Spaces:
Sleeping
Sleeping
..
Browse files
app.py
CHANGED
@@ -237,88 +237,77 @@ def format_chat_history(message, chat_history):
|
|
237 |
formatted_chat_history.append(f"User: {user_message}")
|
238 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
239 |
return formatted_chat_history
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
###############################################
|
246 |
-
class RAGEvaluator:
|
247 |
-
def __init__(self):
|
248 |
-
self.gpt2_model, self.gpt2_tokenizer = self.load_gpt2_model()
|
249 |
-
self.bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
|
250 |
-
|
251 |
-
def load_gpt2_model(self):
|
252 |
-
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
253 |
-
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
254 |
-
return model, tokenizer
|
255 |
-
|
256 |
-
def evaluate_bleu_rouge(self, candidates, references):
|
257 |
-
bleu_score = corpus_bleu(candidates, [references]).score
|
258 |
-
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
259 |
-
rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
|
260 |
-
rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
|
261 |
-
return bleu_score, rouge1
|
262 |
-
|
263 |
-
def evaluate_bert_score(self, candidates, references):
|
264 |
-
P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
|
265 |
-
return P.mean().item(), R.mean().item(), F1.mean().item()
|
266 |
-
|
267 |
-
def evaluate_perplexity(self, text):
|
268 |
-
encodings = self.gpt2_tokenizer(text, return_tensors='pt')
|
269 |
-
max_length = self.gpt2_model.config.n_positions
|
270 |
-
stride = 512
|
271 |
-
lls = []
|
272 |
-
for i in range(0, encodings.input_ids.size(1), stride):
|
273 |
-
begin_loc = max(i + stride - max_length, 0)
|
274 |
-
end_loc = min(i + stride, encodings.input_ids.size(1))
|
275 |
-
trg_len = end_loc - i
|
276 |
-
input_ids = encodings.input_ids[:, begin_loc:end_loc]
|
277 |
-
target_ids = input_ids.clone()
|
278 |
-
target_ids[:, :-trg_len] = -100
|
279 |
-
with torch.no_grad():
|
280 |
-
outputs = self.gpt2_model(input_ids, labels=target_ids)
|
281 |
-
log_likelihood = outputs[0] * trg_len
|
282 |
-
lls.append(log_likelihood)
|
283 |
-
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
284 |
-
return ppl.item()
|
285 |
-
|
286 |
-
def evaluate_diversity(self, texts):
|
287 |
-
all_tokens = [tok for text in texts for tok in text.split()]
|
288 |
-
unique_bigrams = set(ngrams(all_tokens, 2))
|
289 |
-
diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
|
290 |
-
return diversity_score
|
291 |
-
|
292 |
-
def evaluate_racial_bias(self, text):
|
293 |
-
results = self.bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
|
294 |
-
bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
|
295 |
-
return bias_score
|
296 |
-
|
297 |
-
def evaluate_all(self, question, response, reference):
|
298 |
-
candidates = [response]
|
299 |
-
references = [reference]
|
300 |
-
bleu, rouge1 = self.evaluate_bleu_rouge(candidates, references)
|
301 |
-
bert_p, bert_r, bert_f1 = self.evaluate_bert_score(candidates, references)
|
302 |
-
perplexity = self.evaluate_perplexity(response)
|
303 |
-
diversity = self.evaluate_diversity(candidates)
|
304 |
-
racial_bias = self.evaluate_racial_bias(response)
|
305 |
-
return {
|
306 |
-
"BLEU": bleu,
|
307 |
-
"ROUGE-1": rouge1,
|
308 |
-
"BERT P": bert_p,
|
309 |
-
"BERT R": bert_r,
|
310 |
-
"BERT F1": bert_f1,
|
311 |
-
"Perplexity": perplexity,
|
312 |
-
"Diversity": diversity,
|
313 |
-
"Racial Bias": racial_bias
|
314 |
-
}
|
315 |
-
|
316 |
-
###################################
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
def display_metrics(metrics):
|
324 |
result = ""
|
@@ -339,8 +328,14 @@ def display_metrics(metrics):
|
|
339 |
elif k == 'Racial Bias':
|
340 |
result += f"Racial Bias score indicates the presence of biased language in the generated output. Higher scores indicate more bias. Score obtained: {v}\n\n"
|
341 |
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
-
def conversation(qa_chain, message, history,
|
344 |
formatted_chat_history = format_chat_history(message, history)
|
345 |
question_by_user = message
|
346 |
|
@@ -363,7 +358,7 @@ def conversation(qa_chain, message, history, evaluator):
|
|
363 |
new_history = history + [(message, response_answer)]
|
364 |
|
365 |
# Evaluate the metrics
|
366 |
-
metrics =
|
367 |
evaluation_metrics = display_metrics(metrics)
|
368 |
|
369 |
return (qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page,
|
@@ -470,12 +465,12 @@ def demo():
|
|
470 |
|
471 |
# Chatbot events
|
472 |
msg.submit(conversation, \
|
473 |
-
inputs=[qa_chain, msg, chatbot
|
474 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page,metrics_output], \
|
475 |
queue=False)
|
476 |
|
477 |
submit_btn.click(conversation,
|
478 |
-
inputs=[qa_chain, msg, history
|
479 |
outputs=[qa_chain, chatbot, history, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page, metrics_output])
|
480 |
|
481 |
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0],
|
|
|
237 |
formatted_chat_history.append(f"User: {user_message}")
|
238 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
239 |
return formatted_chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
+
#----------------------------------------------------------------------------------
|
242 |
+
def load_gpt2_model():
|
243 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
244 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
245 |
+
return model, tokenizer
|
246 |
+
|
247 |
+
gpt2_model, gpt2_tokenizer = load_gpt2_model()
|
248 |
+
bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
|
249 |
+
|
250 |
+
def evaluate_bleu_rouge(candidates, references):
|
251 |
+
bleu_score = corpus_bleu(candidates, [references]).score
|
252 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
253 |
+
rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
|
254 |
+
rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
|
255 |
+
return bleu_score, rouge1
|
256 |
+
|
257 |
+
def evaluate_bert_score(candidates, references):
|
258 |
+
P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
|
259 |
+
return P.mean().item(), R.mean().item(), F1.mean().item()
|
260 |
+
|
261 |
+
def evaluate_perplexity(text, model, tokenizer):
|
262 |
+
encodings = tokenizer(text, return_tensors='pt')
|
263 |
+
max_length = model.config.n_positions
|
264 |
+
stride = 512
|
265 |
+
lls = []
|
266 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
267 |
+
begin_loc = max(i + stride - max_length, 0)
|
268 |
+
end_loc = min(i + stride, encodings.input_ids.size(1))
|
269 |
+
trg_len = end_loc - i
|
270 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc]
|
271 |
+
target_ids = input_ids.clone()
|
272 |
+
target_ids[:, :-trg_len] = -100
|
273 |
+
with torch.no_grad():
|
274 |
+
outputs = model(input_ids, labels=target_ids)
|
275 |
+
log_likelihood = outputs[0] * trg_len
|
276 |
+
lls.append(log_likelihood)
|
277 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
278 |
+
return ppl.item()
|
279 |
+
|
280 |
+
def evaluate_diversity(texts):
|
281 |
+
all_tokens = [tok for text in texts for tok in text.split()]
|
282 |
+
unique_bigrams = set(ngrams(all_tokens, 2))
|
283 |
+
diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
|
284 |
+
return diversity_score
|
285 |
+
|
286 |
+
def evaluate_racial_bias(text, pipeline):
|
287 |
+
results = pipeline([text], candidate_labels=["hate speech", "not hate speech"])
|
288 |
+
bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
|
289 |
+
return bias_score
|
290 |
+
|
291 |
+
def evaluate_all(question, response, reference, gpt2_model, gpt2_tokenizer, bias_pipeline):
|
292 |
+
candidates = [response]
|
293 |
+
references = [reference]
|
294 |
+
bleu, rouge1 = evaluate_bleu_rouge(candidates, references)
|
295 |
+
bert_p, bert_r, bert_f1 = evaluate_bert_score(candidates, references)
|
296 |
+
perplexity = evaluate_perplexity(response, gpt2_model, gpt2_tokenizer)
|
297 |
+
diversity = evaluate_diversity(candidates)
|
298 |
+
racial_bias = evaluate_racial_bias(response, bias_pipeline)
|
299 |
+
return {
|
300 |
+
"BLEU": bleu,
|
301 |
+
"ROUGE-1": rouge1,
|
302 |
+
"BERT P": bert_p,
|
303 |
+
"BERT R": bert_r,
|
304 |
+
"BERT F1": bert_f1,
|
305 |
+
"Perplexity": perplexity,
|
306 |
+
"Diversity": diversity,
|
307 |
+
"Racial Bias": racial_bias
|
308 |
+
}
|
309 |
+
|
310 |
+
#---------------------------------------------------------------------------------
|
311 |
|
312 |
def display_metrics(metrics):
|
313 |
result = ""
|
|
|
328 |
elif k == 'Racial Bias':
|
329 |
result += f"Racial Bias score indicates the presence of biased language in the generated output. Higher scores indicate more bias. Score obtained: {v}\n\n"
|
330 |
return result
|
331 |
+
#---------------------------------------------------------------------------------------------------------------------------------------------------
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
|
336 |
+
|
337 |
|
338 |
+
def conversation(qa_chain, message, history, gpt2_model, gpt2_tokenizer, bias_pipeline):
|
339 |
formatted_chat_history = format_chat_history(message, history)
|
340 |
question_by_user = message
|
341 |
|
|
|
358 |
new_history = history + [(message, response_answer)]
|
359 |
|
360 |
# Evaluate the metrics
|
361 |
+
metrics = evaluate_all(question_by_user, answer_of_question, context)
|
362 |
evaluation_metrics = display_metrics(metrics)
|
363 |
|
364 |
return (qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page,
|
|
|
465 |
|
466 |
# Chatbot events
|
467 |
msg.submit(conversation, \
|
468 |
+
inputs=[qa_chain, msg, chatbot], \
|
469 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page,metrics_output], \
|
470 |
queue=False)
|
471 |
|
472 |
submit_btn.click(conversation,
|
473 |
+
inputs=[qa_chain, msg, history],
|
474 |
outputs=[qa_chain, chatbot, history, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page, metrics_output])
|
475 |
|
476 |
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0],
|