++4scff+Saa65x3V9eXs6JJ57Ifvvtxx9//MHjjz/Offfdx8svv+w6Zv78+YwZM4Yrr7ySxYsXM3r0aEaPHs3y5ctbHFOsxNP5Fq+kRuYi9TKXqNfLc1HnpNzovGYcMuV1ltrFPYJi9wKg4XeitCA6NBqP0EhIB1uK72P0KaTqyrW1NzxHaDReeNzzeIjolFOmrJfCzFCvoBcF97R7924+/PBDpk6dyoIFC3A6nfTt25f777+fcePG0b179zA3Uz1GPmmiReUcqBy7TuUcqBy7TnKgMXIeHE4HN313E79t06aO6dO2D/cfe3/Ynt/IsUeLyjlQOXZdvORg+vTp3HTTTfTr1489e/b43N+zZ0+2bNnS4uc9+eSTOfnkk/3e53Q6eeaZZ7jnnns488wzAfjf//5Hx44d+eyzz7jwwgtZtWoV3333Hb///juHHHIIAM899xynnHIKTzzxBJ07d+bdd9+ltraW119/naSkJPr378+SJUt46qmnXB0fU6ZM4aSTTuLWW28F4N///jczZszgP//5Dy+++GKL44qVeDnf4pnUyFykXuYS1XrpH0gnZoEtKXqvG4dMd53pIygqN2idDbpQOjQCje5J91gYvHKj9wgNf1NOpXcHLIAz4mtomK5eijN6vYIeoVFVVcU777zDKaecQpcuXRg/fjwbN25kwoQJLFy4kJUrV3L33XdLZ4YQQggR56pqqzjvo/P4z+/aaEyrxcqbo98kNTE1xi0TQhjNvn37aN/ezx/QDSoqKsL+mhs3bqSoqIiRI0e69mVnZzN06FAWLFgAwIIFC8jJyXF1ZgCMHDkSq9Xqmjp3wYIFDB8+nKQk9wdOo0aNYs2aNZSUlLiO8Xwd/Rj9dYQQQgiX+r3utQ1SO8e2LSI20rv77vPsuAi0f+8WcDrcHSFJbf0/JsOzQ2MD7Ptb205Ih4Q03+NtydoaHgB7tzbZdCGMJOgRGh06dKC6upqMjAzGjh3LuHHjOO644wy9QIgQQgghwqeytpIpv0xhyq9T2LVX+7aPzWLjpdNe4vCuh8e4dUIII+rXrx8//vgj1157rd/7P/vsMwYPHhzW1ywq0uak7tixo9f+jh07uu4rKiqiQwfvuaQTEhLIzc31OqZHjx4+z6Hf16ZNG4qKipp8HX9qamqoqalx3S4vLwe0b8Lp34azWCxYrVYcDofXNF36/sbfmgu032q1YrFY/O4HcDgc2O12nE4ndrvda78nm82G0+n0u79xGwPtj2ZMwew3U0yeNYqXmOKxTnob9Xrp/+Ihpub2mzkmvU6Nj49ITDt+wOao1e5sf7TUqRUx6dcZYKqYLGndfb5Z7kjpjNPjMa46JeRgtaVgsVfjrNqCpa4MnNpxzuS2OBoe4xVTek9s+hOVLsVZuUEbf5HRG4fd7rft1pTOWPZth+oi7HW12kiSFsQUzH4g4HVmxDoFsz+erqfGMTX+vSOaMQU7MiToDo2RI0cybtw4zjjjDFJS/MzTJsLGarXSp08fpTuLVM6ByrHrVM6ByrHrJAcao+WhrLqMY946hiVFS1z7MpMy+ei8jxi1/6iwvpbRYo8FlXOgcuy6eMrBhAkTuPTSSxk4cCDnnXceoP3xtG7dOiZPnsyCBQuYNm1ajFsZXQ8//DCTJ0/22b9ixQoyMjIAbcH0bt26sXXrVoqL3dNS5OXlkZeXR2Fhodfolvz8fNq2bcvatWu91gnp2bMnWVlZrFy50usPxD59+pCUlMSyZcsArSYrV66koKCA2tpa1qxZ4zrWZrNRUFBARUUFGza4p6NISUmhb9++lJSUeE0blpmZSa9evdi5c6dXx060Y9LFQ0wrV6501SheYorHOnnGpH9IVF1dHTcxQfzVCWDAgAF0797ddX1FMqZOOz7E1QWed7zUqZUxgfY7k5li6liZSie8rd9eQ1W5Fm/jOvW1dSDFvhnKV8HPF7geU7rXxqZly3xiSq5J5ED9oC2fYGnoAClxdGLzsmV+Y+pRl042gNPBhtW/UGXPCmudbDYbAwYMoGvXrl7XmZHrFExM8XY9NY5J/70j2jFVVlYSDIuzcfeKYsrLy8nOzqasrIysrKzmHxAFeg+f3sOmIpVzoHLsOpVzoHLsOsmBxkh5qK6v5qR3TuKHTT8A2hRTF/S/gPuOuY8D2h4Q9tczUuyxonIOVI5dF6scROr34gcffJD77rvPKy6n04nVauWBBx7g9ttvb9XzWywWPv30U0aPHg3Ahg0b6NWrF4sXL2bQoEGu40aMGMGgQYOYMmUKr7/+OjfffLNr6iiA+vp6UlJS+OijjzjrrLO45JJLKC8v57PPPnMdM2fOHI477jiKi4tp06YN3bp1Y+LEiUyYMMF1zL333stnn33Gn3/+6be9/kZo5OfnU1xc7Mp7NL+x51kXm83m2u8pnr+FaIaY7Ha713tCPMQUj3XS26i3NyEhAYvFEhcxNbffzDF51sjz/9xIxGSdfjiWkoXanWfvwJ7oPW2Q1Cn4mPQ4EhMTA8ZqxJgshVOx/nqJ1/32U9d6TRXlWSfLwuuxrn+Jxhy9x+M8+BnfmBx1WKdlY9FHAunHF9yPs99dftvu+Rr2E36BXPd0nNb6Ciw752JvO8xr3Y6Wnnuer9n4OjNinYLZH0/XU+OYGv/eEc2YysvLyc3NbfbvkZAWBReR5XA4WLZsGQUFBa4/KlSjcg5Ujl2ncg5Ujl0nOdAYJQ919jrGTBvj6sxol9aO2ZfMpqBjQcRe0yixx5LKOVA5dl285eDuu+/m4osvZtq0aaxbtw6Hw0GvXr04++yz6dmzZ9hfr0ePHuTl5TFr1ixXh0Z5eTm//vor1113HQDDhg2jtLSUP/74gyFDhgAwe/ZsHA4HQ4cOdR1z9913U1dX5/rAZMaMGfTp04c2bdq4jpk1a5ZXh8aMGTMYNmxYwPYlJyeTnJzss99ms/nUO9AonUDnRSj77Xa7a3SG/iGDv+P1P2gbC9TGlu4PZ0zB7jdLTBaLxVUjz2PMHFM81knf73lNeXYUejJbTMHsN2tMdrud5cuX+/0/N6wx1ZZAyR/ajpwCSOmA/xZKnYLZ73md+fv/s6k2xjSmrF6++zPyIdC5d8izkNEdlv8b7Hvdbe1wlNdjXG232SDrQCj1/lKFNWeA1/FebUzr4t5fs8N9XPEi+HE07N2CLSkXDvkP7HchNOqQCCYHTV1nhqxTkPvj5XryZLFY/P7eEa2Ygv3bRzo0hBBCCOGX3pnx2erPAEhPTOfrsV9HtDNDCBGfunXrxk033RS256usrGTdunWu2xs3bmTJkiWuYe4TJkzggQceoHfv3vTo0YN//etfdO7c2TWK48ADD+Skk07i6quv5sUXX6Suro7x48dz4YUX0rmztlDr2LFjmTx5MldeeSW33347y5cvZ8qUKTz99NOu173xxhsZMWIETz75JKeeeirvv/8+Cxcu5OWXXw5brEIIIeLAjrlAw7eVOx4fy5aIWGq8KHhKR7D5fsnBxZYE/e+AnpfCjjnawvIZPaDjsYEfkzPAp0OD7P6Bj0/zWKBeX0R8z+8wcwTY92m3a4th/lior4L9rwr8XEJEiXRoCCGEEMKH0+nkss8vY9oqbW77ZFsyn17wKYd1OSzGLRNCCFi4cCHHHuv+Y37ixIkAXHrppbz55pvcdtttVFVVcc0111BaWspRRx3Fd99957UW4Lvvvsv48eM5/vjjsVqtnHPOOTz77LOu+7Ozs5k+fTrXX389Q4YMoV27dkyaNIlrrrnGdcwRRxzB1KlTueeee7jrrrvo3bs3n332GQMGDIhCFoQQAqgtg7IV0O5wsJh/7aW4tWO2eztPOjSUlZoH1mRwNEw9mdY1yMd1gu5jgzs2u9HvINYkyGhiRGyqe4QGe7dpP1c/5e7MSO0E+7Zr22tfCNyhseoJKF8Dgx6F5Nzg2ipEiKRDQwghhBA+pkZpXJcAALGZSURBVC6bytRlUwFIsiXx2YWfcUKvE2LcKiGEGQwcOLBFx1ssloDrTQRyzDHH+Mzj2/g577//fu6///6Ax+Tm5jJ16tQmX2fgwIH89NNPTR5z3nnnuRY8F0KIqHI6YPpQ7UPEgx7WvsktjGn3Lw0bFmh/dEybImLIYtWmkCpvWIw52A6Nlshp1KGR1QesTXz8m+pnhEZFwyhYixVOXwczjoSSJdq/mj2Q7L3+C6XLYfGtDc/XBQbe14oAhGiedGgYkNVqdc23qSqVc6By7DqVc6By7DrJgSaWedi9dzcTvp/guv3OWe9w0v4nRe315RxQOwcqx64zew5yc3ODWsy8qKiINWvWKLv4u1GY/XxTgdTIXKJar5rd7g9Gd/0ESIdGS4WlXvVVsOx+bSqg3v/wvd9eC6VLte2sPpCUHfprCcDk74vp3d3XbWoEOjQaj9DI6tf08f46NKoKG+7rAglp2jRpJUsApzZ9WrdzvJ+jwj0NqM90V5i8XgoyQ72C6tD48ccfQ3ry4cOHh/Q4AbW1tV5D4lWkcg5Ujl2ncg5Ujl0nOdDEKg8Tv5/I7r27ATi337mc1z/63zyWc0DtHKgcu87MOZg7d26T9xcVFfHoo4/y0ksvYbPZuPjii6PTMBGQmc83VUiNzCVq9XLUu7ed9si/Xpxqdb0WjocNb2rb7Y+GnEbrFZQtB0ettp07JPTXEV5M+76Y3sO9HYkRGun7QUIG1Fdqt7Ob6dBIbqtNS+WohX3boK5S6ywF95ofecfD6ie17R2zfDs0ana5tyv+8vsypq2Xooxer6C6Wo455hiOPfbYoP/px4vQOBwO1qxZg8PhiHVTYkblHKgcu07lHKgcu05yoIlVHr5f9z1vL30bgJyUHJ47+bmovj7IOQBq50Dl2HXxmoMdO3Zw00030atXL55//nkuvPBCVq9ezeuvvx7rpiktXs+3eCI1Mpeo1suzE8Ozc0MErdX12rfd3ZkBfr+dTvEf7m3p0AgLU78vZvZyb6fvF/7nt1i8R2k016FhsbhHaez72z06A9wdGu2PBkvDd+I914PRVe90b1esA4d3B6up66UgM9QrqBEac+bMiXQ7hBBCCBFjlbWVXPvVta7bT5zwBHkZeTFskRAiHugjMl5++WXq6uq46KKLuOeee+jZs4kFKoUQQjTPKSM0Ym7109639Sl7PBUvdG/nHhLZ9gjj634xbHwHEjOg65mReY22h8CehnVb2gxq/vjUzlpHRs0e93RYoE2jBlpb2w2FXfO0+/dugzSPxcQ9OzQctbB3s/uxQkRAUB0aI0aMiHQ7hBBCCBFjk+ZMYlPZJgCO7X4sVwy+IsYtEkKYWVFREY888givvPIKdXV1XHzxxdxzzz306CF/4AohRFh4TTklIzSiymGHLR/D2v9676/a4t5e/gCUrYSimQ07LNBmcNSaKAwqtSOcsiSyr9HvDqgtg7aHQeb+QbTJYx2N3fPd2/oIDYCOx2kdGqCN0ujhMWWo55RTABVrpUNDRJQsCm5QNpst1k2IOZVzoHLsOpVzoHLsOsmBJpp5+KHwB6b8OgWAZFsyL532UkwX6pVzQO0cqBy7zsw52L59u6sjo76+nksuuYS7775bOjIMzMznmyqkRuYStXrJlFNh0eJ6OZ0w9xQomu57397N2s/ixbD0X973ZfXVvukuwkLeF5uQ1gWO+F/Ljtft8ujQyOju3m5/lHtbX+Re5zlCA6D8L21kSFJbsGp1knqZi9HrZXE6nc5QHlhdXc20adNYtGgRZWVlPvNqWSwWXnvttbA0MpLKy8vJzs6mrKyMrKysWDdHCCGEiLqt5Vs5+KWD2bVX+2bNw8c/zB1H3RHjVgkhoi1cvxenpaVRU1PDoEGDuOuuu4LqyDj44INDfj2zk79HhBAhK10O3xRo27mHwkm/xbY9qqjeCZ90dN9uf6T7m+u5Q+CkhbD+dfj1Su/Hdb8Ijng7eu0UIlgrH4Mlt/vuP2ODe6RF1Sb4vLu23eUMGPG5+7hvDvLu5LAmgqMO2g6FE+a5OjWEaE6wvxeHNEJj06ZNHHvssRQWFpKTk0NZWRm5ubmUlpZit9tp164dGRnS6xwqp9NJRUUFmZmZMf12bCypnAOVY9epnAOVY9dJDjTRykNNfQ3nfHiOqzPjxF4ncusRt0bs9YIh54DaOVA5dp3Zc1BdXQ3A4sWLOf/885s81ul0YrFYsNtl7vdYMfv5pgKpkblEtV6eIzRkyqmQhFSvunL3dv7ZcNTH8Pl+sHcLVDWM0Chf5fs4WRA8bOR9Mcw8p5zSWayQ1tV9Oy0fbClgr4aKNd7HNh6h4ajTfu75Ffb8hrPd4VIvEzHD9WUN5UG33norZWVl/PLLL/z11184nU4++OADKisrefTRR0lNTeX7778PuVHPP/883bt3JyUlhaFDh/Lbb8F9y+D999/HYrEwevTokF/bCBwOBxs2bDD0avKRpnIOVI5dp3IOVI5dJznQRCsP//ft//HbNu3/2e453Zl69lRsMf4GjZwDaudA5dh1Zs/BG2+84fr3+uuvN/lPP0bEjtnPNxVIjcwlqvWSRcFbLaR61Ve6t5M7gMWifdgL2loC9fu0tTM8JaRD/lmtb7AA5H0x7DynnNKldtVGWugsVsjsrW1XrHdPc+d0+K6h4Wn791IvkzFDvUIaoTF79mz++c9/cthhh1FcXAxovTfJycnceuutrFq1igkTJvD111+3+Lk/+OADJk6cyIsvvsjQoUN55plnGDVqFGvWrKFDhw4BH1dYWMgtt9zC0UcfHUpIQgghhHJe+eMVXln0CgApCSl8esGntE1rG+NWCSHM7tJLL411E4QQQg0OGaERE3UeHRoJ6drP9G7uxZT3boWyhhEaCZlw6gqwpUJKu+i2U4hgZfcHS4L3+4i/Rb0z+0DpMu24yo2Q1RtqS5vuUN3+PfT/V+D7hQhBSCM09u7dS/fu3QHIysrCYrFQVlbmun/YsGH8/PPPITXoqaee4uqrr+byyy+nX79+vPjii6SlpTX5zS273c64ceOYPHkyPXv2DOl1hRBCCFWs2rWKCd9NYPy34137Xjn9FQblDYpdo4QQQgghRMt4fvgoi4JHj+cIjYSG6db1ERoAFX9BVaG2ndUX0vOlM0MYW0oH6NnoCynp3X2PyzrAvV3xl/az8XRTjRX/BjXFrWqeEI2FNEKjW7dubN26VXuChAS6dOnCL7/8wtlnnw3AypUrSUlJafHz1tbW8scff3DnnXe69lmtVkaOHMmCBQsCPu7++++nQ4cOXHnllfz0009NvkZNTQ01NTWu2+Xl2tyHdrvdNXevxWLBarXicDjwXDNd3994jt9A+61Wq985ga1WrR+p8dAdfb/dbicpKcn1OJvNhtPp9DneZrP5tDHQ/ljH5K/tTcXkLwdmjynYOgEkJyd7tcfsMbW0ToBX/eMhpmDrZLfbSU5Oxul0Bh2r0WNqqu3+9tvtdlJSUvzmwKwx6W1sSZ0g8HtBqDHVO+q5Z849PLHgCa/j/u/Q/2NM/zGu54z19aRfB/p2UzF5tjGe3iOayoFZY9Lb2FydPH8HiJeYgtnvGZNnDqIZk6xjoa5Q/nYT0SU1Mpeo1ctrDQ15Dw9Vi+tVX+XeTtQ7NLq59xXNBBr+H84+sFVtE4HJ+2KY9b8L1r/mvp3sZ+R+Zh/3dvka6HIq1DTToeF0YNkxi5SUQWFppogOo19fIXVoHHfccXz++efce++9AFx22WU8/PDDlJSU4HA4ePvtt7nkkkta/Ly7d+/GbrfTsWNHr/0dO3Zk9erVfh/z888/89prr7FkyZKgXuPhhx9m8uTJPvtXrFjhWsg8NzfX1WmjT6kFkJeXR15eHoWFhVRUVLj25+fn07ZtW9auXetaBBGgZ8+eZGVlsXLlSq8/EPv06UNSUhLLli3zakNBQQG1tbWsWaMtrrNy5UpsNhsFBQVUVFSwYcMG17EpKSn07duXkpIStmzZ4tqfmZlJr1692LlzJ0VFRa79RokJaFFMK1eujLuYoPk6paens3Kle87NeIippXWyWq1eOYiHmFpSJ4vFEncxtbRO5eXlcRdTS+vUpk0br+ugNTHtKN/Bbb/fxm+73etSJVuTGb3faC7Ou5hly5YZ7nqy2WysX7/e8HWK5Llns9lYtmxZXMUUbJ1WrlwZdzFBy+q0YcOGqMZUWenxjVOhDJvNRt++fWPdDNEEqZG5RLVeXmtoyAiNUIRUL38jNNI9Rmhs91hTNks6NCJB3hcjIKMndDwWdszRbrcZ5HuM3xEaHutn9LoStn0NSTkwYBLMHwuAdccM+h5+YUSaLcLPDNeXxenvK6HN2Lx5M7///junnXYaycnJVFdXM378eKZNm4bNZuO0005jypQpZGdnt+h5//77b7p06cL8+fMZNmyYa/9tt93GDz/8wK+//up1fEVFBQMHDuSFF17g5JNPBrTOldLSUj777DO/r+FvhEZ+fj7FxcVkZWUBsf/GXn19PaWlpeTk5GC1WuP+W4j+2m63231yYPaYWjJCY8+ePa7Y4yGmUEZoNM6B2WMKtk4Oh4OysjLatGlDY2aNqam2+9vvcDgoLy8nJyfHJwdmjUlvY0vqZLFYKC4uJjs72+e9oKUx1dTVcMI7J/DTZm0UY4I1gftG3Mc1B19Dbmpu1GIKtk76dZCbm+s3L0aqU6TOvaZyYNaY9DY2VyeHw+H6HSAhISEuYgpmv2dMnjlITEyMWkzl5eXk5uZSVlbm+r1YRF55eTnZ2dkxy7vD4aCkpIQ2bdq4zk9hLFIjc4lqvbbPgDknatupXeCsrZF9vTgUUr3+eh4WNkzdOux/0ONiKF4M3x3se+zwz6HrGeFrsADkfTFi9hXBz+dq62mM+BISM73vrymGaQ0jNzocAyPnwNr/wu//1PYNfR16XKItIO6ogY9zwb4PZ3pPio/6TeplErG8voL9vTjkKae6dXMPp0tJSeHVV1/l1VdfDeXpXNq1a4fNZmPHjh1e+3fs2EFeXp7P8evXr6ewsJDTTz/dtU//4zAhIYE1a9bQq1cvr8ckJye7pnDwZLPZsNlsXvsCFa3xceHeb7Va2bZtG7m5ua5jLBaL3+MDtbGl+yMdk7/9TcXkdDp9cmD2mPzxt99ut/vEHs42tnR/LM69SOfA6NfT1q1badOmTVzF1NL9W7ZsIScnJ65igpbVyW63BzwXWhrTv3/6t6szo31ae6adP42j9zva77FNPU80z71QroNw7TfK9RTOHBglpmD36/8H6J3c8RBTMPs9Y9Jz0FQbwx1ToPtFfHM6na7/d4UxSY3MJar1kimnWi2kejW3hoYnGaEREfK+GCGpeXBCE2siJ+dCcjuo2e1/hEZKe7A2/D5pS4HsflD8B+wtZOum9eTkDIlc20XYmOH6Cqmb5YorrvAZLeHpt99+44orrmjx8yYlJTFkyBBmzZrl2udwOJg1a5bXiA1d3759WbZsGUuWLHH9O+OMMzj22GNZsmQJ+fkB/kMRQgghFPH9uu956KeHALBZbHx6wadNdmYIIYQQQgiTkCmnYsNzDQ29QyO5LdhSvY+zJkFGj+i1S4hoyGpYR2Pf31BX4b0oeHIH72MztSmqLE4HSXUygkyET0gdGm+++Sbr168PeP/GjRt56623QmrQxIkTeeWVV3jrrbdYtWoV1113HVVVVVx++eUAXHLJJa5Fw1NSUhgwYIDXv5ycHDIzMxkwYABJSUkhtUEIIYSIB9vKt3HRpxfhbFiU8KHjH+LIbkfGuFVCCCGEECIsPEdlOKRDI2rq/IzQsFh8R2lk9QFrSBOjCGFcmZ7raKz1XhQ8pXGHRm/XZnLtpgg3TKgkIu+sf//9N6mpqc0f6McFF1zArl27mDRpEkVFRQwaNIjvvvvOtVD45s2blZhvLTMzs/mD4pzKOVA5dp3KOVA5dp3kQNOaPNQ76hn7yVh2790NwCm9T+GWI24JV9MiTs4BtXOgcuw6yYGIJjnfjE9qZC5Rq5dnJ4ZMORWyFtfLa8qpdPd27sHuaXisyXDgra1vnAhI3hdjJL27e3vvFt8ppzx5dH5kWXYizMPo11fQi4J//vnnfP7554A2QmP48OH07NnT57jS0lJmzpzJkCFDmDNnTnhbGwGxXoRPCCGEiIR/zf4XD/z0AABds7qy+NrFtEtrF+NWCSGMTH4vjg3JuxAiZJs+hHkXaNu2VLhgb2zbo4p5Y2HTe9r2Gesho+GzsZpi2Pg2pHeDvJG+CyoLEQ/Wvwa/XqVtH/I8rH0eylaCLQ0uqPI+dvdvMH2ott3rahj6cnTbKkwn7IuCr1y5ko8++gjQFiz89ddf+eOPP7yOsVgspKenM3z4cJ566qkQmy4cDgc7d+6kQ4cOSoxG8UflHKgcu07lHKgcu05yoGlNHqavn86DPz0IaOtmvH/O+6bqzJBzQO0cqBy7TnIgoknON+OTGplLVOvllBEarRVSvfytoQHagsl9bwxvA4Vf8r4YQ6ld3Nv7/navodF4uimALPeUUzV7VpDocPivl70afjhTG/Ex4kvI7BXmRouWMMP1FXSr7rzzTioqKqioqMDpdPLaa6+5buv/ysvL2b59O1999RUHHHBA808q/HI6nRQVFRHk4Jm4pHIOVI5dp3IOVI5dJznQhJqHvyv+5qJPzL1uhpwDaudA5dh1kgMRTXK+GZ/UyFyiWi/PTgxZFDwkIdUr0JRTImrkfTGG0jw6NKo2Qc0ebTu5ve+xSW0gWftinaVybeB6bfoAiqZD+SpY+0KYGyxaygzXV0hraDgcjnC3QwghhBCt5HA6uOiTi9i1V5vH1GzrZgghhBBCiBbwWkPDAU6ntji1iCxXh4ZFm+pLCJV4jtDYvQAavkhHejf/x2ceADW7Sarfhb2uEmzZvsds+cS9XbwwbE0V8atVi4Jv3LiRb7/9lk2btJXq99tvP04++WR69OgRlsYJIYQQIngvLnyROYXa+lVds7ry1ui3sFqMOURUCCGEEEK0UuNRGU47WFr1MY8Iht6hkZAO8ru2UE1SG7ClaNNEVa53788IME1U1gGwe762XbkOUoZ4319XqY3O0BUv1jpo5doSTQj5f7qbb76ZKVOm+IzWsFqtTJgwgSeeeKLVjVOVxWIhNzcXi8LfrFA5ByrHrlM5ByrHrpMcaFqah8LSQm6bcZvr9luj3zLVuhme5BxQOwcqx66THIhokvPN+KRG5hLVejVeN8NZTyu/t6qckOqlr6HhuX6GiCp5X4whi0UbpeHZmQGB173IdK+jYalcB+0adWhs/07rHNHVV0DFWsjqE6YGi5Yyw/UVUnfXk08+ydNPP83ZZ5/NggULKC0tpbS0lAULFnDuuefy9NNP8/TTT4e7rcqwWq1069bNsAuvRIPKOVA5dp3KOVA5dp3kQNOSPDicDq758hqq6rQ/rq4dci3H9Tgu0k2MGDkH1M6ByrHrJAcimuR8Mz6pkblEtV6O+qZvi2aFVC/PERoiJuR9McZSO/vuCzRCI9O9xrK1cp3v/Z7TTemK/wixYSIczHB9hdSyV155hTPOOIMPP/yQoUOHkpWVRVZWFkOHDuX999/n9NNP56WXXgp3W5XhcDjYvHmz0muVqJwDlWPXqZwDlWPXSQ40LcnDE/OfYMaGGYA21dRjJzwW6eZFlJwDaudA5dh1kgMRTXK+GZ/UyFyiWi+fERp2/8eJgEKqV53eoSEjNGJF3hdjzHNhcF3ADg33CA1n+Wrv+2r2wLavfB+zR9bRiCUzXF8hdWgUFhYyatSogPePGjWKwsLCUNukPKfTSXFxsaFXk480lXOgcuw6lXOgcuw6yYEm2DzM2zyPu2bdBYAFC6+f8TpZyVnRaGLEyDmgdg5Ujl0nORDRJOeb8UmNzCWq9fJZQ0NGaLRUi+vlqAdHjbadKB0asSLvizGW2qhDw5oIafn+j808AKe+HkbZKu/7ltyuTTEF0PVM9/4SGaERS2a4vkLq0OjQoQN//vlnwPv//PNP2rdvH3KjhBBCCNE0p9PJp6s+5ZwPz8He8G28u4++mxN6nRDjlgkhhBBCiKhoPCJDppyKPH39DJARGkJdjUdopHcHq83/sQmpkLG/tl2+EhwN71u75sH617TtxCw49L/uTpHiRdrC4EIEEHSHxo8//siuXbsAOO+883j11Vd55JFHqKpyv5lXVVXx6KOP8uqrr3LBBReEv7VCCCGEYEvZFk6deipnf3g2O6p2ADBivxHce8y9MW6ZEEIIIYSIGp8RGjLlVMTp62eArKEh1NV4hEag6aZ02f0BsNj3QdVGbd+SO933D3wAUjtB7iHa7fpKKP8rTI0V8SjoDo1jjz2WGTO0+bn//e9/M2LECO666y7atGlD9+7d6d69O23atOHOO+9kxIgR3H///RFrdLyzWCzk5eUZejX5SFM5ByrHrlM5ByrHrpMcaALl4e0/36bgvwV8u+5b174Tep7Ah+d9SII1IdrNjAg5B9TOgcqx6yQHIprkfDM+qZG5RLVejsZraMgIjZZqcb28OjRkhEasyPtijDUeodFsh8YA93bpcqjaArt+0m5n9YHe/9S22x7qPm7Xj61vpwiJGa6voD/58Jw3Ky0tjVmzZvH555/z7bffsmnTJgBOOukkTjnlFE4//XRDB210VquVvLy8WDcjplTOgcqx61TOgcqx6yQHGn95+GD5B1zy2SWu250zOzPlpCmcc+A5cfX/rpwDaudA5dh1kgMRTXK+GZ/UyFyiWi8ZodFqLa6XTDllCPK+GGM+IzR6Nnm4pU2B+0bZcvcoDYD9xrmnq+p4vHv/9u9h/2ta2VARCjNcXyGtoaE788wzefHFF/n222/59ttvefHFFznjjDPi6kOVWLDb7axfvx67Xd1fRlTOgcqx61TOgcqx6yQHmsZ5qKytZOL0ia77Lxp4EcuvW865/c6Nu/935RxQOwcqx66THIhokvPN+KRG5hLVeskaGq3W4nrJlFOGIO+LMZbayft2ZtMjNOyZB7pvlC6HTR+6b3c7z72dOwSScrXtolnynhYjZri+WtShEW8fmBhZRUVFrJsQcyrnQOXYdSrnQOXYdZIDjWceHvrpIf6u+BuA0w44jbfPeps2qW1i1bSIk3NA7RyoHLtOciCiSc4345MamUvU6uUzQkM+/AtFi+pVJ1NOGYW8L8aQLRmS27lvNzflVMb+OCyJ2vbfX8OeX7TtnIGQ3dd9nNUGeSdo23VlsOfX8LVZtIjRr68WdWhcdNFF2Gy2oP4lJMTHPN5CCCFErK0rXseTC54EIMmWxNOjno5xi4QQQgghRMw1/vayTDkVebKGhhCatHz3djNTTmFNpCapu7bteQ11O9/32E4nure3Tw+5eSK+tajXYeTIkRxwwAGRaosQQgghGnE6nVz39XXU2msBmHj4RPbP3T/GrRJCCCGEEDHXuANDRmhEnucaGonSoSEUdsB4WDgeel4BCWnNHr4vpTepNWvdOyxW2O8C3wO9OjS+h4GTw9BYEW9a1KFx6aWXMnbs2Ei1RTSwWCzk5+crPcWXyjlQOXadyjlQOXad5ECj5+HtZW8zc8NMAPKz8rnr6Lti3LLIk3NA7RyoHLtOciCiSc4345MamUtU69W4A0Pmm2+xFtfL89vlNllDI1bkfdEAel0BPS4Ba/MfLVssFpI7DIGyb9w7D34GMv18US+tK2T3h7IVsOc3bZo3vfPQ6QSpecSZ4fpq1aLgIjKsVitt27bFalW3PCrnQOXYdSrnQOXYdZIDjdVqpT65npun3+za999T/0tmcmYMWxUdcg6onQOVY9dJDkQ0yflmfFIjc4lqvXxGaMiUUy3V4np5dmjICI2YkfdFgwiiMwO0eqXvfw7Q8AH5oEehz/8FfkDbQxs2nFDRMKpj71b4ogd8eQBUbQm5yaJ5Zri+jNsyhdntdlavXm3o1eQjTeUcqBy7TuUcqBy7TnKgsdvtXPHRFZRUlwAwZsAYTj3g1Bi3KjrkHFA7ByrHrpMciGiS8834pEbmEtV6+ayhISM0WqrF9ZI1NAxB3hfNxW63s3pHMvZRi+CkRdDvtqYfkOmx3IHeobHxHajapN1ecFHkGitMcX1Jh4ZBVVdXx7oJMadyDlSOXadyDlSOXSc5gK/WfsU3m7UhubmpuTxz0jOxbVCUyTmgdg5Ujl0nORDRJOeb8UmNzCVq9Wo8IkOmnApJi+rluYaGdGjElLwvmkt1dTXkFEDu4OYP9urQ+Ev7uXOue9/OH6Hkz7C2T3gz+vUV9BoaDocjku0QQgghRIOKmgrGfzPedfvpUU/TIb1DDFskhBBCCCEMp/GIDJlyKvK8RmjIGhpCRERmb/d2eUOHRsV672P+vBuO+Sp6bRKGIiM0hBBCCIO5e/bdbK3YCsDIHiO5eODFMW6REEIIIYQwHJ81NGSERsTVyZRTQkSc52LhFX9BbRlUrvM+5u+voWRJVJsljEM6NAzIarXSs2dPQy++Emkq50Dl2HUq50Dl2HWq52DP3j289edbAKQlpPHSaS9hsVhi3KroUv0cALVzoHLsOsmBiCY534xPamQuUa2XzxoaMkKjpVpcL1lDwxDkfdFcWlyvhDRIy9e2y9dAySKPOz3+Nl7737C1UbiZ4foybssUZrFYyMrKUu4DLE8q50Dl2HUq50Dl2HUq5qB4XzEz1s8AoG1aW5Zdt4xTep/Cv4/7Nz1ze8a4ddGn4jnQmMo5UDl2neRARJOcb8YnNTKXqNar8YgMWUOjxVpcL681NGTKqViR90VzCale+joadaWwfYZ7/8FPuTsTC9+FuvKwtVNozHB9SYeGAdntdpYtW2bo1eQjTeUcqBy7TuUcqBy7TsUc3PjdjZz4zolc9cVVlFWX0S27G5+f/znHpx+vVB50Kp4DjamcA5Vj10kORDTJ+WZ8UiNziWq9ZMqpVmtxvfQRGhYr2FIi1zDRJHlfNJeQ6pXlsTD4pvfd2x1GQPeLtO36Kph7CvxwBpSuCE9jhSmuL+nQMCgjnzTRonIOVI5dp3IOVI5dp1IOvljzBe8sfQeAaaumUVWnfevLYrHgdDhj2bSYUukcCETlHKgcu05yIKJJzjfjkxqZS9TqJVNOhUWL6lVfof1MyAADf3tZBfK+aC4trlemR4dG1UbtpzUJsvtD7+vc9+2aB9u+hOWTg3veukpY97Ksv9EMo19f0qEhhBBCxEjxvmKu/epa1+0pJ02hc2bnGLZICCGEEEKYRuMODJlyKrIcdVBZqG2ndoppU4SIe54dGrqcArAlQZuB0Okk7/vKVgb3vEsnwW/Xwsxjoa6i9e0UMSEdGkIIIUQMFJYWctEnF1FUWQTAqb1P5eKBF8e4VUIIIYQQwjQaTzElU05FVvkacNRo2zmDYtoUIeJelp8OjXbD3NtHfQBHf+q+XbkBnA7v44tmwq/XwNbP3fdt/Uz7WVcKJX+Gs8UiiqRDw4CsVit9+vQx9GrykaZyDlSOXadyDlSOXRfvOVhfvJ6rvriK3s/15tt13wKQnZzNS6e95LXoVrznoSkqx65TOQcqx66THIhokvPN+KRG5hLVevmsoWHsKUKMqEX18pyiJndwxNokmifvi+YSUr3Su4M10X07qw/0v9t9OzEL8kdD51O12/Z9sG+7+357Dfx0Hqx/BX4cDd8MhN2/uKevAihbFkI08c8M15dxW6a4pKSkWDch5lTOgcqx61TOgcqx6+IxB3aHnRu/vZE+/+nDa4tfo75hSoDMpEzePuttumR18XlMPOYhWCrHrlM5ByrHrpMciGiS8834pEbmErV6yQiNsAi6XiWL3dsyQiPm5H3RXFpcL2sC9J0ItlTY/xo46Q9IzfM9LnN/93blevf27vnaKAxd2QptAXFPpdKhEYjRry/p0DAgh8PBsmXLcDgczR8cp1TOgcqx61TOgcqx6+I1By//8TLP/vYs9oZvzmUnZ3PviHvZNGETp/c53ef4eM1DMFSOXadyDlSOXSc5ENEk55vxSY3MJar1kjU0Wq1F9fIcodFmUKSaJIIg74vmEnK9Bj0C51XAYS9BQrr/YzJ6ubcrPDo0ts/wPba2xPu2dGj4ZYbrKyHWDRBCCCHi3Z69e7hnzj2u2/eOuJebDr+J7JTsGLZKCCGEEEKYWuMODJlyKnKcTneHRmonSO0Y0+YIoQyrren7vUZorHNvF3l0aHS/CArf8X1s6TLt2vaY+lmYg4zQEEIIISLs7tl3U7yvGICLBl7EfcfcJ50ZQgghhBCidXzW0JARGhGzdwvUar/Py3RTQhiIvxEaNXug+A9tO2cg9L/L/2PryrRrW5iOdGgIIYQQEfRD4Q+8/MfLAGQkZfDYyMdi3CIhhBBCCBEXfNbQkBEaESPTTQlhTOndwdLw8ba+hsaO2YBT2847AbIPhPZHuh9jTXZv+5t2quRPWHApbJ8eiRaLMJAODQOyWq0UFBQYejX5SFM5ByrHrlM5ByrHrounHGws2cg5H56Ds+GXqUnDJ9Eps1NQj42nPLSUyrHrVM6ByrHrJAcimuR8Mz6pkblEtV6Np5ySNTRaLOh6SYeGocj7orlEtF62JEjrpm1XNEw55bl+Rt4J2s8+N7r39f6ne7txh4bDDj+dCxv/B/PGKPm+aobry7gtU1xtbW2smxBzKudA5dh1KudA5dh18ZCD8ppyTn/vdPbs2wPAib1O5KZhN7XoOeIhD6FSOXadyjlQOXad5EBEk5xvxic1Mpeo1UumnAqLoOpVvtq9nTMwco0RQZP3RXOJaL30aafqSqGmGHYv0G5bE6HD0dp2t/PgmG/g+LnQ8zL3Yxt3aGz70r0WR20xlK+KXLsNzOjXl3RoGJDD4WDNmjWGXk0+0lTOgcqx61TOgcqx6+IhB3aHnXGfjGPFrhUA9Gnbhw/O/YAEa0LQzxEPeQiVyrHrVM6ByrHrJAcimuR8Mz6pkblEtV4y5VSrBV2v6iL3dlrXyDZKNEveF80l4vXK9FhHo3yVuwMyqy8kpLnv63wydByh7bc0/G1ettz7uVY/4X17z+/hb6/BmeH6kg4NIYQQIszumnUXX/31FQBtUtrw5ZgvyUnJiW2jhBBCCCFEfGncgaHg1ChRs6+hQyMhHRIzYtsWIYS3jP3d29u+dnf2Zhf4P96WBOkN01Tt2+bev2sB7Jrnfeye38LXThE20qEhhBBChNGri17lsfnawt82i40Pz/uQ3m17x7hVQgghhBAi7jTuwJAppyJHH6GRkhfbdgghfGV6/L296T33dk6ADg2A5Pbaz5pibd0MgMK3fY+TDg1Dkg4Ng7LZbLFuQsypnAOVY9epnAOVY9eZNQcfrviQa768xnV7yklTGNlzZMjPZ9Y8hIPKsetUzoHKseskByKa5HwzPqmRuUStXj5raMiUU6Fw1Wvr5/B5T1h8m/cB9hqoLdG2UzpGt3EiIHlfNJeI1qvdMPd2VaF7u8kOjXYNG0739b37l4Z9FvdC46XLoH5fmBpqHka/vixOp9MZ60bEUnl5OdnZ2ZSVlZGVlRXr5gghhDCpb9d+y5nvn0mdow6AiYdP5MlRT8a4VUIIETz5vTg2JO9CiJB9kgfVO9y3D7wFBj8eu/aYWflf8FUf9+3TVsP6V6F4EfS/G2Yfr+3PPxuOnhabNgohAvu6P5St9N535ib31FKNLbgMNr6lbZ+6CtL3g48ytY7h7AHQ9lDY8IZ2/wnzof0w/88jwirY34tlhIYBOZ1OysvLUbmvSeUcqBy7TuUcqBy7zow5+GnTT5zz4TmuzowrB1/JEyc+0cyjmmbGPISLyrHrVM6ByrHrJAcimuR8Mz6pkblEtV6yhkarOZ1Oykt345w/1vuOBZfCqidgx2xYcrt7v0w5ZQjyvmguUalXx+O8bydmQ1p+4ONdIzSAmt1Qssj9ntr2MK1DQ1es1sLgZri+pEPDgBwOBxs2bDD0avKRpnIOVI5dp3IOVI5dZ6Yc1NTX8P7y9zntvdPY1zAM9dx+5/LSaS9hsVha9dxmykO4qRy7TuUcqBy7TnIgoknON+OTGplLVOvls4aGTDnVUg6Hg9LFz2Ip/sP7jj2/ureLF7q3ZcopQ5D3RXOJSr0ad2jkFEBTf5Mnt3Vv1+z2Xiuj3VCtU0O3e0F42mgSZri+EmLdACGEEMJsnE4nz/76LPf/eD/F+4pd+0f1GsU7Z72DzWrs+SaFEEIIIUQcaLwIuCwKHpKMvYuCPzhVRmgIYUgdRgAWoGFUQVPrZ4DvCI3dHp2YbQ+DrH6QkAn1FbD1M6jeCSkdwtxoESoZoSGEEEK0QPG+Ys58/0wmfD/BqzPjuB7HMe38aSQnJMewdUIIIYQQQhmyKHhYpFb/pW1YbDDgX00fLFNOCWFMybnQZrD7dks7NPQRGrZUbQ0NWxLsf7W2z14Na54Lrh11FeA07siGeCEdGgaVkpIS6ybEnMo5UDl2nco5UDl2nVFzULKvhKPfOJov//rStW/MgDHMumQWMy6eQXpSelhfz6h5iAaVY9epnAOVY9dJDkQ0yflmfFIjc4lavRqPyJA1NFrOXktKbaG2ndUX9hvb5OEy5ZRxyPuiuUSlXp1OdG/nHhr4OPDu0ChfBVUbGx43BKwNExr1vQmsidr22uehrrLp59z2DUxrB98PBYe5O5iNfn1ZnEZe4SMKgl09XQghhNpq7bWc/O7JzN44G4B2ae14+6y3OWn/k2LcMiGECA/5vTg2JO9CiJC9Z/P+JnCPS2DYW7FrjxmV/AnfDtK29xsLR74Lc0+Fv7/xf/yZhZC+X7RaJ4RoidoSWHQzZB4A/e9o+tiyVfB1P207uT3U7NK2+94MBz/hPu6Xy2HDm9r2of+F3v8I/JzzxsCm97XtkxdDm0GhRKG0YH8vlhEaBuRwONizZ4+hF1+JNJVzoHLsOpVzoHLsOiPmwOl08o+v/uHqzGif1p5frvwlop0ZRsxDtKgcu07lHKgcu05yIKJJzjfjkxqZS9Tq5XT6TmsiU061mKN4sftGm4O0n0d9DKcsg8Ne8X2AjNAwBHlfNJeo1SupDRz+evOdGdBoyqld7m39fUDX8wr3dtmKpp9z7zb3dvXO5ttgUGa4vqRDw4CcTidbtmxB5cEzKudA5dh1KudA5dh1RszBQz89xBtL3gAgJSGFL8Z8Qa/cXhF9TSPmIVpUjl2ncg5Ujl0nORDRJOeb8UmNzCVq9fLXeSFTTrVcyZ/u7ZyGDzITUiFnAGT29j42MRtsxp6GRRXyvmguhqxXUhu0RcQbaXzdp3dzb+8ravo59/3t3q7eFfg4gzNkvRqRDg0hhBCiCe8te4975tzjuv2/0f/j8K6Hx7BFQgghhBBCeY3Xzwi0TzTJUrbUfaPxN7MzenrfTpUFwYWIG9aEhk6NRjIafXHRc1RW9Y7Az+d0wj6PERo15h2hYQbSoSGEEEIE8M3ab7js88tctx85/hHO639e7BokhBBCCCEE+B+hIVNOtYzTCaVah4YzuYNvh0VaF7Amu2+nSIeGEHHFc9opgMQs3322FG10FkB1EyM06krBXu2+beIpp8xAOjQMKjMzM9ZNiDmVc6By7DqVc6By7Doj5OD7dd9z9gdnU2uvBeCqwVdx25G3RbUNRshDrKgcu07lHKgcu05yIKJJzjfjkxqZS1Tq5W96KZlyqmX2bcdSs1vbzhnoe7/FChk93Ldl/QxDkfdFczFkvRp3XmTsDxY/01DpnZ1NTTnluX4GmL5Dw5D18iAdGgZks9no1asXNpst1k2JGZVzoHLsOpVzoHLsOiPk4Ou/vubM98+kxl4DwPn9z+e/p/0Xi79fbiLECHmIFZVj16mcA5Vj10kORDTJ+WZ8UiNziVq9/I7QiECHhsMOP5wBXw+A8rXhf/5YKlvu2rTkDvJ/jOf0MzJCwzDkfdFcDFuvxh0amQHWydQ7M+sroH6v/2M8188AU3doGLZeHqRDw4AcDgdFRUWGXk0+0lTOgcqx61TOgcqx62Kdgw+Wf8DoD0a7OjPO7Xcu7579LgnWhKi2I9Z5iCWVY9epnAOVY9dJDkQ0yflmfFIjc4lavfyuoRGBKac2vgnbvoSyFbDwn+F//mipK4cVD8G2r9z7Kta5Nh0Zvf08CO8ODVlDwzDkfdFcDFsvfyM0/PHszAy0jkbjERomXkPDsPXyIB0aBuR0OikqKjL0avKRpnIOVI5dp3IOVI5dF8scvLboNcZMG0N9w3D9CwdcyNSzp0a9MwPUPhdUjl2ncg5Ujl0nORDRJOeb8UmNzCVq9fI3vVQkRmjs+c29vWNu+J8/WlY9CX/eDT+cDpUbtX2V6113O9N7+n9cVh/3dlrXCDZQtIS8L5qLYevV0hEaEHjaKZ8RGrtCb1eMGbZeHqRDQwghhACe+eUZrvryKpxo/2lfNfgq3jnrHRJtiTFumRBCCCGEEI1Ea1Hwmj3u7eS24X/+aFl+v3t725faT48ODTICdGh0Hwcdj4W8kZB/duTaJ4SIvmBHaKQGMUKjcYeGiUdomEH0v3IqhBBCGMD2iu10yuyE0+nkgR8fYNLcSa77Jh4+kSdOfCKqa2YIIYQQQggRNH+jMSKxKHi8dGh4qi3RflZoHRoOEiA1wOiLpGw4fnaUGiaEiCqfERrBTDkVaIRGoymn6qu0fwnpobdPBCQjNAzIYrGQm5ur9AdpKudA5dh1KudA5dh10cjBou2L6PVsL+6dcy8Op4NNZZtc99074l5DdGaofC6oHLtO5RyoHLtOctB69913HxaLxetf3759XfdXV1dz/fXX07ZtWzIyMjjnnHPYscP7G3ebN2/m1FNPJS0tjQ4dOnDrrbdSX+/9YeHcuXM5+OCDSU5OZv/99+fNN9+MRnhhJeeb8UmNzCVq9YrWouC1Hh0aSXHSoVGzG5xOqNwAgD21GxabfN/XTOR90VwMW6/GHRqpnfwfF8yUU3v/9t1n0mmnDFsvD/KObUBWq5Vu3brFuhkxpXIOVI5dp3IOVI5dF+kc7N67m7M+OIt99fu4/8f76ZDegZdOe4nK2koO7XwoNx9xc8ReuyVUPhdUjl2ncg5Ujl0nOQiP/v37M3PmTNfthAT3nz433XQTX3/9NR999BHZ2dmMHz+es88+m3nz5gFgt9s59dRTycvLY/78+Wzfvp1LLrmExMREHnroIQA2btzIqaeeyj/+8Q/effddZs2axVVXXUWnTp0YNWpUdINtBTnfjE9qZC5Rq5ffNTQiPOVUYnb4nz9arEngqNW2Kzdo08bY9wKQmNMHrPJ9XzOR90VzMWy9ktp437YEeB8Iasqpbb77qndCRveQmhZLhq2XB3nHNiCHw8HmzZsNvZp8pKmcA5Vj16mcA5Vj10UyB/WOei78+EI2l20G4PCuh3PVwVdhs9p475z3DNOZAWqfCyrHrlM5ByrHrpMchEdCQgJ5eXmuf+3aad/CKysr47XXXuOpp57iuOOOY8iQIbzxxhvMnz+fX375BYDp06ezcuVK3nnnHQYNGsTJJ5/Mv//9b55//nlqa7UPxF588UV69OjBk08+yYEHHsj48eM599xzefrpp2MWcyjkfDM+qZG5RK1e/jovIjLl1G6P16wL//NHizXZvV253mv9jAo6yPVlMvK+aC6GrVdSTnDHNTfllMPuf79J19EwbL08SIeGATmdToqLiw29mnykqZwDlWPXqZwDlWPXRSIHdfY63l36LsPfGM6sjbMA6JjekWnnTyM5QfvjxmjDKVU+F1SOXadyDlSOXSc5CI+1a9fSuXNnevbsybhx49i8WevM/uOPP6irq2PkyJGuY/v27Uu3bt1YsGABAAsWLKCgoICOHd1TDIwaNYry8nJWrFjhOsbzOfRj9OcwCznfjE9qZC5Rq5e/6aXCPeWUvdY9qgHAXh3e548WRx3UV7hvV26EirWum+WO9nJ9mYy8L5qLYeuV3R+6ngWJOXDs9MDHpXRwb/ubcqp6Bzj9fPhfbc4ODcPWy4NMOSWEECKuVdZWcsq7p/DT5p9c+xKsCXx8/sd0zuwcw5YJIYSIlKFDh/Lmm2/Sp08ftm/fzuTJkzn66KNZvnw5RUVFJCUlkZOT4/WYjh07UlSk/ZFaVFTk1Zmh36/f19Qx5eXl7Nu3j9TUVL9tq6mpoaamxnW7vLwc0Ka5stu1b1xbLBasVisOh8Prj0l9v35cc/utVisWi8XvftC+gWe323E6ndjtdq/9nmw2G06n0+/+xm0MtD+aMQWz30wxedYoXmKKxzrpbdTrpf+LWEx+Rmg4nXYsDW0IS0xVW7F5Pr+9GiIZU6TqVL3HKw4ctTh2/OD6hm91Yhef5zF8TKhxPQXar19nQNzE5NnGeIsJ8Pp/zFAxHfkROOxYExL9vr9ZrVawJEBSWyy1e3BW78Bht2t1qtoKCy7GsnOu+wHJ7aFGWzvDsW8HzobXMUOd9HOv8e8d0axT4/sDkQ4NIYQQcWtv3V5Of+90r86MA9sdyGMnPMZR3Y6KYcuEEEJE0sknn+zaHjhwIEOHDmW//fbjww8/DNjREC0PP/wwkydP9tm/YsUKMjIyAMjNzaVbt25s3bqV4uJi1zH69FmFhYVUVLi/bZyfn0/btm1Zu3Yt1dXub1D37NmTrKwsVq5c6fUHYp8+fUhKSmLZsmWub+GtWLGCgQMHUltby5o1a1zH2mw2CgoKqKioYMOGDa79KSkp9O3bl5KSErZs2eLan5mZSa9evdi5c6er8yfaMXkqKCgwfUwrVqxw1chiscRFTPFYJz0m/ZpyOBzU1dWFJaaSNZ+zb/uvFOecicOaqsWU5jsaw15XQwKELab1y3/kAK8XqKa6utp0dUqu2ciBjXJVv+Ubkhq299k6u64vs8QEalxPgWJyOp2UlJQAxE1MEH910mPq168fdXV1XteZ2WLCkk0qe3Du3c7KFSsoyHfgnH0K1prtXsfTZjAUaaM9dm9dyd/1ywwbU6Bzb/369a7fO1JTU6Nap8rKSoJhcRp5/EgUlJeXk52dTVlZGVlZWbFuDqD1kO3cuZMOHTq4es1Uo3IOVI5dp3IOVI5dF64cVNdXc+b7ZzJ9vfbLRE5KDh+e+yEje4403PRS/qh8Lqgcu07lHKgcuy5WOTDi78XhdOihhzJy5EhOOOEEjj/+eEpKSrxGaey3335MmDCBm266iUmTJvHFF1+wZMkS1/0bN26kZ8+eLFq0iMGDBzN8+HAOPvhgnnnmGdcxb7zxBhMmTKCsrCxgO/yN0MjPz6e4uNiV92h+Y8/hcLBr1y7at2/vWjhdhW+Lmimm+vp6V42sVmtcxBSPddLbqF9THTt2dL1uq2KqL8X5aRcsjhocAx/EeeDtWhv3/AIzjvQ61pneHcuZG8MTk6MOx5ZPsc2/0P38mX3gtFXmq9Pu+dhmDSeQ7cPX065jvtf/uYaPCTWup0D79essLy8Pi8USFzF5tjFe6uT5/Dt27KBdu3Y+15lZYmLW8Vh2zgHAfnYxttkjoNS7owCAAffCcu2LK479xuE8/C3DxhTo3Gv8e0c061ReXk5ubm6zf4/ICA0Dslqt5OXlNX9gHFM5ByrHrlM5ByrHrgtHDmrttZz/0fmuzozMpEy+v+h7DutyWDiaGBUqnwsqx65TOQcqx66THIRfZWUl69ev5+KLL2bIkCEkJiYya9YszjnnHADWrFnD5s2bGTZsGADDhg3jwQcfdHUsAcyYMYOsrCz69evnOuabb77xep0ZM2a4niOQ5ORkkpOTffbbbDZsNq9JUQJ2aDU+rjX7bTYbnTt3bvZ4i8Xid3+gNrZ0fzhjCna/WWJKTEz0qVGg480SUzzWSd/f+JpqdUxlhVgcWieotXw16I/zM+WUxemeHiSUtrv89QL8cSO2RmtyWBzVEKDthq5TXanfYwBI7Uynrj393mXomELcHy8xBXOdmS0mT/FSJ0+dOnXye6xZYiLV3X5b5Rp3Z0bmATD0NVj/KlgToPc/XB0a1ppd7vfsJtpupDpZLBa/v3dEq04B89/4+YM6SkSV3W5n/fr1Qc8bFo9UzoHKsetUzoHKsetam4Oa+hrGTBvDl399CUB6YjrfjvvWVJ0ZoPa5oHLsOpVzoHLsOslB691yyy388MMPFBYWMn/+fM466yxsNhtjxowhOzubK6+8kokTJzJnzhz++OMPLr/8coYNG8bhhx8OwIknnki/fv24+OKL+fPPP/n++++55557uP76612dEf/4xz/YsGEDt912G6tXr+aFF17gww8/5Kabbopl6C0m55vxSY3MJez1qt/n8eR73duRXBR84fX+n8usi4LXFge8y5nRS64vE5L3RXOJi3qleKybtn2Ge7vTidDhKBj2Jgx9VTvOmqjdV2PORcHNUC8ZoWFQnvOJqUrlHKgcu07lHKgcuy7UHFTWVnL2B2czY4P2C0ZKQgpfjvmSI7sd2cwjjUnlc0Hl2HUq50Dl2HWSg9bZunUrY8aMYc+ePbRv356jjjqKX375hfbt2wPw9NNPY7VaOeecc6ipqWHUqFG88MILrsfbbDa++uorrrvuOoYNG0Z6ejqXXnop999/v+uYHj168PXXX3PTTTcxZcoUunbtyquvvsqoUaOiHm9ryflmfFIjcwlrvez7/G/7GaHhd184mbVDo2ZPwLucPa+S68ukpG7mYvp6pXdzb2/+wL2dU+B9nMWiLQy+72+o3hGdtkWA0etlyA6N559/nscff5yioiIOOuggnnvuOQ47zP83a1955RX+97//sXz5cgCGDBnCQw89FPB4IYQQ8Wd7xXbeW/4eL//xMmv2aAtbpSak8tmFn3Fsj2Nj3DohhBDR9v777zd5f0pKCs8//zzPP/98wGP2228/nymlGjvmmGNYvHhxSG0UQoigeHZi1HuM0HD4GUHhb1+LX6+2iftM2qERaIRG7+txdh8HjRbMFUIIH+0Od2+XrXBvZxf4Hpvaxd2hYa8Bm+9Uo6J1DDfl1AcffMDEiRO59957WbRoEQcddBCjRo1i507/w3Tmzp3LmDFjmDNnDgsWLCA/P58TTzyRbdu2RbnlQgghosnpdPLJqk848e0T6fp0V26efrOrMyMnJYeZl8zkxF4nxriVQgghhBBCtII90JRT/kZohKFDo7oo8H2OGmi0KKwpeI7QyD+34efZMOTp2LRHCGE+bQaD1U/HRM4A332ZvbWfTgdUbohsuxRluA6Np556iquvvprLL7+cfv368eKLL5KWlsbrr7/u9/h3332Xf/7znwwaNIi+ffvy6quv4nA4mDVrVpRbHj4Wi4X8/HwsFkusmxIzKudA5dh1KudA5dh1webgyQVPcs6H5zBjwwwcTodr/9AuQ/nxsh85Iv+ISDc1olQ+F1SOXadyDlSOXSc5ENEk55vxSY3MJez1CjRCw+8aGmGYcmrf9qbvb1ig3FQ8R2gMfhzOK4Ojp4E1Ua4vk5K6mUtc1MuWDG0P8d6X3h0SM32P1Ts0ACrWRrRZkWCGehlqyqna2lr++OMP7rzzTtc+q9XKyJEjWbBgQVDPsXfvXurq6sjNzfV7f01NDTU17v+Ay8vLAW3BE32xE4vFgtVqxeFw4PT49oG+v/GiKIH2W61WLBaL3/0ADofD736n00lOTg5OpxO73Y7NZsPpdPocb7PZfNoYaH+sY/LX9uZiapyDeIipuf16G9u0aeOKPV5iammdPOsfLzEFWyf9/SvYWM0QU0vr1LZtW6/6N27712u/5rYZt7n298jpwbiCcYwZMIY+bfu4ntNIMYVSp0DvBWaOKdhzr02bNnEXU0vrlJubG3cxBVsn/f8A/bXiIabm9jeOSc+Bfmw0YjLywn8icqxWK23bto11M0QTpEbmEvZ6tWSERjimnGquQ8NeDbaU1r9ONHmO0EjOhcQs1025vsxJ6mYucVOvdkfCrnnu29l+RmcAZO7v3jZhh4YZ6mWoDo3du3djt9vp2LGj1/6OHTuyevXqoJ7j9ttvp3PnzowcOdLv/Q8//DCTJ0/22b9ixQoyMjIA7QOEbt26sXXrVoqL3T35eXl55OXlUVhY6LU4Sn5+Pm3btmXt2rVUV7vnlOzZsydZWVmsXLnS6w/EPn36kJSUxLJG8zQWFBRQW1vL6tWrKSsrIzs7m4SEBAoKCqioqGDDBvcwpZSUFPr27UtJSQlbtmxx7c/MzKRXr17s3LmToiL3UNFYx7RmzRrXPpvN1mxMmzdvduUgKysrLmIKtk5dunRh4cKFJCUluXpDzR5TS+uUk5PDggULSE9Pd+XA7DEFWyen00liYiIHHHAAK1eujIuYoGV1slgsJCcnu163cUy/rv+VsR+PxYn2Yd31A67nubOfY8eOHRT9XcSyv5cZLqZQ6tS9e3cWL16MzWZzXQdmjynYc0/vxBk8eHDcxAQtq5PT6cRqtTJgwIC4iQmCq5PT6XT9DjBw4MC4iKmlddJz0KFDB/r16xe1mCorKxHqsdvtrF27lt69e2Oz2WLdHOGH1Mhcwl6v+hasoRGWKac8OjT63Q4Z+0Phu7BzrrbPjOto6CM0LAmQ4P1tarm+zEnqZi5xU6/2R8Aqj9uNFwTXmXyEhhnqZXE2/rpXDP3999906dKF+fPnM2zYMNf+2267jR9++IFff/21ycc/8sgjPPbYY8ydO5eBAwf6PcbfCI38/HyKi4vJytJ66WP9jb26ujpWrFhB//79sdlsSnwLsXHb6+vrfXJg9piCrZPT6WTp0qWu2OMhppbWyV8OzB5TsHWy2+2sWLGCgoICn+F9Zo2pqbb722+321m5ciUDBgzwyUF5bTmHvXoY64rXAXB237N5/5z3SUxINHRM0PI6AQHfC8waU7Dnnn4d+Pu/3KwxNdV2f/ubyoFZY9Lb2Fyd9Nj79+9PYmJiXMQUzH7PmDxzkJSUFLWYysvLyc3NpayszPV7sYi88vJysrOzY5Z3u93OsmXLKCgoMOwfraqTGplL2Ou1/EFYeo+2nZilTZcEUDgV5o/zPX6MA1ozTcjSSbD839r2iK+hyynw84Ww+QNt3xkbIaN76M8fC593h6pNkNIBzt7hdZdcX+YkdTOXuKlX9U74xONL+EdMhe5jfI+rKYZpDSMcOh4Hx5trWYRY1ivY34sNNUKjXbt22Gw2duzw/g9mx44d5OXlNfnYJ554gkceeYSZM2cG7MwASE5OJjnZdxEX/UNzT/ofnP6OjfR+i8Xi1Sb9dmOB2tjS/dGIqbGmYvKXA7PH5I+//Xa73Sf2cLaxpftjce5FOgdGv54sFkvANgZ6HqPHFMr+xjHVO+o5/+PzXZ0ZB3U8iP+d9T8SExKbbLuRY2qqjU1dB2aNqSX79c6seIqppW0JZw6MElOw+/X2NpUDs8UUzH7PmDy3oxWTqf/AFEKIeBVwDY0A0wQ6HWBpxfu555RTqZ20n55TTJlxhIY+5VRS29i2QwhhbikdtFFrldpnEgFHaCTnQlKuNjrMhCM0zMBQi4InJSUxZMgQrwW9HQ5tgW/PERuNPfbYY/z73//mu+++45BDDgl4nBBCCHPaUraFUe+MYuaGmQC0T2vP5xd+TnpSeoxbJoQQQgghRAR5dmg468FRp20HWi+jtdNONdeh4TBZh4a9FuobplRM9r/WqhBCBG2/87WfGb0gq2/g4/Rpp/Zu8Z46sGoLLL4dFt0Ma/8LdTLlaygMNUIDYOLEiVx66aUccsghHHbYYTzzzDNUVVVx+eWXA3DJJZfQpUsXHn74YQAeffRRJk2axNSpU+nevbtrHuGMjAzXmhhmY7Va6dmzZ8Bv16lA5RyoHLtO5RyoHLuucQ4+WP4B//j6H5RWlwKQaE3kkws+Yb+c/WLYyshT+VxQOXadyjlQOXad5EBEk5xvxic1Mpew18uzQwO0URpJ2U2M0AiwP1h6h4bFCsnttW2zjtD48x7Y9IH7tp8RGnJ9mZPUzVziql4F90HH4yFnIFib+Fg9szfsaVg6oXI95DQsIL5oImz52H3cXy/ACT9BUk6kWtxiZqiX4To0LrjgAnbt2sWkSZMoKipi0KBBfPfdd66Fwjdv3uyV0P/+97/U1tZy7rnnej3Pvffey3333RfNpoeNxWJRft5ilXOgcuw6lXOgcuw6PQel1aX837f/xztL33Hd1zWrK++c9Q5HdTsqhi2MDpXPBZVj16mcA5Vj10kORDTJ+WZ8UiNzCXu9Gndo2PcB2YFHYrR2hIa+KHhKR7A2TF1l5A4NpwMctVobd8yBX6+CzqdC7+tgxYPex/oZoSHXlzlJ3cwlruplTYS845o/rvHC4HqHxu553seVLYcfR8Ox33m/18aQGeplyK6W8ePHs2nTJmpqavj1118ZOnSo6765c+fy5ptvum4XFhbidDp9/pm1MwPci680XrhRJSrnQOXYdSrnQOXYdfX19TzyzSP0/U9fr86MCwdcyNJ/LGVE9xExbF30qHwuqBy7TuUcqBy7TnIgoknON+OTGplL2OtV37hDo2EdjUiM0HDYobphTdOUTu79VoN2aNhr4NtBMK0D7P4VFlwKlRvgr+dg41u+x/sZoSHXlzlJ3cxFyXo17tAAbT0fz2n99FFwO3+AVU9Er23NMEO9DDdCQ2iMfNJEi8o5UDl2nco5UDX2tXvW8t7y93hv2Xus3rPatT8rOYv/nvpfxhaMjWHrYkPVcwHUjl2ncg5Ujl0nORDRJOeb8UmNzCWs9fI35RQEXkMj0P5g1OzSRjyAe/0MMO4IjZ0/QOkybXvj29pc9boNb/geb0v2+zRyfZmT1M1clKuXvw6N0uXufQf8H3S/CGYM0953N7wJ/e8GiyWqzQzE6PWSDg0hhBAx9e7Sd3nql6dYtH2Rz32j+45myklT6JbdLQYtE0IIIYQQIsYCdWgEHKHRig4NfwuCQ+AODXtNwE6CqKja7N727MwAqN7pe3xTC/gKIUQ4ZR3g3tY7XvWfoE1B1e4w6HAM7JitrbNRvBDaHhrVZpqVIaecEkIIEf8cTge3Tr+Viz69yKczY3DbwXx2wWd8esGn0pkhhBBCCCHU5bOGht6h4dFxYfH4aKc1U04F06HhaOjQWHQLfJgBKx8L/fVay7MTo2KN/2NSOkDv66HXVZB/dnTaJYQQiVmQ2dCpUbJY6wAu8+jQyC7Qfnb3mImi8L3otc/kZISGAVmtVvr06WPo1eQjTeUcqBy7TuUcqBL73rq9XPnFlby//H3XviGdhjBmwBjO63ce7ZPbk5JijAWxYkWVc8EflWPXqZwDlWPXSQ5ENMn5ZnxSI3MJe72CGaFhTXF3dLRmyqnqIEdo1O+F1U9qt5fcDv1uC/01W2OvxwiN8gAdGu2OhEP/E/Ap5PoyJ6mbuShbr7ZDoeIvcNRCyZ/eU07l9Nd+5p8Nv18HjjrY/AEMfhystti0t4EZ6iUdGgaVlJQU6ybEnMo5UDl2nco5iPfY1xWv45wPz2HpjqUAWC1Wnj/lef5xyD8AcDqdOByOWDbRMOL9XGiKyrHrVM6ByrHrJAcimuR8Mz6pkbmEtV6BRmh4dlzYkv2P3GgpzxEaTS0KXrww9NcIp6otzR+Te3Czh8j1ZU5SN3NRsl7thkLh29r2nl+grKFDI30/bQQHQFIb6HQybPsC9v0Nu+dBh+Gxaa8Ho9fLuF0tCnM4HCxbtkzpD/RUzoHKsetUzkG8xl5rr+XFhS9y/P+O58DnD3R1ZqQnpvPpBZ+6OjMgfnPQUirnQeXYdSrnQOXYdZIDEU1yvhmf1Mhcwl6v+kAjNDw6Lqwe61i0Zsqpyg3u7dTO7u3GIzR2zfN+XLQWCi9ZCutegRUPQekK33Uz/Mkd0uTdcn2Zk9TNXJStV9uh7u3NH0NdubadPcD7uG7nube3f+/7PIXvwbqXwRGdhbrNUC8ZoSGEECJi7A47MzfMZML3E1i9e7XXfX3b9eWT8z/hwPYHxqh1QgghhBBCGFzANTQ8PtjyXJi7NVNO7Z6v/bQmagvWup6/8QiNP7wfV70L0vNDf91gbP4Yfvb40G/dy1C9o/nHtWl+hIYQQkREzkCtw9lRA7t+8thf4H1c3kj3dtEsOOhB9+3t02F+wzoblRth0MORa6+JSIeGEEKIsNlctpkFWxawfOdylu5cyk+bfqKkusTrmB45PTiv33ncM/weMpMzY9RSIYQQQgghTKDx6Ae9gyPcIzSqd7nXoWgzBBLS3Pd5dWjsdXd86Gqi0KGx9TPv21Wbmn9MWldI7RiR5gghRLNsSdBmsDbdlKfGIzRS8yC7P5StgOLfobYMkrK1+zb+z33cykegy2nQ/sjIttsEpENDCCFEq9gddv7z2394+pen2VQW+A+Lw7sezjOjnuGwLodhsVii2EIhhBBCCCFMKphFwT1HaDReQ8PphGB+9/bspOhwlPd9nh0apUuhttj7/prdzT9/a5WtCP7YgQ/A5o+g/12Ra48QQgSj3VDvDg1bCnQ81ve4jsdr73NOB+z8AbqeAfZa2Pa193ELLoFTV3q/7ytI1tAwIKvVSkFBgaFXk480lXOgcuw6lXNgttiX7ljKUW8cxYTvJ/jtzMhNzeXsA8/mnbPeYd4V8xjadWiznRlmy0GkqJwHlWPXqZwDlWPXSQ5ENMn5ZnxSI3MJa72cDm2qEk/+FgW3BphyavHt8HEOrH+j+dfa9bN7u12jb/96dmjsmO372OpdzT9/azjsUL66+eMALFbodzucsgT2O7/Zw+X6Miepm7koXa+2h3vfPvoTSOvse1ze8e7tolnazx1zoK7U+7jKDVA0M6xNbMwM9ZIRGgZVW1tLSkpK8wfGMZVzoHLsOpVzYIbYN5dtZtKcSfzvz//hxOnaf0z3Yzi629EM6TSE/h3607NNT6yWlv8naIYcRIPKeVA5dp3KOVA5dp3kQESTnG/GJzUyl7DVy99i235HaHi81vpXob4S2h8Fqx7T9v16BfS6HMpWa9/qzejh+7w7PTo0Gk9nYvV4fked72NrItyhUbnBnYsOw2Hnj4GPTekE1pZ91CXXlzlJ3cxF2Xrlj9bWyKjeAYe+BO2H+T+uwwitQ9bpgB0NHRpbprnv328sbJqqbe+cC11OjWSrDV8v43a1KMzhcLBmzRpDryYfaSrnQOXYdSrnwOix79m7h1um38IBzx3AW3++5erMOKDtAfx42Y/MuXQO9x97P2f2PZP9c/cPqTPD6DmIFpXzoHLsOpVzoHLsOsmBiCY534xPamQuYa1X4+mmwGNR8AAjNNa/AnNO1KYs8VT4PnzdD748AMrXet9Xvw9KGhb6zuoDKe2977c186FWazs06irhp3Nh/sVgr/G9v3yle7vDCEjrFvi50rq26KXl+jInqZu5KF0vWwocNwNOWRq4MwO0NTNyD9W2y1bAvu3utYNsqd6Lge+YG6nWAuaol3RoCCGEaNbW8q3c/P3N7PfMfjy54ElqGv7QaJPShsdPeJw///EnR+93dIxbKYQQQgghRBzx16HR3Boa+n1bPvbeN38M4NQ6Qja87n1f8e/ukRftG62fAUF0aISwhkbVJlj/GtTsgQ1vat9ELnwHNr7te6zn+hlZ/SB3SOD2tbBDQwghDMNzdNzGt92dxZ1GQXo3yCnQbpcs0hYOV5hMOSWEEMKvqtoqVuxawYsLX+Sdpe9Q5zG8PCUhhRuH3sjtR95Om9Q2MWylEEIIIYQQcaq+iREagdbQ0O2YE/h5a4u16ac2vQfdx3qvT6F/Q9iTvw4Ni83dqRLKGhpzT4Oy5fD3t5CQ4d7/99ew/1Xex5Z6dGjk9IeqQ2Drpx5tPsS9Boh0aAghzKrNYPf2+tfc2+2O0H52OAZKl2nTUu36CbqcFtXmGYl0aBiUzWaLdRNiTuUcqBy7TuUcxCr2beXbeO6351i0fRFr9qxhc9lmn2NSElK4fNDl3HX0XXTNitwfCyrX35PKeVA5dp3KOVA5dp3kQESTnG/GJzUyl7DVq8kRGh4dGv46HCrW+u7TVW6E+WOhZDFs/w7yTnDfl97d93h/z5/dT/tgDVo+5VR9ldaZAdrIDP1bx6AtdmuvBVuSe58+QsNig8wDoI3HCI3kdtq+VnRoyPVlTlI3c5F6BcGzQ6PiL/e2Piqt4zHw13Pa9o65kenQcNSB02L4ekmHhgHZbDYKCgqaPzCOqZwDlWPXqZyDWMReUVPBY/Me48kFT7LP37fAgJyUHK4/9HpuGHoDHdI7RLQ9Ktffk8p5UDl2nco5UDl2neRARJOcb8YnNTKXsNbLb4dGFZQs0aZqcr2onxEaTSlZ5H588SLI2N99X7qf9Sn8jQBJy9c6RuorW96hsW+79229YwS059s9DzoeC3/eo43YKP1Tuy+ztxar55RTad0gfT/37dSWdWjI9WVOUjdzkXoFKauP1oFsr/ben3uw9rP9cPe+pkbhhapiPcwfi637RRQU/F/4nz+MZA0NA3I6nZSXl+N0OmPdlJhROQcqx65TOQfRjL3eUc+LC19k/+f254GfHvDqzMhOzubwrodz2aDL+M/J/2HThE08cNwDEe/MALXr70nlPKgcu07lHKgcu05yIKJJzjfjkxqZS1jr5a9DY9dP8O1g7YN+nb8Oh6Z4doY462H3fPfttHzf4y0W39dI6QDJDYuHt3QNjb3bmr7/729g79+w4kGt80aX3b/htdvB/tdoH/wdMF6bNiu5vdYx0+WUFjVFri9zkrqZi9QrSNYEyG7U8ZOxPyTlaNsp7SBnoLZdsgjK14TvtQunav+37PkN5+JbqNw6z9D1kg4NA3I4HGzYsMHQq8lHmso5UDl2nco5iEbsTqeTr/76ioH/Hch1X1/HzqqdACRaE5kwdAJbbtpCye0lLLhyAW+c+QbXH3Y9WclZEWtPYyrX35PKeVA5dp3KOVA5dp3kQESTnG/GJzUyl7DWy1+Hhj8t7dBorKpQ+5mUC4kZ/o9pPO1UcntI0Ts0isFh931MIPv+bvr+v7+FynW++/UODYDDXoLzKqDX5ZC5P5y1DU5fA4kt+7tFri9zkrqZi9SrBdoM8r7tOSINoMfF7u01z4bnNbdPh/njoL5Cu52Wz7YtWwxdL+nQEEIIhfy15y9GvTOK0987nVW7V7n2n9vvXFZev5KnT3qarlldsVgsMWylEEIIIYQQIugOjaamnErfD1K7aNv+Fvz2OtbPdFOu12jUoZHSQVu/AgAn1O7xeUhA+wKM0NBfo2wF7F7gfV9SG20khierxyzq1kSwyEdcQgiTyx3sfbvtId63e10JCena9oY3obbE9zlK/oQldwY/gqPwXfd293E4TlzIvtS+QTc5FuTdXgghFLCvbh+T5kyi4L8FzNgww7V/WNdhzLtiHh+d9xH75+7fxDMIIYQQQgghoirA+nY+/C3arcseAKf/BaO3QL/bmn6etBZ0aCS3d085BVDdgnU09gYYodH1bPf2No8ptY7+FM76W5tfXggh4lmbRh0ajUdoJLWBHpdp2/a9sO5V7/udTvjpXFj5CPx0jna7OXoHsjUZhr4OiZkhNT2apEPDoFJSmviFRBEq50Dl2HUq5yBcsRfvK+aHwh949tdnGfDfAfz7x39Ta68FoFt2Nz467yPmXTGPI/KPCMvrhZPK9fekch5Ujl2ncg5Ujl0nORDRJOeb8UmNYmTbVzBzBGz+uEUPC1u9wjHlVPp+kJAGaV2b7xBo6QiNFI8OjU3vw/YZBMXflFMpHaDjCPdtz3U9Mns13WnTSnJ9mZPUzVykXkHKKQA8Zsxoc7DvMX1ucG8XvuN9X8U695R9/ka7NVazByrWatu5B4MtCTB+vRKaP0REm81mo29fYw/tiTSVc6By7DqVc9Da2Ev2lXD7zNv5dt23bC3f6nN/gjWBW4bdwj3D7yE9Kb01TY0YlevvSeU8qBy7TuUcqBy7TnIgoknON+OTGsXQoonaBz2ly6HrWWC1NfuQsNYrXFNO6TL2R/ugLMA3dpsaoWFtZoTGigdgBf/f3p2HN1WlfwD/JulKV8rSshQoSIFCoeyLgoAKisowKrjroA4qbriDKIiouM0oiqOMK6KI229kRGFAxAVQZC1LWUtbllJa2tKNrsn5/XG5adIWaKHJvSfn+3keniY3N+l53/em3JOTcw8w4N/ABX8/c3vruuRUZC8gzGXARbisyRESd+bXOw98f8mJdZML69UAfiFA88HaoG5UfyAgovY+4fFAVD8gbyNwYhtQegwIjtYey/7Ffd/UD4CCFO12pzuBmpcXP/5H9e1mgwDIUS/O0DAhh8OB3NxcUy++4mkq50Dl2HUq5+B8Yl93aB2S5ifhvc3v1TmYcXH7i5F8TzLmXDrHtIMZgNr1d6VyHlSOXadyDlSOXccckDfxeDM/1sgg9gqgOFW7XZEHnNhar6c1ar0aY4aG6yCFX7D7AEdN57yGhotNU7RvCLtyVLlf9sR1hobVX/sZPaLuGSSBzU+/UHkj4PtLTqybXFivBrpwEdD7H8BFX5x+n5jLqm9n/Vh9O/tn9/0OfAj8+XftX9qC2q/jOqDRYjAAOerFAQ0TEkLg0KFDEPW5zpmPUjkHKseuUzkH5xJ7WVUZpv04DcM+GoaDBQcBACH+IRjWfhju638f5l81Hxv+vgGrb1+NhBYJnmp6o1G5/q5UzoPKsetUzoHKseuYA/ImHm/mxxoZ5ORBQLh8mJP1U72e1qj1OtcZGvogAVB7AMN10CAgyv2x81lDQ2c/Cay7Vcvd/veBZb2BL0OA/8QABbu1gQ19QCOiBzB8GdD3TaDLFCAoGvAPd3+9kA6nb1Mj4PtLTqybXFivBgppD3R7BAg9w+y0VqOqb2et0H4KARz7+fTP2fWP2mtquF6S6tQMDRnqxUtOERFJSgiBJXuWYOqPU7End49z+9B2Q7Ho2kVoG97WwNYREREREUms+ID7/WM/AQmPe7cNrgMa/pFA5Ym696s5QyOkQ/U10WsOaHS6S4ul+RBtACN9ocvzGjCg4RfsvoYGAAS30S4nlfsHsO8dYOMDcF7eqiwb2DMX6PUCYC87tX9rIOYS7Z8uLF67jIruTB/oERGpqvlgwNZEG0Q+ukIbqChOrb6kX1AMUJbl/pyCHdrff/1vrsMO5P6p3Q5uA4TEeq/954kzNIiIJCOEwP/2/w8D3h+Av37xV+dghr/VH7NHzMZPt//EwQwiIiIiovNRc0Aj5zftMlTeVOUyoBHY7PT7OWq0q+Uw7WdoRyA4xv2xdtcB1+YBl6wGwi6o3m7x0z4AOx3XAQ1bsPYzrDNg1RaQRYebgX7zqvfZ9BBqrdVx9H/u62c0aV3799S87JSHZ2gQEUnJFghED9dul2VpgxWu62d0eQBImAq0GAp0e6x6+5651bcLdgJVRdrt5oM83uTGxBkaJhUWFmZ0Ewyncg5Ujl2ncg7OFPuvGb/i6Z+exm8Hf3PbPrjtYLx39Xvo3rK7p5vnFSrX35XKeVA5dp3KOVA5dh1zQN7E4838WCMDFKe5368qAfI2AC0uPOtTG61e9hoDGvqaHjWV1vgWbu9/aB9itRwKWOr4Hqu+JoXr7Icmbc686LnF5eMj/bJQgc2A4d8DeVuA+Pu0wQ19loa+qLc1QJt1UbADKEkDsn+tfp3gNrV/T1iNAQ0vzNDg+0tOrJtcWC8PiBkFZP6g3f5lLFCeW/1YyxHONTHgqAQyFgMnDwNHvtNm0HW+Fzj4VfX+LS5ye2mz14sDGiZks9nQqVMno5thKJVzoHLsOpVzUDP24opibDu2DVuObsGSPUuw8sBKt/17RvfE8yOex1XxV8FisXi7uR6hcv1dqZwHlWPXqZwDlWPXMQfkTTzezI81MkjNGRoAcGz1WQc0Glyv/G3a68bdCgTWWNPCdUCj5noXrlxnaPiFAQERQMfbz/67QztW3z7T+hkAUFXs/jt0MZdq/3Sd7gJ2zKq+3+56ICIBSJ6m3T/wcfVjwfWZoeHZAQ2+v+TEusmF9fKQtlcDWx7VBpBL0qu3h3QAmvWrvm/1B7o9AWx6ULu/YTJQWVy9SLjFCrSb4NxdhnrxklMm5HA4kJWVZerV5D1N5RyoHLtO5Rw4HA4cPHIQL/z6ArrM64LwOeG48MMLcf+y+90GM7o064IvrvsCW+7egqu7XO0zgxmA2vV3pXIeVI5dp3IOVI5dxxyQN/F4Mz/WyCB1DmicfWHwBtXLXgb8dCmweQqw8f46HncZ0PALPf3rxE+uvvTT8KVn/7268G7Vl5JqmnTmfSuLqm/XXLjb1QV3uc8Kib8PaDW6+r7r+hj1GtDocOZ2nSe+v+TEusmF9fKQ0I7Apb9VDypbbMAFdwOj/tAGMVzF3w8kPFl9f+sTwMlD2u1Wl7tdAlCGenFAw4SEEMjKyjL1avKepnIOVI5dp3IOfk7/GSO+GIGnVz+Nvbl7IWpcd7ZDZAd8/JePsWPyDkzoPgHWuqaQS07l+rtSOQ8qx65TOQcqx65jDsibeLyZH2tkEH1AI6RD9SyBnHXu61rUoUH1ylkDlOdotw//R/vGrCvXAQ37ydO/TnArYOwB4Krd1etn1EdgFDD0/4Du04EeT59538rC6tv+Z7gUSZO22gdqANBmLNBsANC0FxDYoo5967rkVGf3+6Edztyu88T3l5xYN7mwXh7UYjAwcqX2939sGjDgXSA4uvZ+FguQ9BLQY0btxzr+ze2uDPXiJaeIiEzg14xfMeuXWfgprfpbXzaLDX1a9UFSTBKSYpLQO6Y3+rXuB3+b/xleiYiIiIiIzktFPlB5Qrsd2lFbxyH1A8BRDhz/HYgZ2Ti/56jL5WTtZcDR5dqi3c5tLgMarpd8CungfnkRoO7BgfpofYX272yq6jlDAwD6vgV0eUhrp8UCwALEXAZkLHLfr64ZGn5NtDU3ivZqA0mui5ETEVHdas5uO53EZ4H8rcCR/2r3A5pqg8+S4YAGEZGBfkn/BbN+mYXV6avdtvdr3Q/vX/0+esX0MqhlRERERESKcr3cVGhHoOVwbUAD0C475R+mzTg439kDWe7r4+HQ/9UY0Cirvh0WX72gdvNBQPRI4MCHQOw159eG+nKdoeF3lsVirbbaH651vhs49HX1eh9BLYGgmLqf3/9tYPdc7XJVRETUeCwWYPACYOVFQMFOoNtjgC3Q6FY1GAc0TMhisSAqKsqnronfUCrnQOXYdSrk4Of0nzHrl1n4Of1nt+2dmnbCvd3vxYMXPwh/PzVnYqhQ//pQOQ8qx65TOQcqx65jDsibeLyZH2tkgJoDGtEjqu/vfEH75xcGjP4TiOjq9tQz1steAYhKwC8EKMsG8re4P575PWAvr/5wSZ+hYQ0AEmcBmcu0D6P6ztUWCY+fDER66QtQfd4A/ji10HiXhxr+/JbDgHGHgON/AEX7gFajtIGPutRcaNyD+P6SE+smF9bLZAIigcs3ASUZtS/zBznqZRFmviCWFxQWFiIiIgIFBQUIDz/LtEkionMkhMDxk8exIXMDXln7Cn7J+MXt8QuiLsDTQ5/GzT1vhp+VY81EROR9PC82BvNOZEIprwBbTy2eeuFioP31wNJuQOFu9/2iRwIjfzx1WaWzKDkELO8DQAAjVwEFKcC6m7THLDZA2LXbF38PtBmj3V7aFSjcA/hHAONPAI5KANbTDwR4kqMSSPsECGwOtP2L938/ERH5vPqeF/vearI+wOFw4ODBg6ZeTd7TVM6ByrHrfCUH249tx6TvJmHwB4PR7JVmaPlaS1y56Eq3wYzOUZ2xYNwC7LpvF25Puh1WWH0i9vPhK/U/XyrnQeXYdSrnQOXYdcwBeROPN/NjjQxQnFp9O7Sj9tN1lobu2E9AxmK3Tc562e3awMjSrsCBBUDq+0D5caA8F9jyuLZehq7z5OrbWSuqb+sLkNuCtZ9Wf2MGM/Tf3elOnxvM4PtLTqybXFgvuchQLw5omJAQAnl5eaZeTd7TVM6ByrHrZM9BXmkepiyfgt7ze+O9ze/hj8N/IL8s322f+GbxWPjXhUi5LwW39brNOStD9tgbA3OgUTkPKseuUzkHKseuYw7Im3i8mR9rZICCXdW3wy7Qfra6vHpbRI/q25unAKXHnHeFEMjLzQWSp2mzPAr3AJseBA7/p/o5WSuBtIXabVsToPu06seOr9d+VhRUr1uhD2hQo+P7S06sm1xYL7nIUC9e14SIqJEcKTyCf/7+T8zfNB8llSVuj8WGx6JL8y7o0qwLhrUfhmu6XcNLSxERERERmY0Q2kKpABDcGghoqt1uczWQ+BxQkQ/0fBb4/Xbg8LfaWhh/TASGf69deir7V3TKeALWkxurX7OyEDixveYv0n50fwoIbqUt+l20F8jfDORuAH4dB1Se0PYJiPRUtERERNLhp2lEROdp9/HdeG3da/gk+RNUOiqd24P9gjF96HQ8NOghhAaEGthCIiIiIiKql7JjQEWedtt1JobFAiQ+U31/wHzg+O/a/keXAXvfBiITYf35MoTp62GcTavR1bMzmg3UBjQcFcDPY7TLUwGnZnBMP/+4iIiIfAQvOWVCFosFMTExpl5N3tNUzoHKsetkyIFDOLBs3zJc/unl6PZ2N3yw5QPnYEaQXxAm95uM3ffvxvRh0xs0mCFD7J7GHGhUzoPKsetUzoHKseuYA/ImHm/mxxp5QFUpIE5zbfCCHdW3I7qf/jWCWgKDFlTf3/UKsPdNWE4NZoiwzsBFXwFN2rk/r8czgDUAiOwJDP4UsJz6WKb5wOp99MGM0E7AlTuBdtfWMzBqKL6/5MS6yYX1kosM9bIIM18Qywvqu3o6EalNCIGDBQeRfCwZW7O24rPtn2Fv7l63fSICI3Bf//vw4MAHER0abVBLiYiIzg3Pi43BvBN5Wc46YPXlQFAL4PJNtS/ntHuuti4GAAx8X1sI+0xWj9FmaLgKbA78NVNbSDt5OrDzRW17QBRwTTYABwAL4HoJ2tyNwP/6u79OrzlA96kNi4+IiEhS9T0v5gwNE7Lb7UhNTYXdXs9pqj5I5RyoHLvOLDkQQmBl6kpc8dkViHw5Eh3mdsBfFv8FM3+e6TaY0SGyA1677DVkTMnAC5e8cF6DGWaJ3UjMgUblPKgcu07lHKgcu445IG/i8WZ+rFEjEgLY8hhQVQQUHwAOfl17H339DMD9klOn0+Hm2i8RcSns4tTHLXG3ATj1Ldc2VwFWmzbQUXM9vciegC3IfVv7G87+++m88P0lJ9ZNLqyXXGSoF9fQMKmioiKjm2A4lXOgcuw6I3NQVlWGr1O+xlt/voU/j/x52v2GdxiOhwY+hKvjr4bNamu038/6Mwc6lfOgcuw6lXOgcuw65oC8iceb+bFGjSRnrbbuhS5rJXDBXe77uF1yKuHsr9n2L9o6F/aT1b8m6GI4Lzob3gUY/AmQswboMeP0r2MLAJr2AY6v0+63uBAI7XD230/nje8vObFucmG95GL2enFAg4jolD3H9+Dfm/6Nj5M/Rl5pnttjrUJboW/rvujZsid6RvdEv9b90Cmqk0EtJSIiIiKisxIObRbG/neBolTg5EH3x4+t0vbR17EQonqGRkh7wD/s7L/DP1Qb1Mj4XHuJgGYoDunnvk/cLdq/s2k+qHpAo46ZH0RERMQBDSIibD66Gc/98hyW7FlS67Ge0T0xfeh0XNvt2kadhUFERERERB62YTKwf/7pHy/PBfK3AFF9tfsnDwOVhdrtMy0IXlOHm6oHNNqOAyzn+FHLBfcAh74BgtsAHW49t9cgIiLycRzQMCGLxYLY2FhTrybvaSrnQOXYdd7KweHCw3hsxWP4YucXbtsDbYEY33087u57Ny6MvdCrtWD9mQOdynlQOXadyjlQOXYdc0DexOPN/Fijc3Rih/tghtUfcFRqt5sNAHJPXVo25WUgrLM2g8Nt/YwGDGi0HgN0mQIU7gJ6zEBseci51Su8MzA2DWCtvYbvLzmxbnJhveQiQ70sQghhdCOMVN/V04lIfgVlBdiatRWbjm7C5qOb8e3ub1FSWeJ8vE1YGzw86GH8LelvaNakmYEtJSIi8j6eFxuDeSfykLU3AhmLtduJs4CEJ4CjK7X74V2BpfFnfv6QRUCHGz3bRiIiInKq73mx1Yttonqy2+3YvXu3qVeT9zSVc6By7LrGzsHGzI0YuWAkIl+OxPAFw/Hoikfx2fbPnIMZzZs0x7wr5mH/g/vx6JBHDR3MYP2ZA53KeVA5dp3KOVA5dh1zQN7E4838WKNzULgHyDg1CzuwBdDtUcAWBLS9WvsXdgEQ0qGOJ1qAJu2Ajn8DYq89p1/NesmF9ZIT6yYX1ksuMtSLl5wyqbKyMqObYDiVc6By7LrzzYEQAuuPrMeb69/E5zs+r3OfQFsg7upzF2aPmI2mwU3P6/c1JtafOdCpnAeVY9epnAOVY9cxB+RNPN7MjzVqoL1vAzh1MYpujwJ+Ie6PWyxA53uArVOB4FZA9+lAzChtIXBbwHn/etZLLqyXnFg3ubBecjF7vTigQUQ+Z/3h9Xhg2QPYkLnBbXvHph0xutNo9GnVB31b9UX3lt0R0AgdFiIiIiIiMpHMZdpPi5+20HZdEp4E2t8IBMU0yiAGEREReQcHNIjIZ5ysPInHVjyGdze+C4Hq5YGigqMwY9gMTO4/Gf42fwNbSEREREREHlV8ACjer91ucSEQEHH6fUPaeadNRERE1Gg4oGFCVqsVHTt2hNWq7hInKudA5dh155KD7JJsjP18LNYfWe/cltgyEY8MfgTXd78ewf7Bnmhqo2P9mQOdynlQOXadyjlQOXYdc0DexOPN/FijBjq6ovp2q1Fe//Wsl1xYLzmxbnJhveQiQ704oGFCFovljCu5q0DlHKgcu66hOUjJScHVn1+NA/kHAABN/Jtg9ojZeHDgg/CzyvVnjvVnDnQq50Hl2HUq50Dl2HXMAXkTjzfzY40ayHVAI8b7Axqsl1xYLzmxbnJhveQiQ73MO9SiMLvdju3bt5t6NXlPUzkHKseuq08O7A47ck/mYmHyQgx4b4BzMKNNWBusu2MdHhn8iHSDGQDrDzAHOpXzoHLsOpVzoHLsOuaAvEnK4004jG6BV0lZI29y2IGcdcC+d4AdzwOH/6NtD2wGRPXxenNYL7mwXnJi3eTCeslFhnrJ92mfIsx80HiLyjlQOXadaw6qHFVYnbYaX6V8hdXpq5FTkoOC8oJaz+kV3QtLb1qKtuFtvdnURsf6Mwc6lfOgcuw6lXOgcuw65oC8SarjbfssYNerQPentH+uSjKAAx8DsdcCkT0MaZ6nSFUjbxIC+HUckLm09mMxlwEWY77DyXrJhfWSE+smF9ZLLmavFwc0iMg0hBDIKs7CjmM7sOrAKpyMOomwwDCM/GQkjp88fsbnTkyaiLfHvC3NWhlERERE1EBCACkvA/ZSIHk6ENEDaDtWe6wsB1g5FDh5SBvwGL4MaDnU2PaS5x1eUvdgBgC0/at320JERERewQENIvKqY8XH8EvGL0jLT8PR4qPILMqs/ll0FKVVpc59RZjAcyOeQ6W90rktyC8I7SLaoWlQU0QFRyEqOArjuo7DdQnXGREOEREREXlLWZY2mKH7YyIwej0Q0h5Ye4M2mAEAVSXA6lFAYIvq/cO7Ah0nAn6h2uOxfwUCIr0eAjUiezmw5bHq+92fBiK6ASe2AyHtgHbjjWsbEREReYxFCCGMboSRCgsLERERgYKCAtMseCKEQFlZGYKCgmCxWIxujiFUzoEvxV5hr8CRwiPYm7sXq9JWYUXqCiQfS67388fGj8WSG5dg8veTcfzkcUzoPgFjOo9BE/8mHmy1sXyp/ueKOdConAeVY9epnAOVY9cZlQMznherwOi813m8VRYDuX8CzQcDfiaa/ZqzFlh5kfs2WzAQ1FK73FRDtLocGLGs8drmQfy7eBq7/lE9oNFyOHDJT4AJ8sN6yYX1khPrJhfWSy5G1qu+58WcoWFSAQEBRjfBcCrnQMbYK+wV2Je7D+uPrMcfh//AH4f/wM6cnXDUc9HGyKBItApthdiIWHRr3g0JzRPQt3VfAMC/rvyXJ5tuOjLWv7ExBxqV86By7DqVc6By7DrmgLyp1vH28xgg5zcg9jpg6FfGNKouxQdqb7OXVg9mWP2B4cuB1PeBI/8F/MIAvyaAvQwozXR/3tHlQO5GoFk/z7e7EfBvQg32cmDXa6fuWIC+b5hiMEPHesmF9ZIT6yYX1ksuZq8XBzRMyOFwYPv27UhMTITNZjO6OYZQOQdmj72sqgw/pf2E7/d+j505O3Gs5BiOFR9Dfln+WZ9rgQV9WvXBqE6j0DumN1qHtUarsFZoFdrKbe0Lu92u5SA60ZOhmJLZ6+8NzIFG5TyoHLtO5RyoHLuOOSBvqnW8lWZpgxkAcOhrIH8r0DTJyCZWcx3QGPwJkLsB2Pc2IBxAqyuAxJlA84FAzEj35wkB5K4HjiwFStKB9M+07bteAy5a7LXmnyv+TahDxhfaJcgA7fJhTXsZ2x4XrJdcWC85sW5yYb3kIkO9OKBBRHUSQiC7JBs7c3YiOSsZW49txdasrUjJSUGVo+qsz7dZbOjRsgc6N+uM2PBYDGwzEJd0vATNmzT3QuuJiIiI6JzkrHG/n/IKcOEiY9pSU3Fa9e2mSUDcrUC3R7UBjdC40z/PYgGaD9L+2cuArJVAWTZw6CugeM6Zn0vmIwSw5/Xq+10eNq4tRERE5HUc0CBSkBACR4uPwmqxIiY0xrnt7Q1vIyUnBTtzdmJn9k7kluae9bVC/EMQExqD6NBotAlrg/6t+2NQ20Ho27qvT691QUREROSTsn9zv3/wC6DX80BoR2Pa48p1hkbIqUGIkPYNew1bEND5fmD7DG0gZM0EYPgyIIhfupHGsVXazCEAiOoHtLjQ0OYQERGRd3FAg8iHVdgrcLjwMA4WHMTu47uxI3sHtmdvx47sHcgrzcP0odPx/MjnAQAWiwVz1sxBZlHmaV/PZrGhW4tuGNB6AK7ucjVGdBiBiKAIb4VDRERERJ6WU2NAQziAbTOBIQuNaY8rfUAjsAXgH3rurxN/H7BvnjZLI28jsOpiYNTvgL/3F2WnBqoqBTbcV32/68OmWjuDiIiIPM8ihBBGN8JI9V093ZuEEHA4HLBarV5fTd4sVM7B2WIXQqCgvAB5pXnILsnG/rz9SMtPQ0llCcqrypFZnImDBQdxsOAgjhYdhcDp3+Jju4zFkhuWOO9ftvAy/HjgRwBA67DWSGiRgO4tuiOxZSJ6t+qNhBYJCPILavyg64iR9Vcvdh1zoFE5DyrHrlM5ByrHrjMqB2Y8L1aB0Xl3O96qioCvm2qDGE3aApXFQOUJbceRPwIxl3i9fU72MuCLJgAE0GwgMPqP83u9EzuB1ZcBpUe1+0kvAwlPnHczPcG0fxeFAzj+uzZbpklr7/zOLU8Au17VbjcbCFy2FrCa6/repq0X1Yn1khPrJhfWSy5G1qu+58WcoWFSFRUVCAry/AfHZubrOahyVOFw4WFknMhARkEGDhYcRFF5EaocVSivLAesgEM4UOWoQkF5AVLzUnGw4CDySvNgF/bz+t2tw1ojsWUihrQd4rb9ueHP4dmLn0VCiwQ0DW56Xr/jfPl6/c9E5dh1zIFG5TyoHLtO5RyoHLuOOSBvch5vOb9rH1IDQJux2kLLf96t3f/zHuCyX4HgVuf3yw4s0BbjtliB4DZA39eB8C5nf15JBqB/UacxLn8V2R0YsRL4oYd2f/+/gW6Pae0yIVP+Tdg7D9j0EBDUErhqDxAQ6bnfVVUKJE8D9szV7lsDgUEfmW4wQ2fKetFpsV5yYt3kwnrJxez14oCGCTkcDuzZs8fUq8l7mqw50GdPFJUXoaiiCEXlRcgvy8fBgoPOgYuMggxknMjAkaIjcOgdRg+ICY1Bu4h2aBfRDu0j2iMuMg6J0Yno0bIHooKj6nzO4NjBHmtPQ8ha/8agcuw65kCjch5Ujl2ncg5Ujl3HHJA3idSPcCjbik4Db4Ut+5fqB1oMBdpPANI+AXLWAsX7ge+6AElzgM6T677MT0UBkPsn0KwfENBUW7xZOKo/dM7dAKy/CxBV2v0T24A/Tmjfsnd9vYwvgcPfAt0eB6J6a9tc189orEW8I7sDMZcCWT8CxanAsZ+0+yZj2r8J+9/TfpZlA0eWAnG3eOb3lGQAv/wFOJFcva3nc0BEN8/8vvNk2npRnVgvObFucmG95CJDvTigQXQe8krzsClzE5KPJeP3w7/jt4zfkHMyxyO/y2qxok1YG7QIaYFmwc0QFRyFZsHNENc0DhdEXYDIoEgE2ALQMqQlYsNjEegX6JF2EBEREZGPKD4Ay6b7EG8vg6j6DshcWv1Yy4u02QoDPwBWDgXKc4CqImDj/UBplvaBcsEO4NB/gKL9QEWetlizvUxbqPvipcD6v2sDIb1eBNpfD6y7uXowAxYAQrtk0dHlQOsrtM35ycC6mwBhBzKXAZf9BkT2qDGg0YgLlF9wtzagAQD73gGiL1F7TQbhAPa8CZRmAj2eAfzD6t6v+IBWf92R/zb+gIYQ2kDJ+ju14w/QZmYkvQx0ebBxfxcRERFJw5QDGm+//TZeffVVZGVloVevXnjrrbcwYMCA0+7/1Vdf4ZlnnkF6ejo6d+6Ml19+GWPGjPFii0kWQghU2CtQ5ahybvOz+iHAFoDSqlKUVpbiZOVJlFad+ulyX7+dW5qLzKJM/HbwN2w4suGMa1ScTrPgZmgf2R7tI079O3W7aXBTWIQFGWkZiO8cjwC/APhZ/dDEvwnaRbRDgC2gMdNBRERERCrb8xYs9jIAgOXw/1Vv7/g3bQ0NQLsc1JUpQPJTQOqpb+TvfB5IebH68lQ1lWQAy5K0QQkA+HMSsPkRoKpYu99sAND1EWDtDdr9bc8ArS4HIIAN91Y/r/IE8OMwILSTtni3rjEHNNr+BQiKBsqOAYf+D/hxKBAWD1gDtNkaFflAxmLA6g+0HK7NWgntCJTlaB+yh8UD1lPd6vI84OgKIOwC7XJdVv/Ga6ennNgBBLcGAqMAh10bPEhboD1WmgkM+bTu5x1e4n4/cxlgLwdsjfSlqpJDwB+3A8dWV28LvQAY9h9tgIuIiIiUZboBjS+++AKPPPII3n33XQwcOBBvvPEGRo8ejT179qBly5a19l+3bh1uvPFGzJkzB1dddRUWLVqEcePGYfPmzejRQ94THbNO6fGm+uTA7rAjvywf6SfScSD/ANLy07SfJ9KQfiIdRRVFqLBXoLyqHBX2ClQ6Kmu9xkMDH8ILI19A6JzQ825zRGAE+rbui6ZBTREWGIawgDCEB4YjNjzWOWjRLqIdQgJCTh+T3Y6o4igktE5Q+jhg7GpjDjQq50Hl2HUq50Dl2HXMgVwa+oUs0+j9KhxN2kMkPw2bo0Tb1v4mYMB77vsFNQcG/huITAQ2nfpmfF2DGQFR2uyG8tzqQQmdPpjhFwoM/hQI6wSkvAzkbwHyNgF734Zzxoarinz3wQxAW4S6sVj9gYQntQEXQLu8Vs5a7fb++e77Hv0fsO1pIKo/kPenlgNbE212SdeHgXW3ACXp2r62YCCqHxA9Euh8DxAcc17NbPS/CY4qbfAo9X3AL0SbiZPxBXD4P9X7pH8GtBuvLb5dsAM4eRiI6gtE9NAuCeaqqlgbfAiKBjI+12bqdHlIq3NDFaUCP11yat2UU2JGARd+rg28SIB/w+XCesmJdZML6yUXs9fLIoRo+NfLPWjgwIHo378/5s2bB0C7bldsbCweeOABTJ06tdb+119/PUpKSrB0afX06EGDBiEpKQnvvvvuWX9ffVdPJ+/58cCPWLJ7iftMiapSlFSUoKSyBMUVxSiuKEZReRFKKkvO+/c9NPAh/HP0P2F7ruFv1sSWiRjRYQR6t+qNPq36oHuL7rCZdGE6IiIiojPhefG5+eKLL3Dbbbe5fSHrq6++Ou0XsmoyRd5PHgH2vgUEttQ+hD7T+eyBj7VFva2B2of0rS7XPrQPiACCYoDjfwCrRmiXlvKPBLo9Cuw8NZuj/fVAwtTqtQ+O/AD8cuWpFz51CSrdhYu1Nh3/Q9uuD6BEjwRG/ti4l4USQvswf8csoHB3472uzhoIhLTTZnVYbQCsQGUh4CjXBlSatANaXAS0PDU75Pgf2iWdrH7aQEFZNhDeTbukU0QP7Xm5G4Hc9dpgkNVfm71gsQL2Um0wQV90Pawz0DRJm22RuwHI2wCUHNQuEXZi22kaXKMWteLxB/QvillstQevnC/jB7S8WLtsVfMh2uwWIbQ2+ocDgS0AW4CWl6P/02Z55G8CitO1GAHt8mW9XwNir1X7UmBEREQKqO95sakGNCoqKtCkSRN8/fXXGDdunHP77bffjhMnTmDJkiW1ntOuXTs88sgjmDJlinPbzJkz8e233yI5ObnW/jWZogPhYsbqGfhh3w+oqKoALIBd2LFg3AL0a93P6KZ5zStrX8GTPz553q8TFhCGpsFNEWgLRIAtAIF+2s8Am3YZJwu0E+K/dv0r7htwH0Z/Ohp+Vj8E+wWjiX+T6p/+1feD/YMRFRyFliEt0aVZF7QJb3Pe7axJCIGioiKEhYXBouhJu8o5UDl2HXOgUTkPKseuUzkHKseuMyoHZjsvlkVDv5BVk9F598jxduR74OBXQNcp2ofpFQXaB9/+dcyI3jpVm6nhKv5BoN9c922VhdpsjSbtPPfBtsMOFO0D4NAueZT5g/a74m4F/MK1mQd75mqDAcFtgOYDgexfgfLj1a8R1lmbwXH8d6AkzTPtPNuAw/nwj9QuM7V3nra2ydl0ngykflA9ANEQFpuWx5OHUGc8Ed21wavznN3ibfx/TC6sl5xYN7mwXnIxsl71PS821SWnjh8/DrvdjujoaLft0dHR2L277m/KZGVl1bl/VlZWnfuXl5ejvLz6ZKuwsBCAdpkfu137ZonFYoHVaoXD4YDreI++Xd/vbNutVissFkud2wGts1Nze/qJdGw6uslte3FFMYQQtfa32Wy12ni67UbGVNd2m8122piCbEE4nQBbAEIDQhHqH4rQgFCEB4UjLCAM7SPaIy4yDh2bdnQukh0REOH2xjtTTADww40/NDgm19c6U0wNqZMQAqmpqejevbtzipcZ6+TJY6+uHMgeU33rZLfbkZqaisTExFr/ccga05naXtd2u92OAwcOoEePHrVyIGtMehsbUicAp/1bIGtM9a2T/j7o2bNnrZzIGtOZ2l7X9jPlQNaY9DaerU567N27d4e/v79PxFSf7a4xueYgICDAazHVfJzOrqKiAps2bcK0adOc26xWKy699FL8/vvvdT7HbP0Rj7zn2lwJR6srtO12O2AL1dp46rXdYkp8AdaybODARxAWK0SvVyHiH4TF4XCPyRoCBIXACu3jfI/9vY/oqrUxtAsQfal7rN2fhoifog16RPSAxeYPa1UBxIb7YMn4HCKiBxwX/wBLkzZa24vSYdn7FixpCwBHBRDUUhuKEHbAL0xbb8JeARTthsVRgfprpMGMJrFw9P83cPR/sOz/FxA9EqLfu7CGtYcjMgmWDXdra4sENgfC4mFp0hoiazWQux6WyhMQ/hEQ8VNgtfgBe9+EsPoDzYdAxF4PS3kWLHvmApUFZwjDDpw86L7JFgyEdIBoNhii5wuwBcdI9/fe9Xxeb0/NNsoW09m2yxxTXX1P2WPyxTqd7n3Ws2dPZ3tkj8m1jb5SJ1ene5/JGpMv1kmPqbKy0q1e3oypvv0RUw1oeMOcOXMwa9asWtt37tyJ0FDtG0NRUVFo164dDh8+jLy8POc+MTExiImJQXp6OoqKipzbY2Nj0axZM+zbtw9lZWXO7R07dkR4eDhSUlLcCtKlSxcEBARg+/btbm1ITEwEBGCz2GCFFTarDTaLDRZYUFRUhAMHDjj3DQoKQteuXZGfn49Dhw45t4eFhaFTp07Izs52G9QxMqaKigrs2bPHuc1msyExMfG0MV3a+lIsHLoQ5cXlaBnVEs0jmiOhcwIKcguQl1Pddj2mgwcPVsdkB2L8YtCsSTOkpqaaJqaG1KlNmzYoKSnBzp07nR/mmrFOnjz2IiMjUVBQ4JYD2WOqb52EELDb7XA4HEhJSfGJmICG1UmveXFxMdLT030ipnOpU4cOHVBaWur2PpA9pvrWSQiB0tJSAPCZmICG1Uk/kQTgMzEB9auTEAJ5eXnYuXMnevbs6RMxNbROeg7279+PhIQEr8VUXFwMaphz+UKW2fojpnjPDfwAmQHDUVAZgfKK9sCOHSb/e28DDu9yxnQo9iUUBN4Fuy0C2J+LmBh/rU7ZdhTZbgUuuNWtTnt273aPqX1rhFftw9HtX8O/7CBKg7rgZHB3tG/fDv6B4diVegR+x5YjRmyDvz0fTYIDYA/viczyWJwM7gHAgiD7UXToEIeScgeOZOXBIqoQUHUMoVVpaGbLRBkicNzRHieDu6MsIA5hoU0QF98L2ceykeUXA3S5CbD4IyrfgnZhwOFcO/Iin6917B0IvA5FTQvhZ8+D3RqGtlVRaNbnn0j1vwol9hA4rE2A0lN16jEDO7eth7U8C00LlqNJ6Q40iWwFq38oCnMPIaDyKAIrDqPCvxUC4/6CyuaXYnduFIRFG1izHchBYmKMdH/v9feUw+FAZWWlcv+HyRZTQkIC7Ha72zm37DH5Yp1qxiSEQH5+PgD4TEyA79VJjykhIQGVlZVu7zPZY/LFOukxpaamOs8Ng4ODvRpTffsjyl1yqq5vRMXGxiIvL885lcXoETL9Te46Euaro36ni6mqqqpWDmSPqSEzNLZt26b8DI2aOZA9pvrWST+ZVn2GRkpKCmdoAKf9WyBrTA2ZoaF/sFaTrDGdqe2nm6FxuhzIGpPexvp8W1w/B1B5hoaeA2/O0CgsLERUVBQvOdUAmZmZaNOmDdatW4fBgwc7tz/xxBP45ZdfsH79+lrPMVt/hO8588dUs3/oCzH5Yp1cvzmun89zhob5YxJCYPv27ZyhIVlMrufKentkj8m1jb5SJ1c1+7ayx+SLdXKdoXG2z2Q9FVN9+yOmmqEREBCAvn37YtWqVc4BDYfDgVWrVuH++++v8zmDBw/GqlWr3AY0Vq5c6dahcBUYGIjAwMBa2/UCudILXNe+nt4eHBzs1iaLxVLn/qdrY0O3eyOmms4UU105kD2mutS13W6314q9MdvY0O1GHHuezoHZ30/BwcGnbePpXsfsMTV0e1BQkM/FBDSsTmd6H8gaU0O2BwcHN1obG7rdLMdeY+bALDHVd7t+7Lt+U7Im2WKqz3bXmPQcnKmNjR3T6R6n02vevDlsNhuOHTvmtv3YsWOIian7uv9m7I/wPVe/NhoZU13nBLLHVN/tMsakn8+fru0yxnS27bLGdKZzblljOtN2X4pJP1f2pZh0vhbTufRtzR4T4Ht1AqpjOt/PZD3dHzHVDA0A+OKLL3D77bdj/vz5GDBgAN544w18+eWX2L17N6Kjo3HbbbehTZs2mDNnDgBg3bp1uPjii/HSSy/hyiuvxOLFi/Hiiy9i8+bN6NGjx1l/n9GL8BERERERmQHPi8/NwIEDMWDAALz11lsAtC9ktWvXDvfff78Ui4ITEREREZlBfc+L6x4uMdD111+P1157DTNmzEBSUhK2bt2K5cuXO69Le/DgQRw9etS5/5AhQ7Bo0SL8+9//Rq9evfD111/j22+/rddghlk5HA7k5ubWOUVLFSrnQOXYdSrnQOXYdcyBRuU8qBy7TuUcqBy7jjmQyyOPPIL33nsPCxYswK5du3DvvfeipKQEEydONLpp9cLjzfxYI7mwXnJhveTEusmF9ZKLDPUy1SWndPfff/9pLzH1888/19o2fvx4jB8/3sOt8h4hBA4dOoTIyEijm2IYlXOgcuw6lXOgcuw65kCjch5Ujl2ncg5Ujl3HHMjl+uuvR05ODmbMmIGsrCwkJSW5fSHL7Hi8mR9rJBfWSy6sl5xYN7mwXnKRoV6mHNAgIiIiIiKSxZm+kEVERERERI3HdJecIiIiIiIiIiIiIiIiqokDGiYVFhZmdBMMp3IOVI5dp3IOVI5dxxxoVM6DyrHrVM6ByrHrmAPyJh5v5scayYX1kgvrJSfWTS6sl1zMXi+LEEIY3Qgj1Xf1dCIiIiIiX8bzYmMw70RERERE9T8v5gwNE3I4HMjKyjL1avKepnIOVI5dp3IOVI5dxxxoVM6DyrHrVM6ByrHrmAPyJh5v5scayYX1kgvrJSfWTS6sl1xkqBcHNExICIGsrCyoPHlG5RyoHLtO5RyoHLuOOdConAeVY9epnAOVY9cxB+RNPN7MjzWSC+slF9ZLTqybXFgvuchQLw5oEBERERERERERERGR6XFAg4iIiIiIiIiIiIiITI8DGiZksVgQFRUFi8VidFMMo3IOVI5dp3IOVI5dxxxoVM6DyrHrVM6ByrHrmAPyJh5v5scayYX1kgvrJSfWTS6sl1xkqJdFmPmCWF5Q39XTiYiIiIh8Gc+LjcG8ExERERHV/7yYMzRMyOFw4ODBg6ZeTd7TVM6ByrHrVM6ByrHrmAONynlQOXadyjlQOXYdc0DexOPN/FgjubBecmG95MS6yYX1kosM9eKAhgkJIZCXl2fq1eQ9TeUcqBy7TuUcqBy7jjnQqJwHlWPXqZwDlWPXMQfkTTzezI81kgvrJRfWS06sm1xYL7nIUC8OaBARERERERERERERken5Gd0Ao+mjTYWFhQa3pJrdbkdxcTEKCwths9mMbo4hVM6ByrHrVM6ByrHrmAONynlQOXadyjlQOXadUTnQz4fN/G0sX2R0f4TvOfNjjeTCesmF9ZIT6yYX1ksuRtarvv0R5Qc0ioqKAACxsbEGt4SIiIiIyHhFRUWIiIgwuhnKYH+EiIiIiKja2fojFqH4V7AcDgcyMzMRFhYGi8VidHMAaKNRsbGxOHTo0BlXdPdlKudA5dh1KudA5dh1zIFG5TyoHLtO5RyoHLvOqBwIIVBUVITWrVvDauWVab3F6P4I33PmxxrJhfWSC+slJ9ZNLqyXXIysV337I8rP0LBarWjbtq3RzahTeHi48m90lXOgcuw6lXOgcuw65kCjch5Ujl2ncg5Ujl1nRA44M8P7zNIf4XvO/FgjubBecmG95MS6yYX1kotR9apPf4RfvSIiIiIiIiIiIiIiItPjgAYREREREREREREREZkeBzRMKDAwEDNnzkRgYKDRTTGMyjlQOXadyjlQOXYdc6BROQ8qx65TOQcqx65jDsibeLyZH2skF9ZLLqyXnFg3ubBecpGhXsovCk5ERERERERERERERObHGRpERERERERERERERGR6HNAgIiIiIiIiIiIiIiLT44AGERERERERERERERGZHgc0iIiIiIiIiIiIiIjI9DigQUTkQ8rLy41uAhERERERkRLY/yIi8j4OaJBPKS4uRmlpqdHNMMyhQ4ewd+9eo5thqAMHDmDt2rVGN8MQe/bswYwZM1BVVWV0UwxTUVGBkydPGt0MIiJDORwOo5tAChFCGN0EIp/Avpx82P8iIqrNG30RDmj4iNTUVDz77LO4/fbb8dFHHxndHEPs3bsXF110Eb788kslBzW2bNmCfv36Yfv27UY3xTDbtm3DRRddhI8//hg5OTlGN8ertm3bhqSkJLz66qv48ccfjW6OIXbt2oWJEydixIgRuPfee5V8L+zfvx+vvvoqnnzySSxcuBDHjx83ukles3fvXkybNg133nkn5s2bh/379xvdJK/LycnBiRMnjG6GIdLT0/HGG2/gsccew9dff210cwxTUFAAALBarRzUII/Ly8sDAFgsFg5qmBD7h3JhX04+7H/JSeX+koxU7t/IyJt9EQ5o+IBt27Zh6NCh2LBhA/Lz83HXXXfh/fffN7pZXvfRRx9h27ZtmD59Or799lulpn4mJydj6NChuPnmm3Httdca3RxDpKWlYfTo0bjlllswf/58tGjRwugmeU1ycjIGDRqEO+64A+PHj8eiRYtQWlqq1IcLO3fuxEUXXYTAwEBceeWV+Pbbb5XrvO/YsQODBg3C6tWrsX//ftx11124/vrr8d133xndNI9LSUnBgAEDsGXLFuTn5+Opp57Cfffdhw8//NDopnlNSkoKYmNjcc8996CoqMjo5njV9u3bMWzYMHz33XdYu3YtJkyYgNdff93oZnldSkoK2rdvjxdffBEABzXIs1JSUhAdHY0pU6YA4KCG2bB/KBf25eTD/pecVO4vyUjl/o2MvN4XESS1ffv2idjYWDFt2jRRVVUlhBDijjvuEDNmzDC4Zd73v//9T0yfPl08+uijIjAwUCxcuNDoJnnFrl27RJMmTcRTTz0lhBCisrJS/PLLL+Lbb78Va9euNbh13rNgwQJx7bXXCiG0HLzyyivirrvuEjNnzhSrV682tnEetGnTJhEWFiamT58uhBDiH//4h4iMjBQHDhwQQgjhcDiMbJ5XFBYWiksuuUQ8/vjjzm3vvvuuuP3220VRUZGBLfOe/Px8MWTIEOffASGE2L59u7DZbKJv377ik08+MbB1nlVeXi5uvvlmMWnSJOe23bt3iwkTJojBgweLefPmGdg67zh69KgYPHiwGDFihIiKihI33HCDKCwsNLpZXpGeni46deoknnjiCed50Pz580VMTIzYv3+/wa3znkOHDonevXuL+Ph4ERUVJebMmeN8zG63G9gy8kVHjhwRAwYMEH369BEhISFiypQpzsdUOO8wO/YP5cK+nHzY/5KTyv0lGancv5GREX0RztCQWFVVFf71r39h9OjRmDFjBmw2GwBtUapNmzbhyiuvxMyZM5WatrpkyRK89tpruOWWW3D33Xdj6dKluPfeezFv3jyjm+YRFRUVmDp1KkJDQzFu3DgAwDXXXIMHH3wQkyZNwvDhw/HQQw8pMY1y8+bNzlk5l156Kb799lsUFRXh888/xzPPPIN///vfBrew8Z04cQIXXXQRJk2ahOeffx4AcN9996Fjx46YPXs2hBCwWCwGt9I7CgsL0bVrV+f97du3Y8uWLUhKSsKECRMwf/58A1vneZWVlSgtLcWoUaPgcDhw8uRJdO3aFUOGDIHdbsfChQuRkpJidDM9IiAgAFlZWbBatVMaIQS6dOmCl19+GfHx8fjyyy/x/fffG9xKzxFCYMuWLYiLi8Mrr7yCpUuXYvny5Zg0aZLPf5PJ4XBg0aJFiI+Px1NPPeU8Dxo0aBD8/PyUmZ3gcDjwzTffIC4uDu+++y6eeOIJzJkzBy+99BIAztSgxiWEwOrVq9G+fXu89dZbeO+99/DOO+/gkUceAcCZGkZj/1Au7MvJh/0veancX5KNyv0bGRnVF/Fr9Fckr/Hz88PkyZNx5MgRBAUFAQBeeOEFLF68GHfffTeaN2+OefPmISUlBYsXL3ae0PqqQYMGISoqCmVlZXj//fcREhKCv/71rwgNDcXKlSuNbp5HBAQE4Omnn8b06dMxY8YMpKeno0OHDvjwww/RrFkzbNu2Dddeey3Cw8Mxe/Zso5vrUT179sThw4exePFi+Pv744svvkB0dDQyMzMxdepUfP3117juuusQFRVldFMbTWRkJNatW4ekpCQA2n/8fn5+GDVqFL7//nvk5uaiefPmPn9iffLkSeTn52PdunWIiYnB+vXr8dFHH+Gll15CVFQUli1bhkWLFmHgwIHOXPmaoqIi7Nq1C9nZ2bBarWjSpAkyMjJQUVGBxx9/HPfddx+++eYbJCQkGN3URiWEQFVVFdq2bYu8vDyUl5fD398fQgh06NABTz/9NG655RYsWrQIV155pdHN9QiLxYK+ffsiKCgI/fr1AwAsXboUV111FSZNmoT58+cjPDwcAHzub4HVasXgwYNRWFiIiIgI5/bu3bvDZrPh6NGj6Ny5s4Et9A6r1YoxY8agZcuWGDFiBJKSkiCEwJw5cwAAU6dOdXYk9IE/onNlsVgwdOhQhIWFYciQIRgyZAiEELjjjjsghMDrr7/uHNTwpb83smD/UC7sy8mH/S95qdpfkpHK/RsZGdYX8ci8D/IqfUpjWlqauOmmm8SyZcucj61Zs0ZYLBbx559/GtU8r+rbt69YtWqVEEKIu+66S4SGhoqgoCDx1VdfidLSUoNb5zkbNmwQQ4YMEZdddplIS0tze2zu3LmiRYsW4siRIz49/XXdunUiMDBQ9O3bV1x33XVuj6WkpAiLxSJ+/PFHg1rnWXpd9Z+ZmZkiJCREvPjii0Y2y6t++OEHccEFF4hx48aJ6OhosWjRIudjqampokmTJuKDDz4wsIWe9/DDD4vAwEAxc+ZM8eabb4qIiAhx9913CyGEePXVV8WFF14oSkpKfPLvwKpVq4TVahVvv/22EEJ7L+iX2dAfS0lJMbKJXqNP6V27dq2IjIx0Ts+uqKgQ77zzjs/+HRSi+m9gVVWViIuLc4t11apVIicnx6imeYXrezsnJ0e89NJLIjw83Dnlu6qqSvz3v//1+TyQd7geb1VVVWLRokUiMDBQPPzww0II7bI5n376qdi+fbtRTVQa+4dyYV9OPux/yUnl/pLMVO7fyMTbfRHO0JDMoUOHsGvXLuTk5OCyyy5DZGQkAgICnN9GnTdvHpo2beqc6m2325GYmIjo6GiDW954TpcDu92O+Ph42O12PPjgg/jhhx+wY8cOvPrqq5gwYQK+/PJLXHfddUY3/7y5xn/ppZciIiIC/fr1w/z587Fnzx60bdsWQPVItcViQatWrdCsWTOfGbmueQyEhYVh8ODB+Mc//oEHH3wQQgikpaUhLi4OANCyZUsMGjQIkZGRxja8EZzp+LfZbLDb7WjVqhUmTZqE77//HrfccgtiY2ONbnajqvkeCA8PxxVXXIG1a9ciMDAQl156Kdq3bw9Am/7YvHlz9O7d2+0b3LKreRxERUXhueeeQ3h4OD755BNER0fjkUcewYwZMwAAeXl5AIAmTZoY2exGcfLkSfj7+ztnYgghMHLkSMyZMwcPPPAAgoODMXHiROe3TiMiItClSxefiF3nmoOa9G+9DBkyBD/88APGjBmDu+++G8HBwfj000+ln0p/ptgtFguqqqpQVlYGq9Xq/ObWU089hZdffhmHDh3ydnM9JjMzE0eOHEFubi4uvfRSWK1WWK1WVFVVwc/PD82bN8cdd9wBAHjxxRchhEBubi7mzp2LgwcPGtx6ks3pzj30481ms2H8+PEAgIkTJwLQ+iDvvPMO9u/fb2TTlcD+oVzYl5MP+19yUrm/JCOV+zcyMkVfpFGGRcgrkpOTRXR0tOjTp48ICAgQ3bt3F48//rjIz88XQmijYTVHkqdOnSqGDx8u8vLyDGhx4ztdDnJzc4UQQrzwwgvCYrGIVq1aiQ0bNjifN2XKFLFr1y6jmt1o6or/0UcfdcZfUVFR6zkPPfSQuO6660RJSYm3m+sRdeXgsccecx7js2fPFhaLRdx5551izZo1Ijs7Wzz99NMiLi5OZGZmGtz683O2vwH6N9KFEGLZsmUiLCxMfPfddwa11jPO9h7IzMwUHTt2FB999JEQQntPzJw5U8TGxoqMjAwDW954auagW7du4sknn3QeBzk5Oc7bukmTJom77rpLVFRUSP2No507d4qRI0eK7777TlRWVgohqr8JcvLkSTFjxgxhsVjEzJkzxdatW0V+fr6YOnWq6Ny5s8jOzjay6Y2mrhycyS+//CIsFouIiooSmzZt8kILPac+sdvtdnHy5EnRsWNHsXnzZvHcc8+JkJAQn/omcnJysoiNjRUJCQnCz89P9O7dW7zzzjuiqKhICOH+f0FOTo6YM2eOsFgsomnTpm7nRkT10ZBzj6qqKrFw4UIeb17E/qFc2JeTD/tfclK5vyQjlfs3MjJLX4QDGpI4ceKE6NOnj/OEp7S0VEybNk0MGTJE/OUvf3GeBOkOHDggnn76aREWFia2bdtmUKsb15lyMHbsWJGfny+Sk5PF3/72N7FlyxYhhPsbSXbncgw888wzIjIyUuzYscOgVjeuM+Vg3Lhxzo7Zhx9+KFq1aiViYmJEQkKCaNeundi8ebPBrT8/9a2/6zE/atQocfHFFwu73e4TJ2Vny4E+dVEf2Bw4cKAYPny4aNOmjfT1150uB4MHDxZjx44Vx48fF0JUf8i/b98+8cQTT4jw8HDp/w6kp6eLrl27CpvNJjp06CBWrFhR5wnvhx9+KKKjo0WbNm1Et27dROvWrX2m/vXNga68vFzcc889IiwsTOzcudOLLW18DYnd4XCIpKQkMWDAABEQECA2btzo5dZ6Tk5OjrNTnpaWJrKzs8WNN94oBg4cKKZMmSIKCwuFENVT84UQ4tZbbxXh4eHSHwPkfQ0997Db7eLOO+8U4eHhylzmz0jsH8qFfTn5sP8lJ5X7SzJSuX8jIzP1RTigIYm0tDTRsWNH8fPPPzu3lZeXiw8//FAMHjxY3Hzzzc4DZ8eOHWLChAkiPj7e+cG+LzhTDgYOHChuu+02UV5eXq8RXRk15BjYvn27GDt2rOjQoYNSx8DNN98sCgoKhBBaJ2Dt2rVi9erV4siRI0Y1udE0pP76fx7ffPON2L9/vyHt9YSz5eCmm25y5uDrr78W99xzj3j55ZfFvn37jGpyoztTDgYNGuSWg9zcXPH000+Lfv36Sf+BfmVlpXj99dfFuHHjREZGhrj88stFTEzMaU94U1NTxc8//yyWLVsmDh06ZECLG19DcyCEEOvXrxfdu3eXfnZCQ2K32+0iJydHhIWFCX9/f5/70G779u2iQ4cOIjk52bmtvLxczJgxQwwYMEBMnz7duWaYw+EQCxcuFNHR0fz2Gp2Thpx7OBwO8cMPP4i4uDjOzPAS9g/lwr6cfNj/kpOq/SUZqdy/kZWZ+iIc0JBETk6O6NGjh3jrrbeEENWjyXa7Xbz99tuiT58+4pNPPhFCCFFaWip+++03kZ6eblh7PeFsOUhKShILFy50e8yXNOQYOHnypFi1apU4cOCAYe31hPrkYMGCBUY20WMaUn9fmpnk6mw56N27tzMHvqohx4EQQhw5ckQcO3bMkLY2JofDIdasWSO++eYb57bRo0eLVq1aiRUrVjgv0VDXpTV8RX1z4Co/P7/WNz5l1JDY9fp/+umnPvktuz179oi4uDjn5Sz0zl5lZaV4/PHHRVJSkvj111+d+x84cMDnzgfJexr6f05WVpY4evSoIW1VEfuHcmFfTj7sf8lJ1f6SjFTu38jKTH0RixCnVgcjU6usrMSNN96Io0ePYtGiRc4Fb3WjR4+Gn58fvv/+e4Na6Hn1yYG/vz+WLl1qUAs9i8eA2seAyrHr+B5Q+zhwOBzOBeF0l19+OZKTk/HJJ59g5MiRsNlsWLp0KUaMGIGQkBCDWuo5DcnB8OHDERoaalBLGx/rrykvL8dFF12EmJgYfPvtt7DZbM7F94QQ6NWrF3r37o0FCxY4F5QlOlcq/58jA54XyYX1kg//BsqJdZOLyv0bGZmpL2I9+y5kNCEE/P398a9//Qupqal48MEHkZ2dDdexqKuvvhq5ubkoKyszsKWeU98cHD9+3CdzwGNA7WNA5dh1fA/wOHA90a2qqgIALF++HElJSbj99tuxYsUK3H333Xj44YdRWFhoVDM9qiE5KCoqMqqZHsH6ax2+wMBAfPTRR/j1119x7733AoCzA2GxWDB27FhkZ2cDAAcz6Lyo/n+O2fG8SC6sl3z4N1BOrJt8VO7fyMZsfREOaEjAYrGgoqICLVu2xPLly7F+/Xrccsst2LhxI+x2OwBg69ataNasWa2RTV+heg5Ujx9QOwcqx65jDpgD146In58fKisrAQDLli1DUlISrrzySnz22WdYvHgxWrVqZVQzPUrlHKgcu85qtcJut6NHjx5YsGABPv/8c9x22204duyYc5+0tDQ0bdrU+TeB6Fyp/n+O2bE+cmG95MOayYl1kw/P8eVhtr4ILzklAbvdDpvNhtzcXFRUVKC0tBRXXHEFQkNDUVVVhY4dO2LVqlVYs2YNevbsaXRzPUL1HKgeP6B2DlSOXcccqJ0DPfb8/HwcP34cnTt3BgDn9NaHH34Yn3zyCX777TckJCQY3FrPUDkHKsfuSo+3uLgY5eXl2Lp1K2666Sa0b98eUVFRaNasGZYsWYLff/8diYmJRjeXJKfy/zkyYH3kwnrJhzWTE+smF57jy8VsfREOSZqc/gZPT09Hz549sWrVKnTs2BEbNmzAlClTcNlll6F///7YsGGDz/5BVj0HqscPqJ0DlWPXMQdq50CPPSMjAz169MCmTZucj/n5+eH999/H3LlzsWLFCp890VU5ByrH7krvQKSnpyM+Ph4bNmzAJZdcgp07d2LMmDFo06YNWrZsiT///JODGXTeVP4/Rwasj1xYL/mwZnJi3eTCc3y5mLIv4pGlxqnBsrKyxJ49e+p87NChQyIyMlL8/e9/Fw6HQ9jtdi+3zjtUz4Hq8Quhdg5Ujl3HHKidg4bE7mrfvn0iLS3NCy30PJVzoHLsrg4cOCDeeecd8fDDD4sVK1aInJwc52MHDx4UzZs3F3feeadwOByiqqpKCCGcOfG1vwnkeSr/nyMD1kcurJd8WDM5sW5y4Tm+XGTqi3BAwwRSUlJEu3btxIQJE8SOHTtqPf6f//xHPProo7Xe4L5E9RyoHr8QaudA5dh1zIHaOVA5dp3KOVA5dlfbtm0TrVu3FldccYXo3Lmz6NKli3j55ZdFVVWVqKioEPPmzRMPP/xwrTzo9309P9S4+L4zN9ZHLqyXfFgzObFucmG95CJbX4RraBgsMzMT48ePR0lJCQIDA5GYmIgpU6agR48ezn0qKyvh7+9vYCs9S/UcqB4/oHYOVI5dxxyonQOVY9epnAOVY3eVkZGByy67DOPHj8ezzz4Lf39/TJs2DV9//TW2b9+OoKAgFBQUICIiwuimkg/g+87cWB+5sF7yYc3kxLrJhfWSi4x9Ea6hYbDdu3cjLCwMCxYswOTJk7Flyxa88cYb2LFjh3MfX3+Dq54D1eMH1M6ByrHrmAO1c6By7DqVc6By7Dq73Y4lS5agd+/eeOCBB2C1aqfnU6ZMQUVFBfbu3QsApupAkNz4vjM31kcurJd8WDM5sW5yYb3kIW1fxKvzQaiW0tJSsW7dOuf9Dz/8UPTp00fceeedYtu2bc7tvnx9ZNVzoHr8QqidA5Vj1zEHaudA5dh1KudA5dhdffzxx2Lu3Llu244dOyYiIyPF6tWra+3Pqfl0Pvi+MzfWRy6sl3xYMzmxbnJhveQiY1+EAxomUPNA+Pjjj51v9O3btwshhJg1a5ZITk42onleoXoOVI9fCLVzoHLsOuZA7RyoHLtO5RyoHHtd9HyUlpaKrl27ivXr1zsfW7JkiTh48KBRTSMfwvedubE+cmG95MOayYl1kwvrJSdZ+iJcQ8PLMjMzsXnzZlRUVKB9+/bo27cvAEBog0vOqT0LFizAm2++iT59+qCwsNB53bKEhAQjm98oVM+B6vEDaudA5dh1zIHaOVA5dp3KOVA5dleueWjXrh369esHQJvybbPZAAAVFRXo3bs3Pv74Y/Tv3x9PPfUUPvroI6xfvx7t2rUzsvkkGb7vzI31kQvrJR/WTE6sm1xYL7n4RF/E0yMmVG3btm2iY8eOYsCAAaJ58+aiX79+4quvvnLbx3Wa1QcffCD8/f1FRESE2LJli5db6xmq50D1+IVQOwcqx65jDtTOgcqx61TOgcqxu6pPHoQQIj8/X7Ro0UKsXbtWzJ49WwQFBYkNGzYY0GKSGd935sb6yIX1kg9rJifWTS6sl1x8pS/CRcG9JDU1FWPGjMF1112HFStWYPny5ejevTuWLVsGu90OcWqijNVqhRACdrsdycnJCA0Nxdq1a5GUlGRsAI1A9RyoHj+gdg5Ujl3HHKidA5Vj16mcA5Vjd1XfPACAn58f2rZti+nTp+OFF17AmjVrnN+eIqoPvu/MjfWRC+slH9ZMTqybXFgvufhUX8TTIyYkRHl5uXjkkUfEhAkTRHl5uXP7Bx98IJo1ayaOHz9e6zl//vmnsFgsphr9Oh+q50D1+IVQOwcqx65jDtTOgcqx61TOgcqxu2poHk6cOCHat28voqKixNatW73dXJIc33fmxvrIhfWSD2smJ9ZNLqyXXHytL+Jn9ICKChwOB9q2bYtu3bohICAAQghYLBYMGTIEoaGhqKysrPWc/v37Iy8vD5GRkd5vsAeongPV4wfUzoHKseuYA7VzoHLsOpVzoHLsrhqah4iICPz973/Htddei65duxrUapIV33fmxvrIhfWSD2smJ9ZNLqyXXHytL8IBDS8ICgrCuHHjEBcX57Y9MjIS/v7+bgfNli1b0Lt3bwDaweMrVM+B6vEDaudA5dh1zIHaOVA5dp3KOVA5dlcNycPGjRvRr18/TJ8+3dvNJB/B9525sT5yYb3kw5rJiXWTC+slF1/ri3ANDQ85evQo/vzzTyxfvhwOh8N5wNjtdlgsFgBAQUEB8vPznc+ZMWMGLrnkEuTm5jpHymSmeg5Ujx9QOwcqx65jDtTOgcqx61TOgcqxuzrXPIwaNcqZB6L64vvO3FgfubBe8mHN5MS6yYX1kotP90U8e0UrNSUnJ4v27duL+Ph4ERERIbp27SoWLVokcnNzhRBCOBwOIYQQe/bsES1atBB5eXli9uzZIjg4WGzcuNHIpjca1XOgevxCqJ0DlWPXMQdq50Dl2HUq50Dl2F0xD+RNPN7MjfWRC+slH9ZMTqybXFgvufh6vTig0ciys7NF165dxVNPPSVSU1PFkSNHxPXXXy+6desmZs6cKbKzs537Hjt2TPTu3Vtcf/31IiAgQIoDpj5Uz4Hq8Quhdg5Ujl3HHKidA5Vj16mcA5Vjd8U8kDfxeDM31kcurJd8WDM5sW5yYb3kokK9OKDRyHbu3Ck6dOhQ6wB48sknRWJionjllVdESUmJEEKIlJQUYbFYRHBwsNiyZYsBrfUM1XOgevxCqJ0DlWPXMQdq50Dl2HUq50Dl2F0xD+RNPN7MjfWRC+slH9ZMTqybXFgvuahQL66h0cgqKytRVVWFkydPAgBKS0sBAC+99BJGjBiBd955B/v37wcANG3aFJMnT8bmzZuRlJRkVJMbneo5UD1+QO0cqBy7jjlQOwcqx65TOQcqx+6KeSBv4vFmbqyPXFgv+bBmcmLd5MJ6yUWFelmEMPMKH3IaMGAAQkND8dNPPwEAysvLERgYCADo378/LrjgAnz++ecAgLKyMgQFBRnWVk9RPQeqxw+onQOVY9cxB2rnQOXYdSrnQOXYXTEP5E083syN9ZEL6yUf1kxOrJtcWC+5+Hq9OEPjPJWUlKCoqAiFhYXObfPnz8fOnTtx0003AQACAwNRVVUFABg2bBhKSkqc+8p2wNRF9RyoHj+gdg5Ujl3HHKidA5Vj16mcA5Vjd8U8kDfxeDM31kcurJd8WDM5sW5yYb3komK9OKBxHlJSUnDNNdfg4osvRrdu3fDZZ58BALp164a5c+di5cqVGD9+PCorK2G1aqnOzs5GSEgIqqqq4AuTY1TPgerxA2rnQOXYdcyB2jlQOXadyjlQOXZXzAN5E483c2N95MJ6yYc1kxPrJhfWSy6q1svP6AbIKiUlBcOGDcNtt92Gfv36YdOmTZg4cSISEhLQu3dvjB07FiEhIZg8eTJ69uyJrl27IiAgAN9//z3++OMP+PnJn3rVc6B6/IDaOVA5dh1zoHYOVI5dp3IOVI7dFfNA3sTjzdxYH7mwXvJhzeTEusmF9ZKLyvXiGhrnIC8vDzfeeCO6du2KuXPnOrePGDECiYmJePPNN53bioqK8PzzzyMvLw9BQUG49957kZCQYESzG5XqOVA9fkDtHKgcu445UDsHKseuUzkHKsfuinkgb+LxZm6sj1xYL/mwZnJi3eTCeslF9XrJOxRjoMrKSpw4cQLXXXcdAMDhcMBqtSIuLg55eXkAACEEhBAICwvDyy+/7LafL1A9B6rHD6idA5Vj1zEHaudA5dh1KudA5dhdMQ/kTTzezI31kQvrJR/WTE6sm1xYL7moXi/5IzBAdHQ0Pv30UwwdOhQAYLfbAQBt2rRxHhQWiwVWq9VtQRaLxeL9xnqI6jlQPX5A7RyoHLuOOVA7ByrHrlM5ByrH7op5IG/i8WZurI9cWC/5sGZyYt3kwnrJRfV6cUDjHHXu3BmANrLl7+8PQBv5ys7Odu4zZ84cvP/++85V5H3loNGpngPV4wfUzoHKseuYA7VzoHLsOpVzoHLsrpgH8iYeb+bG+siF9ZIPayYn1k0urJdcVK4XLzl1nqxWK4QQzgNCHwWbMWMGnn/+eWzZskXqRVbqQ/UcqB4/oHYOVI5dxxyonQOVY9epnAOVY3fFPJA38XgzN9ZHLqyXfFgzObFucmG95KJivThDoxHo66r7+fkhNjYWr732Gl555RVs3LgRvXr1Mrh13qF6DlSPH1A7ByrHrmMO1M6ByrHrVM6ByrG7Yh7Im3i8mRvrIxfWSz6smZxYN7mwXnJRrV6+NTxjEH3ky9/fH++99x7Cw8OxZs0a9OnTx+CWeY/qOVA9fkDtHKgcu445UDsHKseuUzkHKsfuinkgb+LxZm6sj1xYL/mwZnJi3eTCeslFtXpxhkYjGj16NABg3bp16Nevn8GtMYbqOVA9fkDtHKgcu445UDsHKseuUzkHKsfuinkgb+LxZm6sj1xYL/mwZnJi3eTCeslFlXpZhD4nhRpFSUkJQkJCjG6GoVTPgerxA2rnQOXYdcyB2jlQOXadyjlQOXZXzAN5E483c2N95MJ6yYc1kxPrJhfWSy4q1IsDGkREREREREREREREZHq85BQREREREREREREREZkeBzSIiIiIiIiIiIiIiMj0OKBBRERERERERERERESmxwENIiIiIiIiIiIiIiIyPQ5oEBERERERERERERGR6XFAg4iIiIiIiIiIiIiITI8DGkREREREREREREREZHoc0CAiovPy8ccfw2KxOP8FBQWhdevWGD16NN58800UFRWd0+uuW7cOzz77LE6cONG4DSYiIiIiIp/B/ggRkVo4oEFERI3iueeew8KFC/HOO+/ggQceAABMmTIFiYmJ2LZtW4Nfb926dZg1axY7EEREREREdFbsjxARqcHP6AYQEZFvuOKKK9CvXz/n/WnTpuGnn37CVVddhbFjx2LXrl0IDg42sIVEREREROSr2B8hIlIDZ2gQEZHHjBw5Es888wwyMjLw6aefAgC2bduGv/3tb+jYsSOCgoIQExODO+64A7m5uc7nPfvss3j88ccBAHFxcc7p4+np6c59Pv30U/Tt2xfBwcGIiorCDTfcgEOHDnk1PiIiIiIiMi/2R4iIfA8HNIiIyKNuvfVWAMCKFSsAACtXrsSBAwcwceJEvPXWW7jhhhuwePFijBkzBkIIAMA111yDG2+8EQDw+uuvY+HChVi4cCFatGgBAHjhhRdw2223oXPnzvjnP/+JKVOmYNWqVRg2bBinhBMRERERkRP7I0REvoWXnCIiIo9q27YtIiIikJqaCgCYPHkyHn30Ubd9Bg0ahBtvvBFr1qzB0KFD0bNnT/Tp0weff/45xo0bhw4dOjj3zcjIwMyZM/H888/jqaeecm6/5ppr0Lt3b/zrX/9y205EREREROpif4SIyLdwhgYREXlcaGgoioqKAMDturVlZWU4fvw4Bg0aBADYvHnzWV/r//7v/+BwODBhwgQcP37c+S8mJgadO3fG6tWrPRMEERERERFJif0RIiLfwRkaRETkccXFxWjZsiUAIC8vD7NmzcLixYuRnZ3ttl9BQcFZX2vfvn0QQqBz5851Pu7v73/+DSYiIiIiIp/B/ggRke/ggAYREXnU4cOHUVBQgAsuuAAAMGHCBKxbtw6PP/44kpKSEBoaCofDgcsvvxwOh+Osr+dwOGCxWLBs2TLYbLZaj4eGhjZ6DEREREREJCf2R4iIfAsHNIiIyKMWLlwIABg9ejTy8/OxatUqzJo1CzNmzHDus2/fvlrPs1gsdb5ep06dIIRAXFwc4uPjPdNoIiIiIiLyCeyPEBH5Fq6hQUREHvPTTz9h9uzZiIuLw8033+z8BpMQwm2/N954o9ZzQ0JCAAAnTpxw237NNdfAZrNh1qxZtV5HCIHc3NzGC4CIiIiIiKTF/ggRke/hDA0iImoUy5Ytw+7du1FVVYVjx47hp59+wsqVK9G+fXv897//RVBQEIKCgjBs2DC88sorqKysRJs2bbBixQqkpaXVer2+ffsCAKZPn44bbrgB/v7+uPrqq9GpUyc8//zzmDZtGtLT0zFu3DiEhYUhLS0N//nPfzBp0iQ89thj3g6fiIiIiIgMxP4IEZEaOKBBRESNQp+yHRAQgKioKCQmJuKNN97AxIkTERYW5txv0aJFeOCBB/D2229DCIFRo0Zh2bJlaN26tdvr9e/fH7Nnz8a7776L5cuXw+FwIC0tDSEhIZg6dSri4+Px+uuvY9asWQCA2NhYjBo1CmPHjvVe0EREREREZArsjxARqcEias6PIyIiIiIiIiIiIiIiMhmuoUFERERERERERERERKbHAQ0iIiIiIiIiIiIiIjI9DmgQEREREREREREREZHpcUCDiIiIiIiIiIiIiIhMjwMaRERERERERERERERkehzQICIiIiIiIiIiIiIi0+OABhERERERERERERERmR4HNIiIiIiIiIiIiIiIyPQ4oEFERERERERERERERKbHAQ0iIiIiIiIiIiIiIjI9DmgQEREREREREREREZHpcUCDiIiIiIiIiIiIiIhMjwMaRERERERERERERERkev8PBUuMdNROg4EAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "tabbable": null, + "tooltip": null + } + }, + "25c2d7b6b0f84705aea6a8d6e44f6796": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "452d5233a205470a85d450752e819d38": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dda75eb338d34e448f19f5706a6fc216": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8ab564b1e00249fcad47340f7aa0b784": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f1c6e2623854631b39a2f26feed2835": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0d415df42f2647d5a74ff0638b04a314": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1dd5d6a9249a491ca134dff9b65b0c09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "SliderStyleModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "SliderStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "description_width": "", + "handle_color": null + } + }, + "7e77076ee6fe4609a5428242beed0bf5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file