import sys import gradio as gr # sys.path.append("../") sys.path.append("CLIP_explainability/Transformer-MM-Explainability/") import torch import CLIP.clip as clip import spacy from PIL import Image, ImageFont, ImageDraw, ImageOps import os os.system('python -m spacy download en_core_web_sm') from clip_grounding.utils.image import pad_to_square from clip_grounding.datasets.png import ( overlay_relevance_map_on_image, ) from CLIP_explainability.utils import interpret, show_img_heatmap, show_heatmap_on_text clip.clip._MODELS = { "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", } device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device, jit=False) # nlp = spacy.load("en_core_web_sm") import en_core_web_sm nlp = en_core_web_sm.load() # Gradio Section: def run_demo(image, text): orig_image = pad_to_square(image) img = preprocess(orig_image).unsqueeze(0).to(device) text_input = clip.tokenize([text]).to(device) R_text, R_image = interpret(model=model, image=img, texts=text_input, device=device) image_relevance = show_img_heatmap(R_image[0], img, orig_image=orig_image, device=device, show=False) overlapped = overlay_relevance_map_on_image(image, image_relevance) text_scores, text_tokens_decoded = show_heatmap_on_text(text, text_input, R_text[0], show=False) highlighted_text = [] for i, token in enumerate(text_tokens_decoded): highlighted_text.append((str(token), float(text_scores[i]))) return overlapped, highlighted_text # Default demo: input_img = gr.inputs.Image(type='pil', label="Original Image") input_txt = "text" inputs = [input_img, input_txt] outputs = [gr.inputs.Image(type='pil', label="Output Image"), "highlight"] description = """A demonstration based on the Generic Attention-model Explainability method for Interpreting Bi-Modal Transformers by Chefer et al. (2021): https://github.com/hila-chefer/Transformer-MM-Explainability.

This demo shows attributions scores on both the image and the text input when presenting CLIP with a pair. Attributions are computed as Gradient-weighted Attention Rollout (Chefer et al., 2021), and can be thought of as an estimate of the effective attention CLIP pays to its input when computing a multimodal representation. Warning: Note that attribution methods such as the one from this demo can only give an estimate of the real underlying behavior of the model.""" iface = gr.Interface(fn=run_demo, inputs=inputs, outputs=outputs, title="CLIP Grounding Explainability", description=description, examples=[["example_images/London.png", "London Eye"], ["example_images/London.png", "Big Ben"], ["example_images/harrypotter.png", "Harry"], ["example_images/harrypotter.png", "Hermione"], ["example_images/harrypotter.png", "Ron"], ["example_images/Amsterdam.png", "Amsterdam canal"], ["example_images/Amsterdam.png", "Old buildings"], ["example_images/Amsterdam.png", "Pink flowers"], ["example_images/dogs_on_bed.png", "Two dogs"], ["example_images/dogs_on_bed.png", "Book"], ["example_images/dogs_on_bed.png", "Cat"]]) # NER demo: def add_label_to_img(img, label, add_entity_label=True): img = ImageOps.expand(img, border=45, fill=(255,255,255)) draw = ImageDraw.Draw(img) font = ImageFont.truetype("arial.ttf", 24) if add_entity_label: draw.text((5,5), f"Entity: {str(label)}" , align="center", fill=(0, 0, 0), font=font) else: draw.text((5,5), str(label), align="center", fill=(0, 0, 0), font=font) return img def NER_demo(image, text): # Apply NER to extract named entities, and run the explainability method # for each named entity. highlighed_entities = [] for ent in nlp(text).ents: ent_text = ent.text ent_label = ent.label_ highlighed_entities.append((ent_text, ent_label)) # As the default image, we run the default demo on the input image and text: overlapped, highlighted_text = run_demo(image, text) # Then, we run the demo for each of the named entities: gallery_images = [add_label_to_img(overlapped, "Full explanation", add_entity_label=False)] for ent_text, ent_label in highlighed_entities: overlapped_ent, highlighted_text_ent = run_demo(image, ent_text) overlapped_ent_labelled = add_label_to_img(overlapped_ent, f"{str(ent_text)} ({str(ent_label)})") gallery_images.append(overlapped_ent_labelled) return highlighed_entities, gallery_images input_img_NER = gr.inputs.Image(type='pil', label="Original Image") input_txt_NER = "text" inputs_NER = [input_img_NER, input_txt_NER] outputs_NER = ["highlight", gr.Gallery(type='pil', label="NER Entity explanations")] description_NER = """Automatically generated CLIP grounding explanations for named entities, retrieved from the spacy NER model. Warning: Note that attribution methods such as the one from this demo can only give an estimate of the real underlying behavior of the model.""" iface_NER = gr.Interface(fn=NER_demo, inputs=inputs_NER, outputs=outputs_NER, title="Named Entity Grounding explainability using CLIP", description=description_NER, examples=[["example_images/London.png", "In this image we see Big Ben and the London Eye, on both sides of the river Thames."]], cache_examples=False) demo_tabs = gr.TabbedInterface([iface, iface_NER], ["Default", "NER"]) with demo_tabs: gr.Markdown(""" ### Acknowledgements This demo was developed for the Interpretability & Explainability in AI course at the University of Amsterdam. We would like to express our thanks to Jelle Zuidema, Jaap Jumelet, Tom Kersten, Christos Athanasiadis, Peter Heemskerk, Zhi Zhang, and all the other TAs who helped us during this course. --- ### References \[1\]: Chefer, H., Gur, S., & Wolf, L. (2021). Generic attention-model explainability for interpreting bi-modal and encoder-decoder transformers.
\[2\]: Abnar, S., & Zuidema, W. (2020). Quantifying attention flow in transformers. arXiv preprint arXiv:2005.00928.
\[3\]: [https://samiraabnar.github.io/articles/2020-04/attention_flow](https://samiraabnar.github.io/articles/2020-04/attention_flow)
""") demo_tabs.launch(show_error=True)