Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import os
|
2 |
import json
|
|
|
3 |
from flask import Flask, jsonify, request
|
4 |
from transformers import pipeline
|
5 |
from pydub import AudioSegment
|
|
|
6 |
from io import BytesIO
|
7 |
|
8 |
# Create a Flask app
|
@@ -39,7 +41,14 @@ def preprocess_audio(file):
|
|
39 |
# Truncate if longer than target duration
|
40 |
audio = audio[:target_duration_ms]
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
@app.route('/detect', methods=['POST'])
|
45 |
def detect_deepfake():
|
@@ -50,15 +59,10 @@ def detect_deepfake():
|
|
50 |
if audio_file:
|
51 |
try:
|
52 |
# Preprocess the audio file
|
53 |
-
|
54 |
-
|
55 |
-
# Save the processed file temporarily
|
56 |
-
temp_wav = BytesIO()
|
57 |
-
audio.export(temp_wav, format="wav")
|
58 |
-
temp_wav.seek(0)
|
59 |
|
60 |
# Perform detection
|
61 |
-
result = audio_model(
|
62 |
result_dict = {item['label']: item['score'] for item in result}
|
63 |
|
64 |
return jsonify({"message": "Detection completed", "results": result_dict}), 200
|
|
|
1 |
import os
|
2 |
import json
|
3 |
+
import numpy as np
|
4 |
from flask import Flask, jsonify, request
|
5 |
from transformers import pipeline
|
6 |
from pydub import AudioSegment
|
7 |
+
from scipy.io import wavfile
|
8 |
from io import BytesIO
|
9 |
|
10 |
# Create a Flask app
|
|
|
41 |
# Truncate if longer than target duration
|
42 |
audio = audio[:target_duration_ms]
|
43 |
|
44 |
+
# Convert audio to numpy array
|
45 |
+
audio_np = np.array(audio.get_array_of_samples())
|
46 |
+
|
47 |
+
# Normalize to [-1, 1] range if needed
|
48 |
+
audio_np = audio_np.astype(np.float32)
|
49 |
+
audio_np /= np.max(np.abs(audio_np))
|
50 |
+
|
51 |
+
return audio_np
|
52 |
|
53 |
@app.route('/detect', methods=['POST'])
|
54 |
def detect_deepfake():
|
|
|
59 |
if audio_file:
|
60 |
try:
|
61 |
# Preprocess the audio file
|
62 |
+
audio_np = preprocess_audio(audio_file)
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# Perform detection
|
65 |
+
result = audio_model(audio_np)
|
66 |
result_dict = {item['label']: item['score'] for item in result}
|
67 |
|
68 |
return jsonify({"message": "Detection completed", "results": result_dict}), 200
|