Spaces:
Sleeping
Sleeping
File size: 1,684 Bytes
662636f 23752c4 6e98be9 6110da3 313893f 23752c4 6e98be9 400ddf8 bfb2729 6110da3 bfb2729 991d32c 1b40fc5 991d32c 9b49413 eb0b5b4 6e98be9 dfb1734 6e98be9 6110da3 dfb1734 499e09b 400ddf8 dfb1734 400ddf8 dfb1734 bfb2729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import streamlit as st
import transformers
from transformers import pipeline
import PIL
from PIL import Image
import requests
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
pipe = pipeline("summarization", model="google/pegasus-xsum")
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection")
imgpipe = pipeline("zero-shot-image-classification", model="google/siglip-so400m-patch14-384")
st.title("NLP APP")
option = st.sidebar.selectbox(
"Choose a task",
("Summarization", "Age Detection", "Emotion Detection", "Image Classification")
)
if option == "Summarization":
st.title("Text Summarization")
text = st.text_area("Enter text to summarize")
if st.button("Summarize"):
if text:
st.write("Summary:", pipe(text)[0]["summary_text"])
else:
st.write("Please enter text to summarize.")
elif option == "Age Detection":
st.title("Welcome to age detection")
uploaded_files = st.file_uploader("Choose a image file",type="jpg")
if uploaded_files is not None:
Image=Image.open(uploaded_files)
st.write(agepipe(Image)[0]["label"])
elif option == "Image Classification":
st.title("Welcome to object detection")
uploaded_files = st.file_uploader("Choose a image file",type=["jpg","jpeg"])
text=st.text_area("Enter possible class names(comma separated")
candidate_lables=[t.strip() for t in text.split(',')]
if uploaded_files is not None:
Image=Image.open(uploaded_files)
outputs = imgpipe(uploaded_files,candidate_lables)
st.write(output["label"])
else:
st.title("None") |