Spaces:
Runtime error
Runtime error
ParisNeo
commited on
Commit
·
886b6db
1
Parent(s):
fe3ff5a
upgraded
Browse files- app.py +324 -4
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,7 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
iface.launch()
|
|
|
1 |
+
"""=============
|
2 |
+
Example : extract_record.py
|
3 |
+
Author : Saifeddine ALOUI (ParisNeo)
|
4 |
+
Description :
|
5 |
+
Make sure you install deepface
|
6 |
+
pip install deepface
|
7 |
+
|
8 |
+
<================"""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from pathlib import Path
|
12 |
+
import cv2
|
13 |
+
import time
|
14 |
+
|
15 |
+
from FaceAnalyzer import FaceAnalyzer
|
16 |
+
|
17 |
+
from pathlib import Path
|
18 |
+
import pickle
|
19 |
+
from tqdm import tqdm # used to draw a progress bar pip install tqdm
|
20 |
+
from deepface import DeepFace
|
21 |
+
|
22 |
+
# Number of images to use to build the embedding
|
23 |
+
nb_images=50
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
# If faces path is empty then make it
|
28 |
+
faces_path = Path(__file__).parent/"faces"
|
29 |
+
if not faces_path.exists():
|
30 |
+
faces_path.mkdir(parents=True, exist_ok=True)
|
31 |
+
|
32 |
+
|
33 |
+
# Build face analyzer while specifying that we want to extract just a single face
|
34 |
+
fa = FaceAnalyzer(max_nb_faces=1)
|
35 |
+
|
36 |
+
|
37 |
+
box_colors=[
|
38 |
+
(255,0,0),
|
39 |
+
(0,255,0),
|
40 |
+
(0,0,255),
|
41 |
+
(255,255,0),
|
42 |
+
(255,0,255),
|
43 |
+
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
import gradio as gr
|
48 |
+
import numpy as np
|
49 |
+
class UI():
|
50 |
+
def __init__(self) -> None:
|
51 |
+
self.i=0
|
52 |
+
self.embeddings_cloud = []
|
53 |
+
self.is_recording=False
|
54 |
+
self.face_name=None
|
55 |
+
self.nb_images = 20
|
56 |
+
# Important to set. If higher than this distance, the face is considered unknown
|
57 |
+
self.threshold = 4e-1
|
58 |
+
self.faces_db_preprocessed_path = Path(__file__).parent/"faces_db_preprocessed"
|
59 |
+
self.current_name = None
|
60 |
+
self.current_face_files = []
|
61 |
+
self.draw_landmarks = True
|
62 |
+
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("## FaceAnalyzer face recognition test")
|
65 |
+
with gr.Tabs():
|
66 |
+
with gr.TabItem('Realtime Recognize'):
|
67 |
+
with gr.Blocks():
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
self.rt_webcam = gr.Image(label="Input Image", source="webcam", streaming=True)
|
71 |
+
with gr.Column():
|
72 |
+
self.rt_rec_img = gr.Image(label="Output Image")
|
73 |
+
self.rt_webcam.change(self.recognize, inputs=self.rt_webcam, outputs=self.rt_rec_img, show_progress=False)
|
74 |
+
with gr.TabItem('Image Recognize'):
|
75 |
+
with gr.Blocks():
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column():
|
78 |
+
self.rt_inp_img = gr.Image(label="Input Image")
|
79 |
+
with gr.Column():
|
80 |
+
self.rt_rec_img = gr.Image(label="Output Image")
|
81 |
+
self.rt_inp_img.change(self.recognize2, inputs=self.rt_inp_img, outputs=self.rt_rec_img, show_progress=True)
|
82 |
+
with gr.TabItem('Add face from webcam'):
|
83 |
+
with gr.Blocks():
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column():
|
86 |
+
self.img = gr.Image(label="Input Image", source="webcam", streaming=True)
|
87 |
+
self.txtFace_name = gr.Textbox(label="face_name")
|
88 |
+
self.txtFace_name.change(self.set_face_name, inputs=self.txtFace_name, show_progress=False)
|
89 |
+
self.status = gr.Label(label="face_name")
|
90 |
+
self.img.change(self.record, inputs=self.img, outputs=self.status, show_progress=False)
|
91 |
+
with gr.Column():
|
92 |
+
self.btn_start = gr.Button("Start Recording face")
|
93 |
+
self.btn_start.click(self.start_stop)
|
94 |
+
with gr.TabItem('Add face from files'):
|
95 |
+
with gr.Blocks():
|
96 |
+
with gr.Row():
|
97 |
+
with gr.Column():
|
98 |
+
self.gallery = gr.Gallery(
|
99 |
+
label="Uploaded Images", show_label=False, elem_id="gallery"
|
100 |
+
).style(grid=[2], height="auto")
|
101 |
+
self.add_file = gr.Files(label="Files",file_types=["image"])
|
102 |
+
self.add_file.change(self.add_files, self.add_file, self.gallery)
|
103 |
+
self.txtFace_name2 = gr.Textbox(label="face_name")
|
104 |
+
self.txtFace_name2.change(self.set_face_name, inputs=self.txtFace_name2, show_progress=False)
|
105 |
+
self.status = gr.Label(label="face_name")
|
106 |
+
self.img.change(self.record, inputs=self.img, outputs=self.status, show_progress=False)
|
107 |
+
with gr.Column():
|
108 |
+
self.btn_start = gr.Button("Build face embeddings")
|
109 |
+
self.btn_start.click(self.start_stop)
|
110 |
+
with gr.TabItem('Known Faces List'):
|
111 |
+
with gr.Blocks():
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
self.faces_list = gr.Dataframe(
|
115 |
+
headers=["Face Name"],
|
116 |
+
datatype=["str"],
|
117 |
+
label="Faces",
|
118 |
+
)
|
119 |
+
with gr.Row():
|
120 |
+
with gr.Accordion(label="Options", open=False):
|
121 |
+
self.sld_threshold = gr.Slider(1e-2,10,4e-1,step=1e-2,label="Recognition threshold")
|
122 |
+
self.sld_threshold.change(self.set_th,inputs=self.sld_threshold)
|
123 |
+
self.sld_nb_images = gr.Slider(2,50,20,label="Number of images")
|
124 |
+
self.sld_nb_images.change(self.set_nb_images, self.sld_nb_images)
|
125 |
+
self.cb_draw_landmarks = gr.Checkbox(label="Draw landmarks", value=True)
|
126 |
+
self.cb_draw_landmarks.change(self.set_draw_landmarks, self.cb_draw_landmarks)
|
127 |
+
|
128 |
+
self.upgrade_faces()
|
129 |
+
demo.queue().launch()
|
130 |
+
def add_files(self, files):
|
131 |
+
for file in files:
|
132 |
+
img = cv2.cvtColor(cv2.imread(file.name), cv2.COLOR_BGR2RGB)
|
133 |
+
self.current_face_files.append(img)
|
134 |
+
return self.current_face_files
|
135 |
+
|
136 |
+
def set_th(self, value):
|
137 |
+
self.threshold=value
|
138 |
+
|
139 |
+
def set_nb_images(self, value):
|
140 |
+
self.nb_images=value
|
141 |
+
|
142 |
+
def set_draw_landmarks(self, value):
|
143 |
+
self.draw_landmarks=value
|
144 |
+
|
145 |
+
def cosine_distance(self, u, v):
|
146 |
+
"""
|
147 |
+
Computes the cosine distance between two vectors.
|
148 |
+
|
149 |
+
Parameters:
|
150 |
+
u (numpy array): A 1-dimensional numpy array representing the first vector.
|
151 |
+
v (numpy array): A 1-dimensional numpy array representing the second vector.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
float: The cosine distance between the two vectors.
|
155 |
+
"""
|
156 |
+
dot_product = np.dot(u, v)
|
157 |
+
norm_u = np.linalg.norm(u)
|
158 |
+
norm_v = np.linalg.norm(v)
|
159 |
+
return 1 - (dot_product / (norm_u * norm_v))
|
160 |
+
|
161 |
+
def upgrade_faces(self):
|
162 |
+
# Load faces
|
163 |
+
self.known_faces=[]
|
164 |
+
self.known_faces_names=[]
|
165 |
+
face_files = [f for f in faces_path.iterdir() if f.name.endswith("pkl")]
|
166 |
+
for file in face_files:
|
167 |
+
with open(str(file),"rb") as f:
|
168 |
+
finger_print = pickle.load(f)
|
169 |
+
self.known_faces.append(finger_print)
|
170 |
+
self.known_faces_names.append(file.stem)
|
171 |
+
self.faces_list.update(self.known_faces_names)
|
172 |
+
|
173 |
+
def set_face_name(self, face_name):
|
174 |
+
self.face_name=face_name
|
175 |
+
|
176 |
+
def start_stop(self):
|
177 |
+
self.is_recording=True
|
178 |
+
|
179 |
+
def process_db(self, images):
|
180 |
+
for i,image in enumerate(images):
|
181 |
+
# Opencv uses BGR format while mediapipe uses RGB format. So we need to convert it to RGB before processing the image
|
182 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
183 |
+
image = cv2.resize(image, (640, 480))
|
184 |
+
# Process the image to extract faces and draw the masks on the face in the image
|
185 |
+
fa.process(image)
|
186 |
+
|
187 |
+
if fa.nb_faces>0:
|
188 |
+
if fa.nb_faces>1:
|
189 |
+
print("Found too many faces!!")
|
190 |
+
face = fa.faces[0]
|
191 |
+
try:
|
192 |
+
# Get a realigned version of the landmarksx
|
193 |
+
vertices = face.get_face_outer_vertices()
|
194 |
+
image = face.getFaceBox(image, vertices,margins=(30,30,30,30))
|
195 |
+
embedding = DeepFace.represent(image)[0]["embedding"]
|
196 |
+
embeddings_cloud.append(embedding)
|
197 |
+
cv2.imwrite(str(self.faces_db_preprocessed_path/f"im_{i}.png"), cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
198 |
+
except Exception as ex:
|
199 |
+
print(ex)
|
200 |
+
embeddings_cloud = np.array(embeddings_cloud)
|
201 |
+
embeddings_cloud_mean = embeddings_cloud.mean(axis=0)
|
202 |
+
embeddings_cloud_inv_cov = np.linalg.inv(np.cov(embeddings_cloud.T))
|
203 |
+
# Now we save it.
|
204 |
+
# create a dialog box to ask for the subject name
|
205 |
+
name = self.face_name
|
206 |
+
with open(str(faces_path/f"{name}.pkl"),"wb") as f:
|
207 |
+
pickle.dump({"mean":embeddings_cloud_mean, "inv_cov":embeddings_cloud_inv_cov},f)
|
208 |
+
print(f"Saved {name}")
|
209 |
+
|
210 |
+
def record(self, image):
|
211 |
+
if self.face_name is None:
|
212 |
+
return "Please input a face name"
|
213 |
+
if self.is_recording and image is not None:
|
214 |
+
if self.i < self.nb_images:
|
215 |
+
# Process the image to extract faces and draw the masks on the face in the image
|
216 |
+
fa.process(image)
|
217 |
+
if fa.nb_faces>0:
|
218 |
+
try:
|
219 |
+
face = fa.faces[0]
|
220 |
+
vertices = face.get_face_outer_vertices()
|
221 |
+
image = face.getFaceBox(image, vertices, margins=(40,40,40,40))
|
222 |
+
embedding = DeepFace.represent(image)[0]["embedding"]
|
223 |
+
self.embeddings_cloud.append(embedding)
|
224 |
+
self.i+=1
|
225 |
+
cv2.imshow('Face Mesh', cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
226 |
+
except Exception as ex:
|
227 |
+
print(ex)
|
228 |
+
return f"Processing frame {self.i}/{self.nb_images}..."
|
229 |
+
else:
|
230 |
+
# Now let's find out where the face lives inside the latent space (128 dimensions space)
|
231 |
+
|
232 |
+
embeddings_cloud = np.array(self.embeddings_cloud)
|
233 |
+
embeddings_cloud_mean = embeddings_cloud.mean(axis=0)
|
234 |
+
embeddings_cloud_inv_cov = embeddings_cloud.std(axis=0)
|
235 |
+
# Now we save it.
|
236 |
+
# create a dialog box to ask for the subject name
|
237 |
+
name = self.face_name
|
238 |
+
with open(str(faces_path/f"{name}.pkl"),"wb") as f:
|
239 |
+
pickle.dump({"mean":embeddings_cloud_mean, "inv_cov":embeddings_cloud_inv_cov},f)
|
240 |
+
print(f"Saved {name} embeddings")
|
241 |
+
self.i=0
|
242 |
+
self.embeddings_cloud=[]
|
243 |
+
self.is_recording=False
|
244 |
+
self.upgrade_faces()
|
245 |
+
|
246 |
+
return f"Saved {name} embeddings"
|
247 |
+
else:
|
248 |
+
return "Waiting"
|
249 |
+
|
250 |
+
def recognize(self, image):
|
251 |
+
# Process the image to extract faces and draw the masks on the face in the image
|
252 |
+
fa.process(image)
|
253 |
+
|
254 |
+
if fa.nb_faces>0:
|
255 |
+
for i in range(fa.nb_faces):
|
256 |
+
try:
|
257 |
+
face = fa.faces[i]
|
258 |
+
vertices = face.get_face_outer_vertices()
|
259 |
+
face_image = face.getFaceBox(image, vertices, margins=(40,40,40,40))
|
260 |
+
embedding = DeepFace.represent(face_image)[0]["embedding"]
|
261 |
+
if self.draw_landmarks:
|
262 |
+
face.draw_landmarks(image, color=(0,0,0))
|
263 |
+
nearest_distance = 1e100
|
264 |
+
nearest = 0
|
265 |
+
for i, known_face in enumerate(self.known_faces):
|
266 |
+
# absolute distance
|
267 |
+
distance = np.abs(known_face["mean"]-embedding).sum()
|
268 |
+
# euclidian distance
|
269 |
+
#diff = known_face["mean"]-embedding
|
270 |
+
#distance = np.sqrt(diff@diff.T)
|
271 |
+
# Cosine distance
|
272 |
+
distance = self.cosine_distance(known_face["mean"], embedding)
|
273 |
+
if distance<nearest_distance:
|
274 |
+
nearest_distance = distance
|
275 |
+
nearest = i
|
276 |
+
|
277 |
+
if nearest_distance>self.threshold:
|
278 |
+
face.draw_bounding_box(image, thickness=1,text=f"Unknown:{nearest_distance:.3e}")
|
279 |
+
else:
|
280 |
+
face.draw_bounding_box(image, thickness=1,text=f"{self.known_faces_names[nearest]}:{nearest_distance:.3e}")
|
281 |
+
except Exception as ex:
|
282 |
+
pass
|
283 |
+
|
284 |
+
# Return the resulting frame
|
285 |
+
return image
|
286 |
+
|
287 |
+
def recognize2(self, image):
|
288 |
+
if image is None:
|
289 |
+
return None
|
290 |
+
image = cv2.resize(image, fa.image_size)
|
291 |
+
# Process the image to extract faces and draw the masks on the face in the image
|
292 |
+
fa.process(image)
|
293 |
+
|
294 |
+
if fa.nb_faces>0:
|
295 |
+
for i in range(fa.nb_faces):
|
296 |
+
try:
|
297 |
+
face = fa.faces[i]
|
298 |
+
vertices = face.get_face_outer_vertices()
|
299 |
+
face_image = face.getFaceBox(image, vertices, margins=(40,40,40,40))
|
300 |
+
embedding = DeepFace.represent(face_image)[0]["embedding"]
|
301 |
+
if self.draw_landmarks:
|
302 |
+
face.draw_landmarks(image, color=(0,0,0))
|
303 |
+
nearest_distance = 1e100
|
304 |
+
nearest = 0
|
305 |
+
for i, known_face in enumerate(self.known_faces):
|
306 |
+
# absolute distance
|
307 |
+
distance = np.abs(known_face["mean"]-embedding).sum()
|
308 |
+
# euclidian distance
|
309 |
+
#diff = known_face["mean"]-embedding
|
310 |
+
#distance = np.sqrt(diff@diff.T)
|
311 |
+
# Cosine distance
|
312 |
+
distance = self.cosine_distance(known_face["mean"], embedding)
|
313 |
+
if distance<nearest_distance:
|
314 |
+
nearest_distance = distance
|
315 |
+
nearest = i
|
316 |
+
|
317 |
+
if nearest_distance>self.threshold:
|
318 |
+
face.draw_bounding_box(image, thickness=1,text=f"Unknown:{nearest_distance:.3e}")
|
319 |
+
else:
|
320 |
+
face.draw_bounding_box(image, thickness=1,text=f"{self.known_faces_names[nearest]}:{nearest_distance:.3e}")
|
321 |
+
except Exception as ex:
|
322 |
+
pass
|
323 |
|
324 |
+
# Return the resulting frame
|
325 |
+
return image
|
326 |
+
ui = UI()
|
327 |
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
deepface
|
2 |
+
opencv
|
3 |
+
FaceAnalyzer
|