File size: 17,150 Bytes
8db9167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import click
import os
import multiprocessing
import numpy as np
import torch
import imgui
import dnnlib
from gui_utils import imgui_window
from gui_utils import imgui_utils
from gui_utils import gl_utils
from gui_utils import text_utils
from viz import renderer
from viz import pickle_widget
from viz import latent_widget
from viz import drag_widget
from viz import capture_widget
#----------------------------------------------------------------------------
class Visualizer(imgui_window.ImguiWindow):
def __init__(self, capture_dir=None):
super().__init__(title='DragGAN', window_width=3840, window_height=2160)
# Internals.
self._last_error_print = None
self._async_renderer = AsyncRenderer()
self._defer_rendering = 0
self._tex_img = None
self._tex_obj = None
self._mask_obj = None
self._image_area = None
self._status = dnnlib.EasyDict()
# Widget interface.
self.args = dnnlib.EasyDict()
self.result = dnnlib.EasyDict()
self.pane_w = 0
self.label_w = 0
self.button_w = 0
self.image_w = 0
self.image_h = 0
# Widgets.
self.pickle_widget = pickle_widget.PickleWidget(self)
self.latent_widget = latent_widget.LatentWidget(self)
self.drag_widget = drag_widget.DragWidget(self)
self.capture_widget = capture_widget.CaptureWidget(self)
if capture_dir is not None:
self.capture_widget.path = capture_dir
# Initialize window.
self.set_position(0, 0)
self._adjust_font_size()
self.skip_frame() # Layout may change after first frame.
def close(self):
super().close()
if self._async_renderer is not None:
self._async_renderer.close()
self._async_renderer = None
def add_recent_pickle(self, pkl, ignore_errors=False):
self.pickle_widget.add_recent(pkl, ignore_errors=ignore_errors)
def load_pickle(self, pkl, ignore_errors=False):
self.pickle_widget.load(pkl, ignore_errors=ignore_errors)
def print_error(self, error):
error = str(error)
if error != self._last_error_print:
print('\n' + error + '\n')
self._last_error_print = error
def defer_rendering(self, num_frames=1):
self._defer_rendering = max(self._defer_rendering, num_frames)
def clear_result(self):
self._async_renderer.clear_result()
def set_async(self, is_async):
if is_async != self._async_renderer.is_async:
self._async_renderer.set_async(is_async)
self.clear_result()
if 'image' in self.result:
self.result.message = 'Switching rendering process...'
self.defer_rendering()
def _adjust_font_size(self):
old = self.font_size
self.set_font_size(min(self.content_width / 120, self.content_height / 60))
if self.font_size != old:
self.skip_frame() # Layout changed.
def check_update_mask(self, **args):
update_mask = False
if 'pkl' in self._status:
if self._status.pkl != args['pkl']:
update_mask = True
self._status.pkl = args['pkl']
if 'w0_seed' in self._status:
if self._status.w0_seed != args['w0_seed']:
update_mask = True
self._status.w0_seed = args['w0_seed']
return update_mask
def capture_image_frame(self):
self.capture_next_frame()
captured_frame = self.pop_captured_frame()
captured_image = None
if captured_frame is not None:
x1, y1, w, h = self._image_area
captured_image = captured_frame[y1:y1+h, x1:x1+w, :]
return captured_image
def get_drag_info(self):
seed = self.latent_widget.seed
points = self.drag_widget.points
targets = self.drag_widget.targets
mask = self.drag_widget.mask
w = self._async_renderer._renderer_obj.w
return seed, points, targets, mask, w
def draw_frame(self):
self.begin_frame()
self.args = dnnlib.EasyDict()
self.pane_w = self.font_size * 18
self.button_w = self.font_size * 5
self.label_w = round(self.font_size * 4.5)
# Detect mouse dragging in the result area.
if self._image_area is not None:
if not hasattr(self.drag_widget, 'width'):
self.drag_widget.init_mask(self.image_w, self.image_h)
clicked, down, img_x, img_y = imgui_utils.click_hidden_window(
'##image_area', self._image_area[0], self._image_area[1], self._image_area[2], self._image_area[3], self.image_w, self.image_h)
self.drag_widget.action(clicked, down, img_x, img_y)
# Begin control pane.
imgui.set_next_window_position(0, 0)
imgui.set_next_window_size(self.pane_w, self.content_height)
imgui.begin('##control_pane', closable=False, flags=(imgui.WINDOW_NO_TITLE_BAR | imgui.WINDOW_NO_RESIZE | imgui.WINDOW_NO_MOVE))
# Widgets.
expanded, _visible = imgui_utils.collapsing_header('Network & latent', default=True)
self.pickle_widget(expanded)
self.latent_widget(expanded)
expanded, _visible = imgui_utils.collapsing_header('Drag', default=True)
self.drag_widget(expanded)
expanded, _visible = imgui_utils.collapsing_header('Capture', default=True)
self.capture_widget(expanded)
# Render.
if self.is_skipping_frames():
pass
elif self._defer_rendering > 0:
self._defer_rendering -= 1
elif self.args.pkl is not None:
self._async_renderer.set_args(**self.args)
result = self._async_renderer.get_result()
if result is not None:
self.result = result
if 'stop' in self.result and self.result.stop:
self.drag_widget.stop_drag()
if 'points' in self.result:
self.drag_widget.set_points(self.result.points)
if 'init_net' in self.result:
if self.result.init_net:
self.drag_widget.reset_point()
# Display.
max_w = self.content_width - self.pane_w
max_h = self.content_height
pos = np.array([self.pane_w + max_w / 2, max_h / 2])
if 'image' in self.result:
# Reset mask after loading a new pickle or changing seed.
if self.check_update_mask(**self.args):
h, w, _ = self.result.image.shape
self.drag_widget.init_mask(w, h)
if self._tex_img is not self.result.image:
self._tex_img = self.result.image
if self._tex_obj is None or not self._tex_obj.is_compatible(image=self._tex_img):
self._tex_obj = gl_utils.Texture(image=self._tex_img, bilinear=False, mipmap=False)
else:
self._tex_obj.update(self._tex_img)
self.image_h, self.image_w = self._tex_obj.height, self._tex_obj.width
zoom = min(max_w / self._tex_obj.width, max_h / self._tex_obj.height)
zoom = np.floor(zoom) if zoom >= 1 else zoom
self._tex_obj.draw(pos=pos, zoom=zoom, align=0.5, rint=True)
if self.drag_widget.show_mask and hasattr(self.drag_widget, 'mask'):
mask = ((1-self.drag_widget.mask.unsqueeze(-1)) * 255).to(torch.uint8)
if self._mask_obj is None or not self._mask_obj.is_compatible(image=self._tex_img):
self._mask_obj = gl_utils.Texture(image=mask, bilinear=False, mipmap=False)
else:
self._mask_obj.update(mask)
self._mask_obj.draw(pos=pos, zoom=zoom, align=0.5, rint=True, alpha=0.15)
if self.drag_widget.mode in ['flexible', 'fixed']:
posx, posy = imgui.get_mouse_pos()
if posx >= self.pane_w:
pos_c = np.array([posx, posy])
gl_utils.draw_circle(center=pos_c, radius=self.drag_widget.r_mask * zoom, alpha=0.5)
rescale = self._tex_obj.width / 512 * zoom
for point in self.drag_widget.targets:
pos_x = self.pane_w + max_w / 2 + (point[1] - self.image_w//2) * zoom
pos_y = max_h / 2 + (point[0] - self.image_h//2) * zoom
gl_utils.draw_circle(center=np.array([pos_x, pos_y]), color=[0,0,1], radius=9 * rescale)
for point in self.drag_widget.points:
pos_x = self.pane_w + max_w / 2 + (point[1] - self.image_w//2) * zoom
pos_y = max_h / 2 + (point[0] - self.image_h//2) * zoom
gl_utils.draw_circle(center=np.array([pos_x, pos_y]), color=[1,0,0], radius=9 * rescale)
for point, target in zip(self.drag_widget.points, self.drag_widget.targets):
t_x = self.pane_w + max_w / 2 + (target[1] - self.image_w//2) * zoom
t_y = max_h / 2 + (target[0] - self.image_h//2) * zoom
p_x = self.pane_w + max_w / 2 + (point[1] - self.image_w//2) * zoom
p_y = max_h / 2 + (point[0] - self.image_h//2) * zoom
gl_utils.draw_arrow(p_x, p_y, t_x, t_y, l=8 * rescale, width = 3 * rescale)
imshow_w = int(self._tex_obj.width * zoom)
imshow_h = int(self._tex_obj.height * zoom)
self._image_area = [int(self.pane_w + max_w / 2 - imshow_w / 2), int(max_h / 2 - imshow_h / 2), imshow_w, imshow_h]
if 'error' in self.result:
self.print_error(self.result.error)
if 'message' not in self.result:
self.result.message = str(self.result.error)
if 'message' in self.result:
tex = text_utils.get_texture(self.result.message, size=self.font_size, max_width=max_w, max_height=max_h, outline=2)
tex.draw(pos=pos, align=0.5, rint=True, color=1)
# End frame.
self._adjust_font_size()
imgui.end()
self.end_frame()
#----------------------------------------------------------------------------
class AsyncRenderer:
def __init__(self):
self._closed = False
self._is_async = False
self._cur_args = None
self._cur_result = None
self._cur_stamp = 0
self._renderer_obj = None
self._args_queue = None
self._result_queue = None
self._process = None
def close(self):
self._closed = True
self._renderer_obj = None
if self._process is not None:
self._process.terminate()
self._process = None
self._args_queue = None
self._result_queue = None
@property
def is_async(self):
return self._is_async
def set_async(self, is_async):
self._is_async = is_async
def set_args(self, **args):
assert not self._closed
args2 = args.copy()
args_mask = args2.pop('mask')
if self._cur_args:
_cur_args = self._cur_args.copy()
cur_args_mask = _cur_args.pop('mask')
else:
_cur_args = self._cur_args
# if args != self._cur_args:
if args2 != _cur_args:
if self._is_async:
self._set_args_async(**args)
else:
self._set_args_sync(**args)
self._cur_args = args
def _set_args_async(self, **args):
if self._process is None:
self._args_queue = multiprocessing.Queue()
self._result_queue = multiprocessing.Queue()
try:
multiprocessing.set_start_method('spawn')
except RuntimeError:
pass
self._process = multiprocessing.Process(target=self._process_fn, args=(self._args_queue, self._result_queue), daemon=True)
self._process.start()
self._args_queue.put([args, self._cur_stamp])
def _set_args_sync(self, **args):
if self._renderer_obj is None:
self._renderer_obj = renderer.Renderer()
self._cur_result = self._renderer_obj.render(**args)
def get_result(self):
assert not self._closed
if self._result_queue is not None:
while self._result_queue.qsize() > 0:
result, stamp = self._result_queue.get()
if stamp == self._cur_stamp:
self._cur_result = result
return self._cur_result
def clear_result(self):
assert not self._closed
self._cur_args = None
self._cur_result = None
self._cur_stamp += 1
@staticmethod
def _process_fn(args_queue, result_queue):
renderer_obj = renderer.Renderer()
cur_args = None
cur_stamp = None
while True:
args, stamp = args_queue.get()
while args_queue.qsize() > 0:
args, stamp = args_queue.get()
if args != cur_args or stamp != cur_stamp:
result = renderer_obj.render(**args)
if 'error' in result:
result.error = renderer.CapturedException(result.error)
result_queue.put([result, stamp])
cur_args = args
cur_stamp = stamp
#----------------------------------------------------------------------------
@click.command()
@click.argument('pkls', metavar='PATH', nargs=-1)
@click.option('--capture-dir', help='Where to save screenshot captures', metavar='PATH', default=None)
@click.option('--browse-dir', help='Specify model path for the \'Browse...\' button', metavar='PATH')
def main(
pkls,
capture_dir,
browse_dir
):
"""Interactive model visualizer.
Optional PATH argument can be used specify which .pkl file to load.
"""
viz = Visualizer(capture_dir=capture_dir)
if browse_dir is not None:
viz.pickle_widget.search_dirs = [browse_dir]
# List pickles.
if len(pkls) > 0:
for pkl in pkls:
viz.add_recent_pickle(pkl)
viz.load_pickle(pkls[0])
else:
pretrained = [
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqcat-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqdog-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqv2-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqwild-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-brecahad-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-celebahq-256x256.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-cifar10-32x32.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-256x256.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhqu-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhqu-256x256.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-lsundog-256x256.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-metfaces-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-metfacesu-1024x1024.pkl'
]
# Populate recent pickles list with pretrained model URLs.
for url in pretrained:
viz.add_recent_pickle(url)
# Run.
while not viz.should_close():
viz.draw_frame()
viz.close()
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------
|