ParisNeo commited on
Commit
71a1779
·
1 Parent(s): ae608e6
Files changed (1) hide show
  1. app.py +9 -10
app.py CHANGED
@@ -371,13 +371,13 @@ class UI():
371
  nearest_distance = 1e100
372
  nearest = 0
373
  for i, known_face in enumerate(self.known_faces):
374
- if self.distance_type == "cosine":
375
  # Cosine distance
376
  distance = self.cosine_distance(known_face["mean"], embedding)
377
- elif self.distance_type =="L1":
378
  # absolute distance
379
  distance = np.abs(known_face["mean"]-embedding).sum()
380
- elif self.distance_type == "L2":
381
  # absolute distance
382
  distance = np.sqrt(np.square(known_face["mean"]-embedding).sum())
383
  if distance<nearest_distance:
@@ -402,6 +402,7 @@ class UI():
402
  fa.process(image)
403
 
404
  if fa.nb_faces>0:
 
405
  for j in range(fa.nb_faces):
406
  try:
407
  face = fa.faces[j]
@@ -413,25 +414,23 @@ class UI():
413
  nearest_distance = 1e100
414
  nearest = 0
415
  for i, known_face in enumerate(self.known_faces):
416
- if self.distance_type == "cosine":
417
  # Cosine distance
418
  distance = self.cosine_distance(known_face["mean"], embedding)
419
- elif self.distance_type =="L1":
420
  # absolute distance
421
  distance = np.abs(known_face["mean"]-embedding).sum()
422
- elif self.distance_type == "L2":
423
  # absolute distance
424
  distance = np.sqrt(np.square(known_face["mean"]-embedding).sum())
425
  if distance<nearest_distance:
426
  nearest_distance = distance
427
  nearest = i
428
 
429
- if nearest_distance>self.threshold:
430
- face.draw_bounding_box(image, thickness=1,text=f"Unknown:{nearest_distance:.3e}")
431
- else:
432
- face.draw_bounding_box(image, thickness=1,text=f"{self.known_faces_names[nearest]}:{nearest_distance:.3e}")
433
  except Exception as ex:
434
  image=face_image
 
435
 
436
  # Return the resulting frame
437
  return image
 
371
  nearest_distance = 1e100
372
  nearest = 0
373
  for i, known_face in enumerate(self.known_faces):
374
+ if self.distance_type.value == "cosine":
375
  # Cosine distance
376
  distance = self.cosine_distance(known_face["mean"], embedding)
377
+ elif self.distance_type.value =="L1":
378
  # absolute distance
379
  distance = np.abs(known_face["mean"]-embedding).sum()
380
+ elif self.distance_type.value == "L2":
381
  # absolute distance
382
  distance = np.sqrt(np.square(known_face["mean"]-embedding).sum())
383
  if distance<nearest_distance:
 
402
  fa.process(image)
403
 
404
  if fa.nb_faces>0:
405
+ bboxes_and_names=[]
406
  for j in range(fa.nb_faces):
407
  try:
408
  face = fa.faces[j]
 
414
  nearest_distance = 1e100
415
  nearest = 0
416
  for i, known_face in enumerate(self.known_faces):
417
+ if self.distance_type.value == "cosine":
418
  # Cosine distance
419
  distance = self.cosine_distance(known_face["mean"], embedding)
420
+ elif self.distance_type.value =="L1":
421
  # absolute distance
422
  distance = np.abs(known_face["mean"]-embedding).sum()
423
+ elif self.distance_type.value == "L2":
424
  # absolute distance
425
  distance = np.sqrt(np.square(known_face["mean"]-embedding).sum())
426
  if distance<nearest_distance:
427
  nearest_distance = distance
428
  nearest = i
429
 
430
+ bboxes_and_names.append([face.bounding_box, f"Unknown:{nearest_distance:.2e}" if nearest_distance>self.threshold else f"{self.known_faces_names[nearest]}:{nearest_distance:.2e}"])
 
 
 
431
  except Exception as ex:
432
  image=face_image
433
+ image = fa.draw_names_on_bboxes(image,bboxes_and_names,upscale=2)
434
 
435
  # Return the resulting frame
436
  return image