Spaces:
Sleeping
Sleeping
File size: 1,386 Bytes
662636f 23752c4 6e98be9 23752c4 6e98be9 dfb1734 bfb2729 8218770 bfb2729 991d32c 1b40fc5 991d32c 9b49413 eb0b5b4 6e98be9 dfb1734 6e98be9 dfb1734 499e09b dfb1734 bfb2729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
import transformers
from transformers import pipeline
import PIL
from PIL import Image
pipe = pipeline("summarization", model="google/pegasus-xsum")
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection")
objpipe = pipeline("zero-shot-object-detection", model="google/owlvit-base-patch32")
st.title("NLP APP")
option = st.sidebar.selectbox(
"Choose a task",
("Summarization", "Age Detection", "Emotion Detection", "Object Detection")
)
if option == "Summarization":
st.title("Text Summarization")
text = st.text_area("Enter text to summarize")
if st.button("Summarize"):
if text:
st.write("Summary:", pipe(text)[0]["summary_text"])
else:
st.write("Please enter text to summarize.")
elif option == "Age Detection":
st.title("Welcome to age detection")
uploaded_files = st.file_uploader("Choose a image file",type="jpg")
if uploaded_files is not None:
Image=Image.open(uploaded_files)
st.write(agepipe(Image)[0]["label"])
elif option == "Object Detection":
st.title("Welcome to object detection")
uploaded_files = st.file_uploader("Choose a image file",type=["jpg","jpeg"])
if uploaded_files is not None:
Image=Image.open(uploaded_files)
st.write(objpipe(Image)[0]["label"])
else:
st.title("None") |