Pavan178 commited on
Commit
246e6b5
1 Parent(s): 4c9b24b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -229
app.py CHANGED
@@ -1,6 +1,5 @@
1
  import gradio as gr
2
  import os
3
-
4
  from langchain_community.document_loaders import PyPDFLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from langchain_community.vectorstores import Chroma
@@ -9,154 +8,77 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
9
  from langchain_community.llms import HuggingFacePipeline
10
  from langchain.chains import ConversationChain
11
  from langchain.memory import ConversationBufferMemory
12
- from langchain_community.llms import HuggingFaceEndpoint
13
  import spaces
14
  from pathlib import Path
15
  import chromadb
16
  from unidecode import unidecode
17
 
18
- from transformers import AutoTokenizer
19
  import transformers
20
  import torch
21
- import tqdm
22
- import accelerate
23
  import re
24
 
25
-
26
-
27
- # default_persist_directory = './chroma_HF/'
28
- list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
29
- "google/gemma-7b-it","google/gemma-2b-it", \
30
- "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
31
- "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
32
- "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
33
- "google/flan-t5-xxl"
34
  ]
35
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
36
 
37
  @spaces.GPU
38
- # Load PDF document and create doc splits
39
  def load_doc(list_file_path, chunk_size, chunk_overlap):
40
- # Processing for one document only
41
- # loader = PyPDFLoader(file_path)
42
- # pages = loader.load()
43
  loaders = [PyPDFLoader(x) for x in list_file_path]
44
  pages = []
45
  for loader in loaders:
46
  pages.extend(loader.load())
47
- # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
48
  text_splitter = RecursiveCharacterTextSplitter(
49
- chunk_size = chunk_size,
50
- chunk_overlap = chunk_overlap)
 
51
  doc_splits = text_splitter.split_documents(pages)
52
  return doc_splits
53
 
54
-
55
- # Create vector database
56
  def create_db(splits, collection_name):
57
- embedding = HuggingFaceEmbeddings()
58
  new_client = chromadb.EphemeralClient()
59
  vectordb = Chroma.from_documents(
60
  documents=splits,
61
  embedding=embedding,
62
  client=new_client,
63
- collection_name=collection_name,
64
- # persist_directory=default_persist_directory
65
  )
66
  return vectordb
67
 
68
-
69
- # Load vector database
70
- def load_db():
71
- embedding = HuggingFaceEmbeddings()
72
- vectordb = Chroma(
73
- # persist_directory=default_persist_directory,
74
- embedding_function=embedding)
75
- return vectordb
76
-
77
-
78
- # Initialize langchain LLM chain
79
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
80
  progress(0.1, desc="Initializing HF tokenizer...")
81
- # HuggingFacePipeline uses local model
82
- # Note: it will download model locally...
83
- # tokenizer=AutoTokenizer.from_pretrained(llm_model)
84
- # progress(0.5, desc="Initializing HF pipeline...")
85
- # pipeline=transformers.pipeline(
86
- # "text-generation",
87
- # model=llm_model,
88
- # tokenizer=tokenizer,
89
- # torch_dtype=torch.bfloat16,
90
- # trust_remote_code=True,
91
- # device_map="auto",
92
- # # max_length=1024,
93
- # max_new_tokens=max_tokens,
94
- # do_sample=True,
95
- # top_k=top_k,
96
- # num_return_sequences=1,
97
- # eos_token_id=tokenizer.eos_token_id
98
- # )
99
- # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
100
 
101
- # HuggingFaceHub uses HF inference endpoints
102
- progress(0.5, desc="Initializing HF Hub...")
103
- # Use of trust_remote_code as model_kwargs
104
- # Warning: langchain issue
105
- # URL: https://github.com/langchain-ai/langchain/issues/6080
106
- if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
107
- llm = HuggingFaceEndpoint(
108
- repo_id=llm_model,
109
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
110
- temperature = temperature,
111
- max_new_tokens = max_tokens,
112
- top_k = top_k,
113
- load_in_8bit = True,
114
- )
115
- elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
116
- raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
117
- llm = HuggingFaceEndpoint(
118
- repo_id=llm_model,
119
- temperature = temperature,
120
- max_new_tokens = max_tokens,
121
- top_k = top_k,
122
- )
123
- elif llm_model == "microsoft/phi-2":
124
- # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
125
- llm = HuggingFaceEndpoint(
126
- repo_id=llm_model,
127
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
128
- temperature = temperature,
129
- max_new_tokens = max_tokens,
130
- top_k = top_k,
131
- trust_remote_code = True,
132
- torch_dtype = "auto",
133
- )
134
- elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
135
- llm = HuggingFaceEndpoint(
136
- repo_id=llm_model,
137
- # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
138
- temperature = temperature,
139
- max_new_tokens = 250,
140
- top_k = top_k,
141
- )
142
- elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
143
- raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
144
- llm = HuggingFaceEndpoint(
145
- repo_id=llm_model,
146
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
147
- temperature = temperature,
148
- max_new_tokens = max_tokens,
149
- top_k = top_k,
150
- )
151
- else:
152
- llm = HuggingFaceEndpoint(
153
- repo_id=llm_model,
154
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
155
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
156
- temperature = temperature,
157
- max_new_tokens = max_tokens,
158
- top_k = top_k,
159
- )
160
 
161
  progress(0.75, desc="Defining buffer memory...")
162
  memory = ConversationBufferMemory(
@@ -164,90 +86,58 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
164
  output_key='answer',
165
  return_messages=True
166
  )
167
- # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
168
- retriever=vector_db.as_retriever()
169
  progress(0.8, desc="Defining retrieval chain...")
170
  qa_chain = ConversationalRetrievalChain.from_llm(
171
  llm,
172
  retriever=retriever,
173
  chain_type="stuff",
174
  memory=memory,
175
- # combine_docs_chain_kwargs={"prompt": your_prompt})
176
  return_source_documents=True,
177
- #return_generated_question=False,
178
  verbose=False,
179
  )
180
  progress(0.9, desc="Done!")
181
  return qa_chain
182
 
183
-
184
- # Generate collection name for vector database
185
- # - Use filepath as input, ensuring unicode text
186
  def create_collection_name(filepath):
187
- # Extract filename without extension
188
  collection_name = Path(filepath).stem
189
- # Fix potential issues from naming convention
190
- ## Remove space
191
  collection_name = collection_name.replace(" ","-")
192
- ## ASCII transliterations of Unicode text
193
  collection_name = unidecode(collection_name)
194
- ## Remove special characters
195
- #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
196
  collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
197
- ## Limit length to 50 characters
198
  collection_name = collection_name[:50]
199
- ## Minimum length of 3 characters
200
  if len(collection_name) < 3:
201
  collection_name = collection_name + 'xyz'
202
- ## Enforce start and end as alphanumeric character
203
  if not collection_name[0].isalnum():
204
  collection_name = 'A' + collection_name[1:]
205
  if not collection_name[-1].isalnum():
206
  collection_name = collection_name[:-1] + 'Z'
207
- print('Filepath: ', filepath)
208
- print('Collection name: ', collection_name)
209
  return collection_name
210
 
211
-
212
- # Initialize database
213
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
214
- # Create list of documents (when valid)
215
  list_file_path = [x.name for x in list_file_obj if x is not None]
216
- # Create collection_name for vector database
217
  progress(0.1, desc="Creating collection name...")
218
  collection_name = create_collection_name(list_file_path[0])
219
  progress(0.25, desc="Loading document...")
220
- # Load document and create splits
221
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
222
- # Create or load vector database
223
  progress(0.5, desc="Generating vector database...")
224
- # global vector_db
225
  vector_db = create_db(doc_splits, collection_name)
226
  progress(0.9, desc="Done!")
227
  return vector_db, collection_name, "Complete!"
228
 
229
-
230
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
231
- # print("llm_option",llm_option)
232
  llm_name = list_llm[llm_option]
233
- print("llm_name: ",llm_name)
234
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
235
  return qa_chain, "Complete!"
236
 
237
-
238
  def format_chat_history(message, chat_history):
239
  formatted_chat_history = []
240
  for user_message, bot_message in chat_history:
241
  formatted_chat_history.append(f"User: {user_message}")
242
  formatted_chat_history.append(f"Assistant: {bot_message}")
243
  return formatted_chat_history
244
-
245
 
246
  def conversation(qa_chain, message, history):
247
  formatted_chat_history = format_chat_history(message, history)
248
- #print("formatted_chat_history",formatted_chat_history)
249
-
250
- # Generate response using QA chain
251
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
252
  response_answer = response["answer"]
253
  if response_answer.find("Helpful Answer:") != -1:
@@ -256,28 +146,12 @@ def conversation(qa_chain, message, history):
256
  response_source1 = response_sources[0].page_content.strip()
257
  response_source2 = response_sources[1].page_content.strip()
258
  response_source3 = response_sources[2].page_content.strip()
259
- # Langchain sources are zero-based
260
  response_source1_page = response_sources[0].metadata["page"] + 1
261
  response_source2_page = response_sources[1].metadata["page"] + 1
262
  response_source3_page = response_sources[2].metadata["page"] + 1
263
- # print ('chat response: ', response_answer)
264
- # print('DB source', response_sources)
265
 
266
- # Append user message and response to chat history
267
  new_history = history + [(message, response_answer)]
268
- # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
269
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
270
-
271
-
272
- def upload_file(file_obj):
273
- list_file_path = []
274
- for idx, file in enumerate(file_obj):
275
- file_path = file_obj.name
276
- list_file_path.append(file_path)
277
- # print(file_path)
278
- # initialize_database(file_path, progress)
279
- return list_file_path
280
-
281
 
282
  def demo():
283
  with gr.Blocks(theme="base") as demo:
@@ -286,94 +160,71 @@ def demo():
286
  collection_name = gr.State()
287
 
288
  gr.Markdown(
289
- """<center><h2>PDF-based chatbot</center></h2>
290
  <h3>Ask any questions about your PDF documents</h3>""")
291
  gr.Markdown(
292
- """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
293
- The user interface explicitely shows multiple steps to help understand the RAG workflow.
294
- This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
295
- <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
296
- """)
297
 
298
  with gr.Tab("Step 1 - Upload PDF"):
299
- with gr.Row():
300
- document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
301
- # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
302
 
303
  with gr.Tab("Step 2 - Process document"):
304
- with gr.Row():
305
- db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
306
  with gr.Accordion("Advanced options - Document text splitter", open=False):
307
- with gr.Row():
308
- slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
309
- with gr.Row():
310
- slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
311
- with gr.Row():
312
- db_progress = gr.Textbox(label="Vector database initialization", value="None")
313
- with gr.Row():
314
- db_btn = gr.Button("Generate vector database")
315
 
316
  with gr.Tab("Step 3 - Initialize QA chain"):
317
- with gr.Row():
318
- llm_btn = gr.Radio(list_llm_simple, \
319
- label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
320
  with gr.Accordion("Advanced options - LLM model", open=False):
321
- with gr.Row():
322
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
323
- with gr.Row():
324
- slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
325
- with gr.Row():
326
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
327
- with gr.Row():
328
- llm_progress = gr.Textbox(value="None",label="QA chain initialization")
329
- with gr.Row():
330
- qachain_btn = gr.Button("Initialize Question Answering chain")
331
 
332
  with gr.Tab("Step 4 - Chatbot"):
333
  chatbot = gr.Chatbot(height=300)
334
  with gr.Accordion("Advanced - Document references", open=False):
335
- with gr.Row():
336
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
337
- source1_page = gr.Number(label="Page", scale=1)
338
- with gr.Row():
339
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
340
- source2_page = gr.Number(label="Page", scale=1)
341
- with gr.Row():
342
- doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
343
- source3_page = gr.Number(label="Page", scale=1)
344
- with gr.Row():
345
- msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
346
- with gr.Row():
347
- submit_btn = gr.Button("Submit message")
348
- clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
349
 
350
  # Preprocessing events
351
- #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
352
- db_btn.click(initialize_database, \
353
- inputs=[document, slider_chunk_size, slider_chunk_overlap], \
354
  outputs=[vector_db, collection_name, db_progress])
355
- qachain_btn.click(initialize_LLM, \
356
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
357
- outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
358
- inputs=None, \
359
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
360
  queue=False)
361
 
362
  # Chatbot events
363
- msg.submit(conversation, \
364
- inputs=[qa_chain, msg, chatbot], \
365
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
366
  queue=False)
367
- submit_btn.click(conversation, \
368
- inputs=[qa_chain, msg, chatbot], \
369
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
370
  queue=False)
371
- clear_btn.click(lambda:[None,"",0,"",0,"",0], \
372
- inputs=None, \
373
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
374
  queue=False)
375
  demo.queue().launch(debug=True)
376
 
377
-
378
  if __name__ == "__main__":
379
- demo()
 
1
  import gradio as gr
2
  import os
 
3
  from langchain_community.document_loaders import PyPDFLoader
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain_community.vectorstores import Chroma
 
8
  from langchain_community.llms import HuggingFacePipeline
9
  from langchain.chains import ConversationChain
10
  from langchain.memory import ConversationBufferMemory
 
11
  import spaces
12
  from pathlib import Path
13
  import chromadb
14
  from unidecode import unidecode
15
 
16
+ from transformers import AutoTokenizer, AutoModelForCausalLM
17
  import transformers
18
  import torch
 
 
19
  import re
20
 
21
+ # List of models
22
+ list_llm = [
23
+ "mistralai/Mistral-7B-Instruct-v0.2",
24
+ "HuggingFaceH4/zephyr-7b-beta",
25
+ "microsoft/phi-2",
26
+ "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
27
+ # Add more GPU-compatible models here
 
 
28
  ]
29
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
30
 
31
  @spaces.GPU
 
32
  def load_doc(list_file_path, chunk_size, chunk_overlap):
 
 
 
33
  loaders = [PyPDFLoader(x) for x in list_file_path]
34
  pages = []
35
  for loader in loaders:
36
  pages.extend(loader.load())
 
37
  text_splitter = RecursiveCharacterTextSplitter(
38
+ chunk_size=chunk_size,
39
+ chunk_overlap=chunk_overlap
40
+ )
41
  doc_splits = text_splitter.split_documents(pages)
42
  return doc_splits
43
 
 
 
44
  def create_db(splits, collection_name):
45
+ embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", device="cuda")
46
  new_client = chromadb.EphemeralClient()
47
  vectordb = Chroma.from_documents(
48
  documents=splits,
49
  embedding=embedding,
50
  client=new_client,
51
+ collection_name=collection_name
 
52
  )
53
  return vectordb
54
 
 
 
 
 
 
 
 
 
 
 
 
55
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
56
  progress(0.1, desc="Initializing HF tokenizer...")
57
+ tokenizer = AutoTokenizer.from_pretrained(llm_model)
58
+
59
+ progress(0.3, desc="Loading model...")
60
+ try:
61
+ model = AutoModelForCausalLM.from_pretrained(llm_model, torch_dtype=torch.float16, device_map="auto")
62
+ except RuntimeError as e:
63
+ if "CUDA out of memory" in str(e):
64
+ raise gr.Error("GPU memory exceeded. Try a smaller model or reduce batch size.")
65
+ else:
66
+ raise e
 
 
 
 
 
 
 
 
 
67
 
68
+ progress(0.5, desc="Initializing HF pipeline...")
69
+ pipeline = transformers.pipeline(
70
+ "text-generation",
71
+ model=model,
72
+ tokenizer=tokenizer,
73
+ torch_dtype=torch.float16,
74
+ device_map="auto",
75
+ max_new_tokens=max_tokens,
76
+ do_sample=True,
77
+ top_k=top_k,
78
+ num_return_sequences=1,
79
+ eos_token_id=tokenizer.eos_token_id
80
+ )
81
+ llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
  progress(0.75, desc="Defining buffer memory...")
84
  memory = ConversationBufferMemory(
 
86
  output_key='answer',
87
  return_messages=True
88
  )
89
+ retriever = vector_db.as_retriever()
 
90
  progress(0.8, desc="Defining retrieval chain...")
91
  qa_chain = ConversationalRetrievalChain.from_llm(
92
  llm,
93
  retriever=retriever,
94
  chain_type="stuff",
95
  memory=memory,
 
96
  return_source_documents=True,
 
97
  verbose=False,
98
  )
99
  progress(0.9, desc="Done!")
100
  return qa_chain
101
 
 
 
 
102
  def create_collection_name(filepath):
 
103
  collection_name = Path(filepath).stem
 
 
104
  collection_name = collection_name.replace(" ","-")
 
105
  collection_name = unidecode(collection_name)
 
 
106
  collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
 
107
  collection_name = collection_name[:50]
 
108
  if len(collection_name) < 3:
109
  collection_name = collection_name + 'xyz'
 
110
  if not collection_name[0].isalnum():
111
  collection_name = 'A' + collection_name[1:]
112
  if not collection_name[-1].isalnum():
113
  collection_name = collection_name[:-1] + 'Z'
 
 
114
  return collection_name
115
 
 
 
116
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
 
117
  list_file_path = [x.name for x in list_file_obj if x is not None]
 
118
  progress(0.1, desc="Creating collection name...")
119
  collection_name = create_collection_name(list_file_path[0])
120
  progress(0.25, desc="Loading document...")
 
121
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
 
122
  progress(0.5, desc="Generating vector database...")
 
123
  vector_db = create_db(doc_splits, collection_name)
124
  progress(0.9, desc="Done!")
125
  return vector_db, collection_name, "Complete!"
126
 
 
127
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
 
128
  llm_name = list_llm[llm_option]
 
129
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
130
  return qa_chain, "Complete!"
131
 
 
132
  def format_chat_history(message, chat_history):
133
  formatted_chat_history = []
134
  for user_message, bot_message in chat_history:
135
  formatted_chat_history.append(f"User: {user_message}")
136
  formatted_chat_history.append(f"Assistant: {bot_message}")
137
  return formatted_chat_history
 
138
 
139
  def conversation(qa_chain, message, history):
140
  formatted_chat_history = format_chat_history(message, history)
 
 
 
141
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
142
  response_answer = response["answer"]
143
  if response_answer.find("Helpful Answer:") != -1:
 
146
  response_source1 = response_sources[0].page_content.strip()
147
  response_source2 = response_sources[1].page_content.strip()
148
  response_source3 = response_sources[2].page_content.strip()
 
149
  response_source1_page = response_sources[0].metadata["page"] + 1
150
  response_source2_page = response_sources[1].metadata["page"] + 1
151
  response_source3_page = response_sources[2].metadata["page"] + 1
 
 
152
 
 
153
  new_history = history + [(message, response_answer)]
 
154
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  def demo():
157
  with gr.Blocks(theme="base") as demo:
 
160
  collection_name = gr.State()
161
 
162
  gr.Markdown(
163
+ """<center><h2>GPU-Accelerated PDF-based Chatbot</center></h2>
164
  <h3>Ask any questions about your PDF documents</h3>""")
165
  gr.Markdown(
166
+ """<b>Note:</b> This AI assistant uses GPU acceleration for faster processing.
167
+ It performs retrieval-augmented generation (RAG) from your PDF documents using Langchain and open-source LLMs.
168
+ The chatbot takes past questions into account and includes document references.""")
 
 
169
 
170
  with gr.Tab("Step 1 - Upload PDF"):
171
+ document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
 
 
172
 
173
  with gr.Tab("Step 2 - Process document"):
174
+ db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
 
175
  with gr.Accordion("Advanced options - Document text splitter", open=False):
176
+ slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
177
+ slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
178
+ db_progress = gr.Textbox(label="Vector database initialization", value="None")
179
+ db_btn = gr.Button("Generate vector database")
 
 
 
 
180
 
181
  with gr.Tab("Step 3 - Initialize QA chain"):
182
+ llm_btn = gr.Radio(list_llm_simple, label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
 
 
183
  with gr.Accordion("Advanced options - LLM model", open=False):
184
+ slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
185
+ slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
186
+ slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
187
+ llm_progress = gr.Textbox(value="None",label="QA chain initialization")
188
+ qachain_btn = gr.Button("Initialize Question Answering chain")
 
 
 
 
 
189
 
190
  with gr.Tab("Step 4 - Chatbot"):
191
  chatbot = gr.Chatbot(height=300)
192
  with gr.Accordion("Advanced - Document references", open=False):
193
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
194
+ source1_page = gr.Number(label="Page", scale=1)
195
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
196
+ source2_page = gr.Number(label="Page", scale=1)
197
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
198
+ source3_page = gr.Number(label="Page", scale=1)
199
+ msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
200
+ submit_btn = gr.Button("Submit message")
201
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
 
 
 
 
 
202
 
203
  # Preprocessing events
204
+ db_btn.click(initialize_database,
205
+ inputs=[document, slider_chunk_size, slider_chunk_overlap],
 
206
  outputs=[vector_db, collection_name, db_progress])
207
+ qachain_btn.click(initialize_LLM,
208
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
209
+ outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
210
+ inputs=None,
211
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
212
  queue=False)
213
 
214
  # Chatbot events
215
+ msg.submit(conversation,
216
+ inputs=[qa_chain, msg, chatbot],
217
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
218
  queue=False)
219
+ submit_btn.click(conversation,
220
+ inputs=[qa_chain, msg, chatbot],
221
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
222
  queue=False)
223
+ clear_btn.click(lambda:[None,"",0,"",0,"",0],
224
+ inputs=None,
225
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
226
  queue=False)
227
  demo.queue().launch(debug=True)
228
 
 
229
  if __name__ == "__main__":
230
+ demo()