Spaces:
Sleeping
Sleeping
File size: 6,523 Bytes
0703e71 68c11f0 d232ed1 5b6755d 68c11f0 d232ed1 0703e71 5b6755d 60ffe71 a1f7b63 7be224f 5b6755d 210b40c 090dd00 210b40c 090dd00 210b40c 090dd00 210b40c f21f2ed a73aede f21f2ed a73aede f21f2ed 0a402b2 f21f2ed 0a402b2 0108e87 f21f2ed 1418604 ec09f15 1418604 a1f7b63 1418604 a1f7b63 37528ea e899803 1418604 6b786ce eb7b56f 1aa6e35 090dd00 bc3ac0f 5b6755d 7f45e1c 76c4bfe 8672bbc 2cdd4cb 1861169 87d4d46 d232ed1 6b786ce bd26917 f21f2ed f2c7470 f21f2ed 6b786ce f2c7470 c43c3ad d5478e2 c43c3ad 2cdd4cb 1418604 bd26917 1418604 d232ed1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
import re
from typing import List, Tuple, Union
from pathlib import Path
import gradio as gr
import openai
HF_TOKEN = os.environ.get("HF_TOKEN", None)
LEPTON_API_TOKEN = os.environ.get("LEPTON_API_TOKEN", None)
# client=openai.OpenAI(
# base_url="https://yb15a7dy-patronus-lynx-8b-v1-1.tin.lepton.run/api/v1/",
# api_key=LEPTON_API_TOKEN
# )
# client=openai.OpenAI(
# base_url="https://yb15a7dy-lynx-70b.tin.lepton.run/api/v1/",
# api_key=LEPTON_API_TOKEN
# )
PROMPT = """
Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.
--
QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION):
{question}
--
DOCUMENT:
{document}
--
ANSWER:
{answer}
--
Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE":
{{"REASONING": <your reasoning as bullet points>, "SCORE": <your final score>}}
"""
HEADER = """
# Patronus Lynx Demo
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0" width="450">
<tr style="height:50px;">
<td style="text-align: center;">
<a href="https://www.patronus.ai">
<img src="https://cdn.prod.website-files.com/64e655d42d3be60f582d0472/64ede352897bcddbe2d41207_patronusai_final_logo.svg" width="200" height="40" />
</a>
</td>
</tr>
</table>
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0" width="450">
<tr style="height:30px;">
<td style="text-align: center;">
<a href="https://huggingface.co/PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange" height="20"></a>
</td>
<td style="text-align: center;">
<a href="https://github.com/patronus-ai/Lynx-hallucination-detection"><img src="https://postimage.me/images/2024/03/04/GitHub_Logo_White.png" width="100" height="20"></a>
</td>
<td style="text-align: center; color: white;">
<a href="https://arxiv.org/abs/2407.08488"><img src="https://img.shields.io/badge/arXiv-2407.08488-b31b1b.svg" height="20"></a>
</td>
</tr>
</table>
**Patronus Lynx** is a state-of-the-art open-source model for hallucination detection.
**Getting Started**: Provide a question and document or context given to your model in addition to the answer given by the model and then click submit. The output panel will indicate whether the reponse is a hallucination (Fail) or if it is faithful to the given document or context (Pass) through the score Pass or Fail and provide reasoning behind the score.
"""
def update_client_base_url(model_name):
if model_name == "Patronus Lynx 8B v1.1":
return "https://yb15a7dy-patronus-lynx-8b-v1-1.tin.lepton.run/api/v1/"
elif model_name == "Patronus Lynx 70B":
return "https://yb15a7dy-lynx-70b.tin.lepton.run/api/v1/"
def parse_patronus_lynx_response(
response: str,
) -> Tuple[bool, Union[List[str], None]]:
"""
Parses the response from the Patronus Lynx LLM and returns a tuple of:
- Whether the response is hallucinated or not.
- A reasoning trace explaining the decision.
"""
# Default to hallucinated
hallucination, reasoning = True, None
reasoning_pattern = r'"REASONING":\s*\[(.*?)\]'
score_pattern = r'"SCORE":\s*"?\b(PASS|FAIL)\b"?'
reasoning_match = re.search(reasoning_pattern, response, re.DOTALL)
score_match = re.search(score_pattern, response)
if score_match:
score = score_match.group(1)
if score == "PASS":
hallucination = False
if reasoning_match:
reasoning_content = reasoning_match.group(1)
reasoning = re.split(r"['\"],\s*['\"]", reasoning_content)
return hallucination, reasoning
def model_call(question, document, answer, client_base_url):
client = openai.OpenAI(
base_url=client_base_url,
api_key=LEPTON_API_TOKEN
)
print("CLIENT AND CLIENT BASE URL", client, client_base_url)
if question == "" or document == "" or answer == "":
return "", ""
NEW_FORMAT = PROMPT.format(question=question, document=document, answer=answer)
print("ENTIRE NEW_FORMAT", NEW_FORMAT)
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt=NEW_FORMAT,
temperature=0.0
)
print("RESPONSE FROM CLIENT:", response)
hallucination, reasoning = parse_patronus_lynx_response(response.choices[0].text)
score = "FAIL" if hallucination else "PASS"
combined_reasoning = " ".join(reasoning)[1:-1]
return combined_reasoning, score
# inputs = [
# gr.Textbox(label="Question"),
# gr.Textbox(label="Document"),
# gr.Textbox(label="Answer")
# ]
# outputs = [
# gr.Textbox(label="Reasoning"),
# gr.Textbox(label="Score")
# ]
with gr.Blocks() as demo:
base_url_state = gr.State(update_client_base_url("Patronus Lynx 8B v1.1"))
gr.Markdown(HEADER)
# gr.Interface(fn=model_call, inputs=inputs, outputs=outputs)
model_dropdown = gr.Dropdown(choices=["Patronus Lynx 8B v1.1", "Patronus Lynx 70B"], value="Patronus Lynx 8B v1.1", label="Model", interactive=True)
with gr.Row():
with gr.Column(scale=1):
question = gr.Textbox(label="Question")
document = gr.Textbox(label="Document")
answer = gr.Textbox(label="Answer")
with gr.Row():
clear_btn = gr.ClearButton([question, document, answer])
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
reasoning = gr.Textbox(label="Reasoning")
score = gr.Textbox(label="Score (FAIL if Hallucinated, PASS if not)")
model_dropdown.change(fn=update_client_base_url, inputs=[model_dropdown], outputs=[base_url_state])
submit_button.click(fn=model_call, inputs=[question, document, answer, base_url_state], outputs=[reasoning, score])
question.submit(fn=model_call, inputs=[question, document, answer, base_url_state], outputs=[reasoning, score])
document.submit(fn=model_call, inputs=[question, document, answer, base_url_state], outputs=[reasoning, score])
answer.submit(fn=model_call, inputs=[question, document, answer, base_url_state], outputs=[reasoning, score])
demo.launch()
|