File size: 1,684 Bytes
662636f
23752c4
 
6e98be9
 
6110da3
313893f
23752c4
 
6e98be9
400ddf8
 
 
bfb2729
 
 
6110da3
bfb2729
 
 
 
991d32c
 
1b40fc5
991d32c
 
9b49413
eb0b5b4
6e98be9
 
 
 
 
dfb1734
6e98be9
6110da3
dfb1734
 
499e09b
400ddf8
 
dfb1734
 
400ddf8
 
 
 
dfb1734
bfb2729
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import streamlit as st
import transformers
from transformers import pipeline
import PIL
from PIL import Image
import requests
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification

pipe = pipeline("summarization", model="google/pegasus-xsum")
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection")
imgpipe = pipeline("zero-shot-image-classification", model="google/siglip-so400m-patch14-384")


st.title("NLP APP")
option = st.sidebar.selectbox(
    "Choose a task",
    ("Summarization", "Age Detection", "Emotion Detection", "Image Classification")
)
if option == "Summarization":
    st.title("Text Summarization")
    text = st.text_area("Enter text to summarize")
    if st.button("Summarize"):
        if text:
            st.write("Summary:", pipe(text)[0]["summary_text"])
        else:
            st.write("Please enter text to summarize.")
elif option == "Age Detection":
    st.title("Welcome to age detection")

    uploaded_files = st.file_uploader("Choose a image file",type="jpg")

    if uploaded_files is not None:
        Image=Image.open(uploaded_files)

        st.write(agepipe(Image)[0]["label"])
elif option == "Image Classification":
    st.title("Welcome to object detection")

    uploaded_files = st.file_uploader("Choose a image file",type=["jpg","jpeg"])
    text=st.text_area("Enter possible class names(comma separated")
    candidate_lables=[t.strip() for t in text.split(',')]
    if uploaded_files is not None:
        Image=Image.open(uploaded_files)
        
        outputs = imgpipe(uploaded_files,candidate_lables)

        st.write(output["label"])
        

else:
    st.title("None")